
Naval Research Laboratory, Code 5540, Washington, D.C. 20375-5337

Handbook for the Computer
Security Certification of
Trusted Systems

Chapter 1: Overview
Chapter 2: Development Plan
Chapter 3: Formal Model of the Security Policy
Chapter 4: Descriptive Top-Level Specification
Chapter 5: Design
Chapter 6: Assurance Mappings
Chapter 7: Implementation
Chapter 8: Covert Channel Analysis
Chapter 9: Security Features Testing
Chapter 10: Penetration Testing

NRL Technical Memorandum 5540:062A, 12 Feb 1996

For additional copies of this report, please send e-mail to
landwehr@itd.nrl.navy.mil, or retrieve PostScript via
http://www.itd.nrl.navy.mil/ITD/5540/publications/index.html
(e.g., using Mosaic).

Covert Channel Analysis:

A Chapter of the

Handbook for the Computer Security Certi�cation of

Trusted Systems1

John McHugh, Principal Investigator

Tektronix Professor

Department of Computer Science

Portland State University

POB 751

Portland, Oregon, 97207-0751

Revised Final Report { 16 December 1995

1Prepared by the University of North Carolina for the Naval Research Laboratory under contract

N00014{91{K{2032

Contents

1 Introduction 4

1.1 What is a Covert Channel? : 5

1.2 Why Consider Covert Channels? : 6

1.2.1 Evaluators : 6

1.2.2 The Designated Accreditation Authority (DAA) : : : : : : : : : : : 7

1.2.3 Developers : 7

1.2.4 Purchasers : 7

1.2.5 End users : 7

1.3 Coding and Signaling : 8

1.4 Characterizing Covert Channels : 8

1.4.1 Storage vs. Timing : 8

1.4.2 Senders and Receivers : 9

1.4.3 Level of Abstraction : 10

1.4.4 When is a channel harmful? : 10

2 System Characterizations 11

2.1 Levels of System Speci�cation : 11

2.2 System Description Issues : 12

2.2.1 The system model : 12

2.2.2 Completeness : 12

2.2.3 The Notation : 13

2.2.4 Formality : 13

3 Dependency Analysis 14

3.1 Resource Identi�cation : 15

3.2 Speci�cation Decomposition : 16

3.2.1 Guarded assignments : 16

3.2.2 Sources and Targets : 17

3.3 Code analysis issues : 19

3.3.1 Local variables : 19

3.3.2 Procedures and Functions : 19

3.3.3 Side E�ects : 21

3.4 Expression Decomposition : 21

3.4.1 If Expressions : 21

3.4.2 Arrays and other structures : 22

1

3.5 Approximations and Conservative Replacement : : : : : : : : : : : : : : : : 22

4 Security Policy Issues 26

4.1 Linking policy to resources : 27

5 Looking for Channels 29

5.1 The Shared Resource Matrix : 29

5.1.1 The basic SRM formulation : 30

5.1.2 Adding detail to the SRM : 30

5.1.3 Identifying Security Flaws : 32

5.1.4 Finding Covert Channels : 33

5.2 Information Flow Formulas : 36

5.2.1 Deriving SVCs from a detailed SRM : : : : : : : : : : : : : : : : : : 36

5.2.2 Reasoning about SVCs : 37

5.2.3 Identifying security aws : 38

5.2.4 Formal ow violations : 38

5.3 Covert ow trees : 39

5.3.1 Constructing covert ow trees from dependency data : : : : : : : : : 39

5.3.2 Identifying security aws : 39

5.4 Non{interference formulations : 40

5.4.1 Non-Interference : 40

6 Analyzing Covert Channels 43

6.1 Exploiting Security Flaws : 43

6.2 Covert Channel Scenarios : 44

6.2.1 Half Bit Mechanisms : 44

6.2.2 Signaling Protocols : 44

6.2.3 Talking to Outsiders : 44

6.3 Trusted Applications - Trusted to do What? : : : : : : : : : : : : : : : : : : 45

6.4 Analyzing Threats : 45

6.5 Channel Capacity : 46

6.6 Countermeasures : 46

6.6.1 Auditing : 47

6.6.2 Reducing Channel Capacity : 47

6.6.3 Closing the Channel : 47

7 Evaluating a Covert Channel Analysis 49

7.1 Looking at Plans : 49

7.1.1 What is to be analyzed? : 49

7.1.2 When will CCA be done? : 50

7.1.3 Who is doing the work? : 50

7.2 Evaluating the Results : 51

7.2.1 What did they �nd? : 51

7.2.2 How is the investigation described? : : : : : : : : : : : : : : : : : : : 51

7.2.3 Looking at level of e�ort expended : : : : : : : : : : : : : : : : : : : 51

7.2.4 Detecting \hand waving" : 52

2

7.2.5 How did the developers respond? : 52

7.3 How To Hedge Your Bets : 52

8 Conclusions and Acknowledgments 54

A Mechanical Tools for CCA 59

A.1 The Gypsy Information Flow Tool (GIFT) : : : : : : : : : : : : : : : : : : : 59

A.2 Ina Flow : 60

A.3 The EHDM MLS Tool : 60

A.4 Other Tools : 60

B A worked Example 62

B.1 Requirements : 62

B.2 A Skeleton : 63

B.2.1 Preliminaries : 63

B.2.2 Files : 63

B.2.3 The File System and Security State : : : : : : : : : : : : : : : : : : 63

B.2.4 Requests and Responses : 64

B.2.5 The TCB Interface : 64

B.3 The DTLS : 64

B.3.1 Data and Data Structures : 64

B.3.2 Internal routines : 65

B.3.3 The TCB routines : 67

B.4 DTLS Analysis : 69

B.4.1 The Canonical State : 69

B.4.2 Dependency Analysis : 70

B.5 Security Analysis : 77

B.6 The Channel : 78

3

Section 1

Introduction

Covert channel analysis can be viewed either as an arcane aspect of computer security

having little to do with \real" security issues or as the key to protecting nominally secure

systems against a wide variety of both internal and external threats. Which view should

be adopted is a function of a number of factors including the nature of the material to

be protected: its sensitivity, size, and timeliness, and the threat environment to which

the system will be exposed. Under the TCSEC [28], covert channel analysis is required

starting at the B2 level of assurance with increasingly rigorous analysis required for B3

and A1 systems. This is consistent with the view that high assurance security systems are

primarily required to protect highly sensitive information, to counter serious threats, or

both.

In the introduction, we will provide an overview of covert channel analysis, beginning

with a de�nition of covert channels and a discussion of the nature of the issues concerning

them that a�ect the various users of this handbook. Since covert channels involve (often

complex) coding and signaling mechanisms, these will be discussed. The introduction

concludes with a characterization of covert channels.

Covert channel analysis can, and should, be performed on system descriptions ranging

from abstract models to machine code. Section 2 discusses issues of system representation

and the suitability of various representation paradigms for covert channel analysis. Since

covert channels are built from information ows within a trusted computing system, one

of the �rst steps in performing an analysis is the abstraction of potential information ows

from a description of the system. A formalism for performing this task, called dependency

analysis is presented in section 3. Dependency analysis provides a general framework in

which any suitable system representation can be characterized, providing one of the inputs

for a covert channel analysis.

Covert channels can be either innocuous or harmful. Innocuous channels are consistent

with the intent of system's security policy. They may result in surprising system behaviors,

but do not place the system or the information that it protects at risk. Harmful covert

channels are information ows that are contrary to the intent of the system's security policy.

In section 4 the problem of extending the system security policy to cover the information

ows revealed by dependency analysis is considered.

Given an extended security policy applied to system dependencies, a search for covert

channels can be performed. This search, which is discussed in section 5, can be done using

4

manual methods such as the shared resource matrix, or it can be done using mechanical tools

based on information ow formulas (also known as security veri�cation conditions), covert

ow trees, or other techniques. It can also be done using \non-interference" formulations

that arguably characterize both high level security and covert channels.

If the search for covert channels exposes a aw in the system, the aw must be ana-

lyzed to determine its potential signi�cance. This includes the development of scenarios for

exploiting the aw, threat analysis, the determination of the channel capacity, etc. Coun-

termeasures ranging from auditing the use of the channel to restructuring the system may

apply. Section 6 covers this analysis.

By the end of section 6, the evaluator will have a good view of the techniques that

are useful for performing a covert channel analysis on a system under construction and,

we hope, some insight into techniques for designing the system so as to minimize the

introduction of covert channels. Section 7 provides guidance for purchasers and evaluators

in evaluating a covert channel analysis plan. This should be of interest to developers as

well. The handbook proper concludes with an annotated bibliography that provides the

interested reader with a means to gain further knowledge of the subject. Although the

handbook is primarily intended for the evaluators of B2 or B3 systems where mechanical

covert channel analysis tools are not required, readers should be aware of the tools that

have been developed to support the veri�cation systems used for A1 systems as well as some

experimental tools discussed in the recent literature. These are discussed in Appendix A.

A small example of a manual covert channel analysis using the shared resource matrix is

presented in Appendix B.

1.1 What is a Covert Channel?

Marv Schaefer, former chief scientist of the National Computer Security Center, once char-

acterized covert channels [35] as system behaviors that surprise the system's developers.

We o�er the following as a working de�nition of the term \Covert Channel."

A covert channel is a mechanism that can be used to transfer information

from one user of a system to another using means not intended for this purpose

by the system developers.

This de�nition is deliberately vague (What is information? What is intent?) and omits

any discussion of security. The de�nition results from the desire to have an intuitive notion

of a secure computer system that is easily understandable to a user accustomed to manual

procedures and to present unobvious aws in the system as special cases. Whether or not

this is the best approach to the problem is open to debate, but it is traditional and widely

accepted.

In the pen and paper world, access to sensitive information is controlled by people who

are trusted to give the information (usually in the form of documents) only to persons

whose identity and whose authorization to obtain the information have been established by

an appropriate authority. In a secure computer system, the information is typically stored

in �les or associated with devices such as communication lines. Once the user's identity

and authorization are established, the user's access (actually access by programs the user

runs) to the information is mediated by the trusted portion of the system. This view

5

leads to relatively simple abstractions of security such as the Bell and La Padula model

in which the system's security state is characterized by a matrix that shows the nature

of the access permission that active, information free, entities called \subjects" have to

passive, information containing, entities called objects. In this model, the system is secure

if all subjects have clearances that are higher than (dominate) the classi�cations of the

objects to which they have read or observe access (the simple security property) and if the

classi�cation of each object to which a subject has write or modify access dominates the

classi�cation of all objects to which the subject has read access.

While this model is intuitive and captures the essence of the pen and paper world, it

is not adequate. Let us suppose that we have given a reader a classi�ed document and

locked both in a room. Now, suppose that the reader sends the content of the document to

an uncleared confederate in the next room by tapping Morse code on his room's radiator.

This is, in e�ect, a covert channel since the radiator and its pipes were never intended for

communication by the building's designers. While this scenario is somewhat far fetched

(Why not just tell the confederate later? The cleared user is violating trust, etc.), its

analog in the computer system is not. Although the user is cleared and trusted, there

is no assurance that the programs the user uses to access and process classi�ed data are

trustworthy. As we will see, most systems have features such as �le locks, device status bits,

a memory pool, etc. that are shared between users at di�erent levels. Each such feature or

resource has attributes that can often be manipulated to form the basis for a covert channel.

If we posit malicious, untrusted software, used by trusted users, covert channels that signal

information in violation of the intent of the system security policy using mechanisms not

intended for explicit information transfer are a distinct possibility.

1.2 Why Consider Covert Channels?

For a system to be evaluated at the B2 level of the TCSEC or above, a covert channel

analysis is required. For some, this alone may be a su�cient reason to be concerned. The

more curious will probably want to probe deeper. The following discussions will indicate

the concerns that apply to the various communities of interest that use this handbook.

1.2.1 Evaluators

Evaluators require a thorough understanding of covert channels. They also need the ability

to judge the job that the developer has done in dealing with covert channels in both

the design and analysis phases of the e�ort. In addition to evaluating the developer's

e�orts in analyzing a system for covert channels, the evaluator should also consider the

appropriateness of design decisions made by the developer and their impact on system

security. Since current practice under the TCSEC divides security into two areas, access

control, which is mediated by the system's MAC and DAC policies and covert channels,

which are unmediated, an inappropriate choice of \objects" can result in serious system

insecurities being labeled as \covert channels." In a system for which covert channel analysis

is required, this may be not be serious but it can lead to a false sense of assurance in a B1

system.

6

1.2.2 The Designated Accreditation Authority (DAA)

In an accreditation process, it is necessary to consider both threats against the system and

the nature of the information to be protected as well as the vulnerabilities of the system

being examined. The DAAmust weigh the operational risks associated with the deployment

of a less than perfect system. In particular, the DAA must be able to evaluate the mission

risks that arise due to the deployment of a system that contains exploitable insecurities in

the form of covert channels.

1.2.3 Developers

Developers of high assurance systems for which covert channel analysis is required should

have a thorough understanding of both the mechanisms that make covert channels possible,

particularly the nature of resource sharing, and of the analysis techniques that are available

to identify them. While it is di�cult to eliminate all covert channels in a complex multilevel

secure system, careful design supported by early analysis can minimize the impact of covert

channels. Developers should learn to think in terms of potential covert channels in making

design decisions. Any design decision that involves the sharing of some system resource

among users at di�erent security levels has the potential for introducing a covert channel

into the resulting system. The designer should be aware of this potential and should take

steps to control it in ways that can reduce its impact on overall system security.

1.2.4 Purchasers

Procurement o�cers and other speci�ers of purchases of multilevel secure systems need to

be aware of the nature of covert channels and the mechanisms that permit them in order

to match the system procured with its mission. This analysis needs to take into account

the nature of the threats to which the system will be exposed as well as the nature of the

material that it will protect and the range of security levels over which it must operate. In

considering covert channel issues, it is important to consider the quantity of information

that must be compromised to cause a serious breach of security. Systems in which a

compromise of a few hundred bits (say a master encryption key) is serious are much less

tolerant of covert channels than systems in which megabytes (say a high resolution image)

must be compromised for a serious problem to exist.

1.2.5 End users

End users need to have an understanding of both the security mechanisms and the possible

vulnerabilities of the systems that they use. This is just as important for high assurance

systems where users should be alert for anomalous behaviors that may indicate security

compromises as it is for low assurance systems where users should be aware of the system's

limitations. Users should be aware that in the case of B1 systems, for which covert channel

analysis is not required, developers may try to categorize serious security aws as covert

channels to avoid dealing with them. Users of low assurance systems such as compartmented

mode workstations should be aware of their limitations[6].

7

1.3 Coding and Signaling

\One if by land, two if by sea." Covert channels involve messages transmitted through

mechanisms not normally intended for communication. This typically requires some kind

of encoding. If, as was the case with Paul Revere, the number of messages is limited, a

very simple encoding may be used. In the general case, the message vocabulary may be

open ended, and a general encoding must be developed. The signaling mechanism that is

used to transmit the encoded message will involve the manipulation of some attribute of a

resource that is shared between the sender and receiver.

Typically, the real users of a covert channel are computer programs that have been

subverted for this purpose. The human user who invokes the program is unaware that

sensitive information is being compromised by the program. Because the compromise is

done by the program rather than a human, it can proceed at electronic, rather than human

speeds. This means that, even if an elaborate sequence of actions is required to transmit a

single bit of information, it is possible to transmit hundreds or thousands of bits per second

with high reliability. In a shared, uniprocessor environment, context switching time is often

the most important factor limiting covert signaling rates. In multiprocessor systems, this

may not be a factor, and mechanisms that support covert signaling rates on the order of

hundreds of megabits per second have been posited[38].

1.4 Characterizing Covert Channels

Covert channels can be characterized in a variety of ways, based on the mechanisms that

they use, the level of abstraction at which they appear, or on the nature of the sender and

receiver.

1.4.1 Storage vs. Timing

Traditionally, covert channels are characterized as storage or timing channels. As we will

see, this characterization is somewhat arti�cial, but it it useful because it describes the

focus of the analysis used to identify the channels. Given that a covert channel involves the

manipulation of some system resource or resource attribute (such as whether or not a �le

is in use), we can characterize a covert channel as a storage channel if the recipient of the

signaled information perceives the signal as a change in the value of the shared resource or

attribute. Similarly, if the information is perceived via a change in the time required for the

recipient to perform some action, the channel may be characterized as a timing channel.

Kemmerer [13] gives the following de�nitions of storage and timing channels:

\In order to have a storage channel, the following minimum criteria must be

satis�ed:

1. The sending and receiving processes must have access to the same attribute

of a shared resource.

2. There must be some means by which the sending process can force the

shared attribute to change.

8

3. There must be some means by which the receiving process can detect the

attribute change.

4. There must be some mechanism for initiating communication between the

sending and receiving processes and for sequencing the events correctly.

This could be another channel with a smaller bandwidth.

. . .

The minimum criteria necessary in order for a timing channel to exist are as

follows:

1. The sending and receiving processes must have access to the same attribute

of the shared resource.

2. The sending and receiving processes have access to a time reference, such

as a real{time clock.

3. The sender must be capable of modulating the receiver's response time for

detecting a change in the shared attribute.

4. There is some mechanism for initiating the process and for sequencing the

events."

Implicit in the timing channel criteria is the ability of either the sender or the receiver to

change the value of the shared attribute used to implement the timing channel.

Since high level speci�cations typically do not contain timing information, the covert

channel analysis typically performed on the DTLS or FTLS of a system is a storage channel

analysis. Timing channel analyses are typically much more ad hoc in nature since timing

behavior is most often manifest in code execution timing or in device response times, factors

that are usually not considered at the speci�cation level and may be di�cult to determine

even at the code level.

Note that the same mechanism can manifest itself as either a timing or storage channel.

The disk channel discussed by Wray [39] is a good example. In many cases, the value

of some storage resource, such as the disk arm position register, is correlated with some

temporal behavior, such as seek time. Thus a channel involving disk arm manipulation can

manifest itself as either a timing or as a storage channel. Note also that the term \clock"

can be used rather loosely. All that is really necessary to form a clock for the purposes

of exercising a timing channel is for the receiver to be able to observe the order in which

events occur and for the sender to be able to inuence that order.

1.4.2 Senders and Receivers

A pedantic de�nition of covert channels requires that the sender and receiver be subjects

(in the Bell and La Padula sense) under the control of the TCB. In a traditional multiuser

system, this is a reasonable restriction. In distributed systems, especially widely distributed

systems, the possibility of signaling mechanisms in which the recipient is not a subject exists.

In these cases, the recipient is typically an intruder or wiretapper on the transmission

medium used for the distribution. We prefer not to characterize such channels as covert

channels. The reasons for this are discussed in [4], and have to do with the fact that the

receiver and possibly resource attributes used in the exercising the channel may not be

9

mentioned, much less adequately described in the speci�cation forms typically analyzed for

covert channels. Nonetheless, we note that some of the techniques that can identify covert

signaling mechanisms can identify wiretapping channels, as we call them, given a suitable

system representation.

1.4.3 Level of Abstraction

Covert channel analysis can be performed on any level of system representation from ab-

stract models to machine code (and hardware). By analyzing high level abstractions, se-

curity aws can be identi�ed at a stage of development where they are easier to �x. A

aw introduced early in the design process is, in e�ect, a requirement for the system to be

insecure since it becomes part of the speci�cation for re�nement of the system design.

By performing covert channel analyses repeatedly as the system is re�ned, the intro-

duction of security aws can be minimized and appropriate countermeasures introduced to

deal with aws that must be present for reasons of functionality or performance.

At the hardware level, it is often the case that little exibility is available. Hardware

is often chosen before system design is complete, or the system must be hosted on existing

hardware. The hardware base is likely to contain mechanisms that can be used to construct

covert channels. Typical features include memory management units, shared memory or

I/O busses, device controllers, etc. If a high capacity signaling mechanism is discovered

in the hardware, there seems to be little choice other than to avoid its use altogether or

to design the system so that the mechanism does not penetrate a security boundary. As

shared memory multiprocessors become more common, this is likely to prove increasingly

di�cult.

1.4.4 When is a channel harmful?

Many covert channels are benign. Benign channels usually possess one of the following

characteristics:

� The sender and receiver are the same subject

� The sender is allowed to communicate directly with the receiver under the system's

security policy.

� There is no e�ective way to utilize the signaling mechanism.

For a covert channel to be harmful, the sender must be forbidden to communicate with

the receiver under the system's security policy and there must be an e�ective procedure for

exploiting a security aw to form a channel for transmitting a useful quantity of information

from sender to receiver in a timely fashion. Note that part of this de�nition is a function of

the system in question and part of it is a function of the environment in which the system

is used. For this reason, the decision to deploy a less than perfect system must ultimately

lie with the accrediting authority, who must rely on information supplied by the evaluators,

with possible inputs from the users and developers.

10

Section 2

System Characterizations

Covert channel analysis can be conducted on any level of system description from highly

abstract speci�cations to implementation code. This section will discuss the suitability of

various levels and forms of system representations for performing covert channel analysis.

The primary system description for performing a covert channel analysis for a system to

be evaluated at the B2 or B3 levels of the TCSEC is the descriptive top level speci�cation

(DTLS). This characterizes the TCB of the system in terms of its input, outputs, exceptions,

and error messages. The preparation of a DTLS is covered in a related portion of this

handbook [29] and will not be discussed in detail here. However, there are a number of

issues that must be addressed if the DTLS is to be suitable for covert channel analysis

purposes. In addition, it is possible, and usually desirable to perform a covert channel

analysis on system characterizations other than the DTLS. The bene�ts and di�culties of

such an approach will also be discussed here.

2.1 Levels of System Speci�cation

Although the DTLS is, under the TCSEC, the primary description and speci�cation for

the system under evaluation, other forms of speci�cation will be created during system

development. These may range from higher level abstract models to lower level coding

speci�cations and the code itself. Since the entire family of descriptions should be con-

sistent, it is likely that a security aw that is introduced in a high level abstraction will

persist in a low level design and in the implementation. For this reason it is desirable to

perform a preliminary covert channel analysis on the high level designs, re�ning the design

only when its security characteristics and their consequences are understood. Current tech-

niques for covert channel analysis require examination of the system as a whole, ignoring

the information hiding and careful structuring that should be the result of good software

engineering practices. This means that the e�ort required to analyze a system for covert

channels is a function of the size of the system being analyzed and of its complexity. The

ideal situation would be to analyze the machine code using the semantics of its hardware

platform as a base. In practice, this is not feasible. Analysis at the source code level has

been carried out experimentally [37], but with inconclusive results. The DTLS or its more

formal counterpart, the FTLS, are the traditional vehicles for covert channel analysis. If

they are su�ciently detailed and complete, as required by the TCSEC, it would seem to be

11

unlikely that their implementation would introduce substantial additional covert storage

channels. Unfortunately, this is not true. The TCSEC requires the DTLS to capture the

security related aspects of the system's behavior. This does not necessarily include a wide

variety of functionality that may be used to build covert channels. Any system resource

that is shared between users operating at di�erent levels is a possible vehicle for building

a covert channel. In recent years, channels have been reported that use process scheduling

[12], disk seeks [39], and shared memory busses in multiprocessors [38]. As a result of this,

a thorough covert channel analysis must consider implementation details that introduce or

use resource sharing that is not apparent in the higher level speci�cations and that may

not appear to be security relevant. This may involve an analysis of hardware as well as

software.

2.2 System Description Issues

At the implementation level, the security analyst does not have much control over the

way in which the system is described. The programming language to be used is usually

prescribed. The hardware description is given (if at all) by the vendor. At higher levels,

the analyst may have some inuence. The following issues should be considered.

2.2.1 The system model

A DTLS can take on a number of forms. The state machine model is the most common. In

a state machine model, the TCB is viewed as an abstract state machine that makes changes

to or returns information about an internal collection of resources in response to requests

made by users. The state machine appears to be the only speci�cation form that lends

itself easily to covert channel analysis. This is because it is relatively easy to demonstrate

that a state machine speci�cation is de�nitional and complete.

The suitability of other speci�cation forms, such as trace speci�cations [26, 11] is open

to question. Trace speci�cations allow a system to be characterized in terms of sequences

of calls on system modules. The trace speci�cation de�nes which sequences are legal and

the results of sequences that end in value returning operations. A trace speci�cation is

said to be complete if it supports a model. This notion of completeness is weaker than the

notion discussed in the following section as it allows multiple models with possibly di�ering

behaviors to satisfy a single trace speci�cation. For a trace speci�cation to completely

de�ne the behavior of a system in a way that supports a covert channel analysis, it appears

that the speci�cation must be both complete and total. All the models of a total trace

speci�cation are equivalent in terms of input and output behavior. Given a total and

complete trace speci�cation for a system, it should be possible to produce a model of the

system that is suitable for performing a covert channel analysis. There are no examples of

this process in the literature, and some research is needed before the technique is proposed

for developing a real system.

2.2.2 Completeness

For an adequate covert channel analysis it is essential that the analyzed system description

be complete. This generally requires a de�nitional or cause and e�ect style of speci�cation.

12

For example, it is not su�cient to say only that two output variables of a routine have

equal values. This does not tell us why or how they become equal. From a covert channel

standpoint, it may be crucial to know whether they are equal because they are both set

to some constant value or because they are both set to the value of some input variable.

Similarly, leaving functions pending or \To be determined" can inhibit a covert channel

analysis since the analyst must assume that the function could obtain information from

anywhere.

2.2.3 The Notation

System speci�cations can be presented in a variety of forms ranging from natural language

to mathematical notation. In general, the more precise and unambiguous the notation,

the better the covert channel analysis. There are substantial bene�ts to using mechanical

tools to aid in covert channel analysis. The three analysis tools discussed in Appendix A

each require the speci�cation to be written in a particular formal speci�cation language. If

developers who understand such languages are available, they may provide advantages for

B2 or B3 systems. The use of an approved formal speci�cation language is required for an

A1 system.

2.2.4 Formality

In the next section, we introduce dependency analysis. This provides a way of extracting

information ows from a system description. Informal system descriptions typically result

in informal information ow semantics and lead to imprecise dependency analyses. As

the descriptive language becomes more formally de�ned, it is usually possible to de�ne its

information ow semantics more precisely, as well. As a bare minimum, a well de�ned

pseudo code notation should be used for the DTLS. More formal notations such as `Z' or

VDM are preferable.

Machine processable speci�cation languages such as those supported by the FDM,

Gypsy, and EHDM systems are even more preferable since they have well de�ned infor-

mation ow semantics as well as tools to support covert channel analysis based on these

semantics. While the use of a formal speci�cation language is mandated by the TCSEC

for A1 systems, such a language can be bene�cial for a lower assurance system and some

consideration should be given to using these languages for B3 systems, even if machine

checked security proofs will not be performed.

13

Section 3

Dependency Analysis

Dependency analysis characterizes the system under consideration in terms of its informa-

tion ows. This section discusses the semantics of information ow and develops techniques

for analyzing the ows in a variety of system representations ranging from English language

speci�cations and pseudocode to formal speci�cation languages and code. The importance

of a complete, de�nitional speci�cation cannot be over emphasized. Unless we can assume

that the speci�cation that we are analyzing explains all the changes in the system resources

and resource attributes that can be observed when the system is in operation, the analysis

will be incomplete. In the discussion that follows, it is assumed that the speci�cation is

complete and de�nitional. In addition, we will assume that, when we discuss the changes

observed as a result of invoking a given operation, the changes seen are, in fact, a result of

invoking that operation and not another one.

Unlike other analyses that we might perform on a speci�cation (or on some other rep-

resentation), dependency analysis is not concerned with what the system does but rather

with how it does it. Since covert channels typically involve signaling coded information

through variations in the values of storage items or through the variation of response time,

we are only interested in how these variations can be e�ected or detected. We introduce

the notion of a \dependency" as an abstraction to represent these variations. We say that

a dependency from one system resource attribute, say A, to another, say B, under an op-

eration, O, exists if it is possible to infer something about the value of A by �rst observing

B, then invoking the operation O and then observing B again. Note that it is not necessary

to determine the value of A in this manner. It is su�cient to be able to conform or refute

some conjecture about the value of A. B may be a storage resource attribute capable of

direct or indirect (via another dependency) observation. It may also be a timing resource

attribute, such as the time required to execute O. In the latter case the initial observation

may be another invocation of the operation and the conjecture may be that the value of A

has changed.

The resource attributes involved in a given dependency are characterized as Targets,

Sources, and Guards. Targets and Sources are reasonably intuitive, being the resource

attributes modi�ed by the operation in question and the resource attributes from which

the modi�ed value(s) were derived. Guards appear when the modi�cation is conditional,

that is, the modi�cation may or may not occur depending on the values of one or more

resource attributes. If an operation is conditional, the resources and resource attributes

14

used in deciding whether or not the target will be modi�ed are called guard resources

because they guard or control the modi�cation decision. Note that it is possible to infer

something about the values of the guard resources from observing a change or lack of change

in a target when an operation involving a guarded modi�cation of the target is invoked.

Formally, we de�ne a dependency as a triple, fT ; fSg;Gg where T is a system resource

or resource attribute that is the Target of the dependency, fSg is a set of system resources

and resource attributes that are the Sources of the dependency. G is a boolean expression

called the Guard of the dependency. Information ows from each s 2 fSg to T if and only

if G evaluates to True. The objective of dependency analysis is to identify system resources

and resource attributes whose values change when system operations are invoked and to

determine both the sources of the modi�ed values and the circumstances under which the

modi�cations occur. This is done in two parts: the identi�cation of system resources and

resource attributes and the decomposition of the system speci�cation to identify individual

target modi�cations.

3.1 Resource Identi�cation

The �rst step in performing a dependency analysis is to identify the resources and resource

attributes under the control of the Trusted Computing Base (TCB) of the system being

analyzed. This is relatively straightforward if the TCB speci�cation is described in terms

of a formal speci�cation or pseudocode (assuming that the speci�cation or pseudocode is

relatively close to the implementation in level of detail), but is more di�cult for both code

and informal natural language speci�cations. Storage resources and attributes are by far

the easiest to identify. Timing resources and attributes are more di�cult.

The general approach is to analyze the system representation to identify all persistent

resources, i.e. those that retain values from one system operation to the next. In speci�-

cation styles that require an explicit declaration of storage entities, this is straightforward.

For other styles, it may be necessary to infer a resource attribute from the active language of

the speci�cation. For example, the speci�cation may call for testing to determine whether

a �le is \locked." From this, we can infer a \�le locked" attribute associated with each

�le. Elsewhere in the speci�cation, we would expect to �nd mention of an operation that

\locks" the �le and one that \unlocks" it. These operations also a�ect the \�le locked"

attribute.

Static structures, such as arrays, and dynamic structures, such as lists, have attributes

that are modi�ed or referenced as side e�ects of operations on them or their elements.

These are discussed further in section 3.4.2

Timing resources are more di�cult to identify, especially in high level descriptions. In

the absence of explicit timing speci�cations, the usual case, the analyst must be aware of

operations that seem to permit varying execution times and identify a timing resource to

associate with each such operation. In performing the dependency analysis, the factors

that lead to this variability must be identi�ed.

It is useful to identify two \pseudo resources" to serve as place holders for information

introduced into the system by the user and information returned to the user by the system.

Any covert channel must start with a \user input" and end with a \user output."

Resource identi�cation in code presents additional problems. These are discussed in

15

more detail in section 3.3 below.

3.2 Speci�cation Decomposition

The objective of performing a dependency analysis is to capture the information ows

through the system in such a way as to permit the identi�cation of any security aws

that the system may have. In doing this, it is useful to examine the system, operation by

operation and reduce its information ows to a uniform representation that is suitable for

subsequent analysis. This is done in a series of steps.

Many system operations modify a number of di�erent system resources. For example,

opening a �le for writing may set the �le's \locked" attribute, set the use count of the �le

to 1, and enter the identi�cation of the locker into the users list of the �le. By splitting this

larger operation into three smaller operations that are viewed as occurring in parallel, we

add precision to the analysis since the resources that contribute to each of the individual

modi�cations are considered separately.

The objective of the decomposition process is to separate the information ows in the

system under analysis to an extent that ensures that security aws can be properly identi�ed

and adequately scoped. This is often a trial and error process. if the decomposition is

carried out in excessive detail, the same or similar analyses will be repeated over and

over, showing that each of a group of similar ows is secure (or insecure). On the other

hand, if the decomposition is not carried far enough, ows that are secure may appear

to be insecure. A reasonable strategy for a large, complex system is to perform an initial

analysis on a relatively coarse decomposition and to do further decomposition only on those

components or operations that appear to contain security aws, stopping when either a aw

is identi�ed or the decomposition shows that a aw is not actually present. This strategy

will successfully identify the security aws from which covert channels are constructed, but

further decomposition may be required to construct scenarios for exercising the aw as a

part of a covert channel.

3.2.1 Guarded assignments

Guarded assignment statements are a useful form for representing the operations of a sys-

tem. In the introduction to this section, we introduced the notion of a dependency as the

fundamental abstraction of information ow. in converting a speci�cation into dependen-

cies, it is useful to introduce an intermediate form, the guarded assignment. The guarded

assignment was introduced by Dijkstra [2, 3] as an abstraction for program design and

speci�cation. In decomposing a speci�cation for dependency analysis, guarded assignments

are useful because they succinctly represent the information ows that occur in connection

with both conditional and unconditional operations.

Guarded assignments have the form: If (G) Then T := S where

T is the target of the operation. This is a resource or resource attribute that is a�ected

by the operation. It may be an isolated entity, a timing resource, part of a structure

such as an array or list, or an entire structure.

16

S is the source of the information that is directly transferred by the operation. It is an

expression that is compatible with the target. It is unconditional, that is, it does not

contain any \if expressions". The reasons for this are discussed in section 3.4.1 below.

G is the guard for the assignment. It is a boolean or logical expression involving resources,

resource attributes, constants, and literal values. If it evaluates to true, the assign-

ment takes place. If it is false, the assignment does not take place.

If the system speci�cation is such that some target always changes, but the nature of

the change depends on whether or not a given guard is true, two guarded assignments

result, If G Then T := S1, and If not G Then T := S2. Unconditional changes can be

represented by a guard of true.

In some cases, it is useful to nest guarded assignments. This is often the case when

a security related test is made to determine whether the functional operation should be

allowed. For example, if we only allow subjects to open �les for writing at their own

security level, we might represent part of the operation as

If Level(U) = Level(F) Then

If not Locked(F) Then

Locker(F) : = U;

where Level is a function that returns the classi�cation or clearance of objects (�les F or

subjects (users U), Locked is a �le attribute that indicates whether or not the �le is open for

writing, and Locker is a �le attribute that contains the identity of the subject that locked

the �le.

This formulation allows us to assume the outer guard in reasoning about the security of

the operation, something that may be necessary to demonstrate the absence of a security

aw. Note that operationally, the nested If A then If B then ... has a distinctly

di�erent meaning in terms of information ow from the conjunction A & B in that the

former implies an order of examination with A being evaluated �rst and B being evaluated

only if A evaluates to true. On the other hand, A & B imposes no such order and results

in the evaluation of both A and B. The e�ect is that there is an information ow from B in

the nested structure only if A is true while there is always a ow assumed from B in the

conjunction.

In decomposing an informal speci�cation, it is usually clear which form is intended.

Designers should be aware that nesting tests with appropriate error responses at each level

of the nesting may avoid security aws that would be present if a conjunctive form were

used.

3.2.2 Sources and Targets

Once a system has been decomposed into guarded assignments, it is necessary to identify

the resources and resource attributes from which information ows as well as those into

which it ows. The sources include all resources that are mentioned in the S portion of the

guarded assignment. They also include all those mentioned in the guard G. This is because

we can infer something about the resources of G if we assume that we know the value of T

17

and can observe T before and after the operation. For example, if we observe a change in

T when the operation in question is invoked, we know that G was true.

In addition, T may contribute to the list of sources. If T is a component of a structure,

the resources referenced in its indexing expression will be sources. To see why this is so,

consider the case in which the assignment T(I) := S is made. If we know that no element

of T had a value equal to that of S before the assignment, we can determine I by examining

T for changes.

At �rst glance, target identi�cation appears to be more straight forward. Were it not

for structures, this would be the case. If the target T of the guarded assignment is a simple,

isolated resource or resource attribute, it alone is the target of the information transfer.

As we have seen above, modifying an element of an array allows determination of the

elements index under some circumstances. To account for this, we introduce the concept

of \name resources." The information transfer into the array as a whole that results from

an assignment into one of its elements is said to be a modi�cation of its \static name

resource." The security implications of this were �rst discussed by Gasser [8] in 1979 and

later considered in detail by Singer [36]. A similar situation exists for dynamic structures

such as lists, sets, mappings, etc. that are often used for speci�cation purposes. In addition

to a static name resource, these structures have dynamic name resources. For example, an

operation that appends a new entry to the end of a queue changes both the contents of

the queue and its size. The size is considered to be a dynamic name resource. It may

be observed directly or indirectly. Indirect observations include full or empty checks for

such structures as well as membership tests for sets and the like. Thus a single guarded

assignment may represent multiple targets.

A guarded assignment statement, If G Then T := S gives rise to one or more depen-

dency triples fT ; fSg;Gg depending on the number of resources or resource attributes rep-

resented by the target T of the guarded assignment. The source set fSg for each dependency

consists of all the resources and resource attributes explicitly and implicitly referenced in

the source and guard expressions of the guarded assignment statement from which the de-

pendency is derived. If the target of the guarded assignment involves a selection expression,

this may also contribute sources to the dependency.

Thus, the source set fSg for a dependency fT ; fSg;Gg is fSg = fSsg [fSgg [fStg

where

fSsg is the set of sources obtained from the source expression S of the guarded assignment

statement,

fSgg is the set of sources obtained from the guard expression G of the guarded assignment

statement,

fStg is the set of sources (if any) obtained from the target expression T of the guarded

assignment statement,

The objective of speci�cation decomposition is to reduce the speci�cation, no matter

what its original form to a list of dependencies, each consisting of a single target, a list of

sources derived from the guard and target as well as the source of a guarded assignment

statement, and a guard expression. Once the decomposition has been performed and the

system security policy considered (see section 4) the search for covert channels can begin.

18

3.3 Code analysis issues

Most speci�cations are e�ectively functional in nature. While they may explicitly describe

e�ects on the global state of the system, they do not usually introduce temporary local

resources (variables) and do not usually have hidden side e�ects that alter the global state

in unexpected ways. Code also often makes use of procedures that can a�ect multiple

resources independently. For these reasons, it is necessary to analyze code in a di�erent

manner from speci�cations.

3.3.1 Local variables

Local variables can be a source of confusion in performing a code analysis. For example, in

the following code fragment tmp is local.

tmp := A + B;

D := tmp;

tmp := F + G;

H := tmp;

Some analytical techniques would (wrongly) indicate a ow from A to H while it is

obvious that this is not the case. The best approach is to transform the code in a way that

eliminates local variables, in e�ect converting imperative code into its functional equivalent.

In the case of the example, this transformation would yield:

D := A + B;

H := F + G;

In the case of loops, this may require a transformation to a recursive form and/or a

transitive closure of the information ows introduced in the loop. Techniques for doing this

are discussed in detail in [17].

3.3.2 Procedures and Functions

In most programming languages, procedures and functions serve two purposes. The �rst is

to provide an encapsulating abstraction for an operation or a related group of operations.

The second is to extend the operational vocabulary of the language by providing an e�cient

way to apply or reuse the encapsulated abstraction in a variety of contexts. A procedure or

function is usually de�ned in terms of its use of and its e�ects on a list of dummy variables

called its formal parameters. These are placeholders for the variables to which it will be

applied when it is called in a program that uses it. When the procedure or function is

called, real variables or expressions from the calling environment are substituted for the

dummy variables used in the de�nition of the function or procedure. These are the actual

parameters of the call site under analysis.

Procedures, especially those that modify more than one of their formal parameters,

pose an analysis problem. In general, the best approach is to treat each output formal

parameter as though it were computed independently and the procedure call as though it

were a parallel invocation of a set of assignments, one for each formal output parameter. The

19

key to performing this analysis manually is to adopt a notation that distinguishes between

the initial (time of call) and �nal (time of return) values of each output parameter. (In

languages such as Ada that have output only parameters there may not be an input value.)

The net e�ect of the analysis and transformation is to create a set of functional de�nitions,

one for each formal output parameter, for the procedure that can be substituted for the

procedure call. Functions without side e�ects can be treated in a similar fashion, reducing

their imperative form to a functional one for their result or return value. A simple example

will illustrate the process:

Procedure OpenW (F : File,

Var L : Lock,

Var W : Writer,

R : Reader,

U : Users) =

If R = Null and not L

then

L := true;

W := U;

end;

Reduced to functional de�nitions for the formal output parameters, L and W, this be-

comes:

L(L', R) := If R = Null and not L' then true else L';

W(L', W', R, U) := If R = Null and not L' then U else W';

where L' and W' denote the original (or calling time) values of L and W respectively.

In tracing dependencies through a procedure or function call, the actual calling form is

replaced by the functional form(s). This is expanded to replace the functional call with its

de�ning expression. A substitution is then made, using the actual parameters of the call

to replace the formals of the called routine. The result, at the calling site is as though the

called routine had been replaced by inline code having the same e�ect.

Continuing the example, if a call of this procedure were made, say

OpenW (TheFile,

Locked(TheFile),

Writers(TheFile),

Readers(TheFile),

TheUser);

The e�ect would be the same as if the code

Writers(TheFile) := If Readers(TheFile) = Null

and not Locked(TheFile)

then TheUser

else Writers(TheFile);

Locked(TheFile) := If Readers(TheFile) = Null

20

and not Locked(TheFile)

then true

else Locked(TheFile);

had been inserted in place of the call.

Note that the order of the operations was reversed to avoid problems with the simul-

taneous rede�nition and use of Locked(TheFile). In general, it may be necessary to add a

distinguishing notation such as the prime used above each time a variable is rede�ned during

the transformations. In the end, substitution of actual parameters for formal parameters

will remove the intermediate renamed instances leaving only initial and �nal versions.

3.3.3 Side E�ects

Most programming languages allow global variables, that is, variables that may be directly

referenced by a number of di�erent functions or procedures. Many languages also allow

functions to modify global variables and parameters in addition to returning a result. These

actions are called side e�ects. When a procedure or function having side e�ects is analyzed

for dependencies, additional assignments are added to the e�ect set of the procedure or

function. These are introduced at each calling site. Interactions between the primary

e�ects and the side e�ects are possible (though they represent poor software engineering

practice) and care must be taken to ensure that the proper order of dependency is captured

through either ordering of the substituted code or through variable instance naming.

3.4 Expression Decomposition

In general, the source S of a guarded assignment is the same whether a speci�cation or

code is being analyzed. From a practical standpoint, the complexity of the expression and

the number of unknowns that it contains a�ects the strength of the dependencies that it

represents. In the case of dependencies that are involved in a covert channel, this will a�ect

the signal to noise ratio of the channel. This will be discussed further in section 6.

All variables, constants, and literals that appear in an expression are sources for the

expression. Thus if we have a simple expression such as a + b * c the sources are a, b,

and c. There are several cases that deserve closer attention.

3.4.1 If Expressions

In general, it is preferable to move all conditionality to the guards of guarded assignment

statements. If the source expression being analyzed contains a conditional, the conditional

can be added to the guard of the guarded assignment and the \true" branch of the condi-

tional substituted for the conditional. In addition, a new guarded assignment is created with

the negation of the condition added to its guard and the \false" branch of the conditional

substituted for the conditional. For example:

If G Then X := If Z>0 Then Y Else W fI;

would become

21

If G & Z > 0 Then X := Y;

If G & Z <= 0 Then X := W;

or, if a nested form is indicated

If G Then If Z > 0 Then X := Y;

If G Then If Z <= 0 Then X := W;

3.4.2 Arrays and other structures

We have noted earlier that the use of indexable structures introduces additional resource

attributes. These attributes may be referenced directly or indirectly. Singer [36] calls these

resource attributes name resources. Indexable structures of constant size have a single

name resource that reects the fact that operations on the elements of the array can be

detected by observations of properties of the array as a whole. In particular, a direct

reference to a component of such a structure introduces not only the element as a source

but also the static name resource of the structure. Dynamic structures have additional

name resources. Size is a resource attribute that can be changed by adding or removing

an element to a structure. Structures such as mappings are often used as abstractions in

speci�cations. They introduce additional dynamic name resources such as the domain and

range of the mapping. These, in turn, have name resources of their own. Operations such as

push and pop on stacks also reference the size resource of the stack. Enqueue and dequeue

operations have similar e�ects. Operations on dynamic structures should be examined with

care to determine all the dynamic name resources associated with them. Operations that

fail under some circumstances may return information about one or more of the dynamic

name resources associated with the structure. Note that operations on dynamic structures

are often de�ned so that exceptions are raised if the operation results in an error such

as underow or overow. Raising the exception may allow a stronger inference about the

structure than not raising it, but some inference is possible in either case.

3.5 Approximations and Conservative Replacement

A complete dependency analysis, especially of code or of a highly detailed speci�cation

requires a large amount of work. If good software engineering practices have been fol-

lowed, much of this work will involve the expansion and substitution of de�nitions for uses,

especially at function or procedure call sites.

Is it possible to avoid some of the e�ort altogether or at least to postpone it until it is

clearly needed? Sometimes this is possible. In the absence of side e�ects or references to

global variables, the worst that a procedure or function can do is introduce dependencies

between all of its inputs and each of it outputs. Side e�ects and references to globals com-

plicate the situation somewhat, but knowing which globals are referenced and/or modi�ed

is equivalent to adding them to the parameter list, and a similar worst case applies.

If the system can be shown not to have security aws under this worst case assumption,

further re�nement of the dependencies is not needed. On the other hand, if a suspected

aw appears to be due to a worst case assumption, a more detailed analysis may eliminate

the aw or may con�rm it and pinpoint the exact mechanism.

22

Complex expressions involving arbitrary indexing may be treated in the same way. If

the system would be secure in the face of dependencies on all structure elements, it is not

necessary to determine which elements are actually involved. The practice of substituting a

more comprehensive set of dependencies for a speci�c one is called conservative replacement.

This is discussed in more detail in [19], but the general principles can be seen in the following

examples.

Suppose that we want to suppress the detail in the procedure OpenW discussed in

section 3.3.2 above.

Procedure OpenW (F : File,

Var L : Lock,

Var W : Writer,

R : Reader,

U : Users) =

UNDEFINED;

In this formulation, the body of the procedure is not known and we have no choice

but to assume the worst case which is an information ow from each of the procedures

inputs into each of its outputs. We assume that we know that the implementation of the

procedure will not reference any system resources not explicitly or implicitly mentioned in

its parameter list. Reduced to functional de�nitions for the formal output parameters, L

and W, this becomes:

L(F, L', W', R, U) := UNDEFINED;

W(F, L', W', R, U) := UNDEFINED;

Substituting the actual parameters from the call shown in section 3.3.2 and reduced to

dependency triples, fT ; fSg;Gg the information ows for the unde�ned version of OpenW

becomes:

{Locked(TheFile);

{TheFile; Locked'(TheFile); Name(Locked);

Writers'(TheFile); Name(Writers); Size(Writers'(TheFile));

Readers(TheFile); Name(Readers); Size(Readers(TheFile));

TheUser};

true}

{Name(Locked);

{TheFile; Locked'(TheFile); Name(Locked);

Writers'(TheFile); Name(Writers); Size(Writers'(TheFile));

Readers(TheFile); Name(Readers); Size(Readers(TheFile));

TheUser};

true}

{Writers(TheFile);

{TheFile; Locked'(TheFile); Name(Locked);

Writers'(TheFile); Name(Writers); Size(Writers'(TheFile));

23

Readers(TheFile); Name(Readers); Size(Readers(TheFile));

TheUser};

true}

{Name(Writers);

{TheFile; Locked'(TheFile); Name(Locked);

Writers'(TheFile); Name(Writers); Size(Writers'(TheFile));

Readers(TheFile); Name(Readers); Size(Readers(TheFile);

TheUser};

true}

{Size(Writers(TheFile));

{TheFile; Locked'(TheFile); Name(Locked);

Writers'(TheFile); Name(Writers); Size(Writers'(TheFile));

Readers(TheFile); Name(Readers); Size(Readers(TheFile));

TheUser};

true}

The name resources appear because the Locked, Writers, and Readers attributes

are assumed to be indexed by TheFile. The size attributes for Readers(TheFile) and

Writers(TheFile) appear because these structures are assumed to be lists of users. In

contrast, the dependencies for the version of OpenW given in section 3.3.2 would be:

{Locked(TheFile);

{TheFile; Locked'(TheFile); Name(Locked);

Size(Readers(TheFile)};

true}

{Name(Locked);

{TheFile; Locked'(TheFile); Name(Locked);

Size(Readers(TheFile)};

true}

{Writers(TheFile);

{TheFile; Locked'(TheFile); Name(Locked);

Size(Readers(TheFile); TheUser};

true}

{Name(Writers);

{TheFile; Locked'(TheFile); Name(Locked);

Size(Readers(TheFile); TheUser};

true}

{Size(Writers(TheFile));

{TheFile; Locked'(TheFile); Name(Locked);

Size(Readers(TheFile); TheUser};

24

true}

The di�erence in the number of attributes that need to be considered in the two cases

is substantial, but if all the attributes involve similar security analyses, there may be little

di�erence in the analysis e�ort required. In general, procedures or functions whose ar-

guments do not di�er in security level can be handled more e�ciently using conservative

replacement of this kind and making a general argument concerning the security of all the

potential ows whether they occur or not. If this general argument cannot be made or

level dependent ows are known to be present in the routine, expansion of the routine's

de�nition is clearly indicated. For a second example of conservative replacement, suppose

that the expression

(String1[i..j] @ String2[k..l])[m]

appears in the speci�cation being analyzed. In this case, the expression produces the

m'th element of the sequence produced by concatenating the i'th through j'th elements of

String1 with the k'th through l'th elements of String2. Possible sources of information

ow from this expression include m, i, j, k, l, String1[i] ... String1[j], String2[k]

... String2[l], Name(String1), Size(String1), Name(String2), and Size(String2).

If a dependency on all these sources doesn't lead to the identi�cation of an insecurity, it is

easier to use the conservative formulation than it is to determine the exact circumstances

under which the ows occur. The less conservative approach would be to transform the

expression into a form conditioned on the index values. For this purpose, we will assume

that the index values are within range as treatment of the out of range cases introduces yet

another level of complexity. Assuming zero based indexing, the original expression can be

rewritten as:

if m < j-i+1 then String1[m+i]

else String2[m-j+i-1+k] fi

This form would result in two guarded assignments, one for each branch of the if-

expression. The information sources for each branch are a subset of those that appear for

the original form and the relationship between m, i, and j can possibly be used in proving

that the ows are secure. This formulation would only be useful if the security levels for

elements of String1 di�er from those for String2, an unlikely situation. In general, the

conservative replacement approach will prove adequate and will reduce the e�ort required

to decompose a speci�cation.

25

Section 4

Security Policy Issues

A covert channel represents a violation of the real security policy of the system under

consideration. The real policy is usually an extension of the policy embodied in the Formal

Model of the Security Policy (FMSP) of the system. Security policies are discussed in detail

in a related portion of this handbook [30]. In performing a covert channel analysis, it is

necessary to extend the security policy of the system so that security characteristics can be

assigned to all resources and resource attributes of the system description being analyzed.

In general, we assume that the system has been characterized as a state machine and

that the security policy model takes the form of either a Bell and La Padula [1] style access

control model or one of its information ow analogs [18]. In either case, the model will be

couched in terms of passive, information containing, objects, and active, information free,

subjects (and possibly hybrids of various types) and will indicate the nature of the accesses

or access permissions that a subject may obtain to an object as a function of the security

attributes (clearances for subjects, classi�cations for objects) possessed by the subject and

objects in question.

In applying such a model, a limited view of objects is usually taken. This restricts

objects to entities such as �les and devices that are intended to store substantial quantities

of information. For the purpose of performing a covert channel analysis, any shared resource

or shared resource attribute is an object. In the previous section, the dependency was

introduced as an abstraction to represent arbitrary information ows. Applying a security

policy to a dependency, fT ; fSg;Gg, we note that, since the target, T , of the dependency

is modi�ed, the subject invoking the operation that gives rise to the dependency must

have modify access to the target and must have read access to each source in fSg since

the information that modi�es the target comes from these sources. Because the target is

modi�ed only when the guard, G, is true, it must be the case that the invoking subject

would be granted the necessary accesses only under circumstances that would result in

the guard being satis�ed. If the information ow represented by the dependency is to be

considered \secure", this will be the case.

The TCSEC requires that the \subjects" and \objects" to which the FMSP applies

be labeled with machine processable representations of the security attributes on which

access control decisions are made. The process of associating security characteristics with

system resources and resource attributes is an extension of this labeling requirement. It

is not necessary to create physical labels or storage structures in the implementation to

26

contain this information, but it is necessary to describe the process for determining the

security characteristics for each resource and resource attribute. The mechanisms may

involve appealing to the contents of real system labels or it may involve the assignment of

constant security attributes to some resources.

4.1 Linking policy to resources

Dependency analysis identi�es the potentially shared system resources and attributes. Each

resource and attribute must be given a classi�cation if we are to reason about the security

of dependencies. The set of values available is de�ned by the FMSP. DoD style policies

typically de�ne a lattice of values with each value consisting of a hierarchical classi�cation

and a (possibly empty) set of categories. Several distinguished values are of interest.

model low is the minimum classi�cation value de�ned by the FMSP. It is dominated by

all of the classi�cation values de�ned by the FMSP.

model high is the maximum classi�cation value de�ned by the FMSP. It dominates all of

the classi�cation values de�ned by the FMSP.

system low is the lowest classi�cation value at which a given system is permitted to

operate. It dominates model low and is dominated by all classi�cations that may be

assigned to the subjects and objects of the system.

system high is the highest classi�cation value at which a given system is permitted to

operate. It dominates system low and all classi�cations that may be assigned to the

subjects and objects of the system and is dominated by model high.

A substantial amount of skill is required in assigning security attributes. If inappropriate

decisions are made, the system may appear to be far less secure than it actually is. On

the other hand, it is not possible to mask insecurities by inappropriate labeling unless

the labeling mechanism violates the tranquility principle by allowing the classi�cation of a

resource to change between (or during) operations. There are several easy cases:

1. The resource is an object in the terms of the FMSP. In this case, its security attributes

are exactly the same as those it has in the FMSP.

2. The resource or attribute is logically associated with an object. In most cases, the

security attributes should be the same as those of the object. This implies that �le

names have the same classi�cation as �les, etc. Exceptions are possible; for example,

a system might have a prede�ned, �xed set of �le or device names that can be read

by all, in which case \system low" is an appropriate level.

3. The resource is closely associated with a subject. In this case, the security attributes

of the subject are probably appropriate, although exceptions may exist.

4. The resource is never modi�ed by an untrusted subject. \System Low" is appropriate.

5. The resource is never observed by an untrusted subject. \System High" is appropriate.

27

What remain are the hard cases. Resources that are shared but do not fall into one of

the classes above are likely to be involved in a security aw. It is probably the case that no

security level can be found that will make all dependencies involving the resource secure.

Arbitrary assignments of security attributes can cause the aw to appear to be associated

with various operations. If auditing is being considered as a countermeasure, associating

the aw with a less common operation will reduce the quantity of audit data collected.

Associating security attributes with timing resources seems problematic at �rst. Timing

attributes are observed by the system being analyzed. If we associate the level of the

subject invoking the operation with the timing attribute, the appropriate relationship is

established since a secure timing dependency will only involve sources that are dominated

by the invoking subject. Insecure timings will involve sources that the subject does not

dominate.

Once the policy has been extended to cover all system resources and resource attributes

and a dependency analysis has been performed, a search for security aws can be made.

This is covered in the next section.

28

Section 5

Looking for Channels

In the previous sections, we have developed a theory of information ow through depen-

dencies and have discussed the issues surrounding the application of a security policy to a

system representation. Covert Channel Analysis is a search for dependencies that can be

exploited in violation of the system security policy. This section will develop a sequence of

analytical approaches beginning with the basic Shared Resource Matrix and its extensions

and proceeding to Covert Flow Trees and Information Flow Formulae. Non-interference

formulations will also be discussed.

5.1 The Shared Resource Matrix

First introduced by Richard Kemmerer in the early 1980s, the Shared Resource Matrix [13]

remains one of the best known analytical tools available. While the SRM has its limitations,

it is still the most concise method for characterizing the information ows in a system. We

spend a substantial amount of time developing the extended SRM as a tool for guiding

a search for covert channels. Our development starts with the assumption that we have

analyzed a system representation for dependencies and have the results available to us. To

provide a concrete example, we will consider a fragment of code which, while meaningless

by itself, serves well to illustrate the principles involved.

Global var a, b, c, d;

Procedure OP1 (Var u : uvar) =

begin

a := if b then c else d;

u := c;

end;

We assume that the system state is completely characterized by the global variables

a, c, b, and d. We also assume that the fragment is a complete characterization of the

procedure OP1, that is, there are no hidden operations to change the values of the variables

u, b, c, and d. The analysis and decomposition of OP1 results in the following guarded

assignments:

29

If b then a := c;

If not b then a := d;

If true then u := c;

which yield the following dependencies:

{a; {b; c}; b}

{a; {b; d}; not b}

{u; {c}; true}

5.1.1 The basic SRM formulation

As originally formulated by Kemmerer, the SRM has rows that correspond to the attributes

of shared resources (variables a, b, c, d, and u in our simpli�ed example) and columns that

indicate the system operations (OP1 in our case) on each shared resource. AnM in an entry

in the SRM means that a resource attribute is modi�ed by the operation in question while

an R indicates that the resource attribute is referenced or observed by the operation. The

SRM for the fragment of code shown above would look like the following:

Resource Operation

Attribute Op1

a M

b R

c R

d R

u M

Within a column, it is assumed that information about all referenced attributes is used

to determine the new values of all modi�ed attributes. This is �ne as far as it goes. The

primary problem is that the SRM is an overly pessimistic view of the system behavior.

For example, the SRM above indicates that variable a is modi�ed using information from

variables b, c, and d and that variable u is also modi�ed using the same information while

inspection of the code shows more restrictive ows. If the system is secure, the conservative

approach is harmless. If the system has aws, the conservative approach indicates potential

covert channels where none actually exist.

5.1.2 Adding detail to the SRM

In order to solve the potential problem of an excessively conservative system representation,

several extensions can be made to the basic SRM. The �rst allows us to explicitly separate

the information ows that occur between the user and the system from those that occur

between the components of the system state. The second allows us to separate the ows

into individual targets, while the third allows us to extract the conditions under which ows

actually take place. When we reach the end of this development, we will have arrived at a

basis for understanding the information ow formulas used by mechanical ow tools such

as the GIFT and Ina Flow.

30

Characterizing inputs and outputs

The �rst transformation may seem to be trivial, but it is of considerable importance in

providing a clean conceptual basis for understanding information ows through a system.

Adding an explicit indication of ows to and from the user to the SRM representation forces

us to realize that the system description must support analysis at a level of detail that makes

it possible for us to identify such ows. In the previous formulation, we have indicated that

the variable u which appears as a parameter to OP1 is a resource attribute. Clearly, in a

large system, we would not want to clutter the attribute list with all the parameters that

appear in all the calls from users. In addition, the system can return information to users

via signals, exceptions, shared memory objects, etc. From the viewpoint of the analyst, the

exact route by which information is returned is irrelevant until it is determined that the

return is involved in a potential covert channel. Analysis of such a channel takes us into the

details of the system and beyond the SRM abstraction. Thus, we can lump all information

returns into a single row of the SRM. In a similar fashion, we can lump together all inputs

from the user into the system. Note that not all operations return information to the user.

In trusted systems especially, many operations are designed not to provide output, or to

provide output that is uniformly independent of the system state and the success or failure

of the operation. On the other hand, all operations contain information of some sort from

the user since the mere fact that the operation was invoked may alter an attribute of the

system state.

The result of modifying the basic SRM to explicitly record user inputs and outputs is

as follows:

Resource Operation

Attribute Op1

a M

b R

c R

d R

User In R

User Out M

The User In row will always contain an R indication. The User Out row will contain an

M only if the user is able to perceive some information about an attribute of the state from

the response to the call. If the SRM is being used to analyze a system for timing channels,

the analyst should remember that response time is one way in which the user can perceive

state information.

Distinguishing targets

The basic SRM gives the impression that information ows to the user and to state compo-

nent a from each of the state components b, c, and d as well as from the user. Inspection

of the code shows that this is not the case. The obvious solution is to split the matrix into

additional columns so that each column contains only a single M entry. If we do this, the

resulting SRM is:

31

Resource Operation

Attribute Op1 Op1

a M

b R

c R R

d R

User In R R

User Out M

Distinguishing cases

This is better, but it still leaves the impression that information ows to a from b, c, and d

on every call to OP1. The real situation is that it ows from c or from d depending on the

value of b but it never ows from both on the same call. Again, we can split the columns

of the SRM to reect the two cases. If we do this, we get an extended SRM of the form:

Operation

Resource Op1

Attribute G1 G2 G3

a M M

b R R

c R R

d R

User In R R R

User Out M

where G1 = true

G2 = b

G3 = : b

5.1.3 Identifying Security Flaws

The extended SRM provides an accurate description of the system being analyzed from an

information ow viewpoint, provided that the system description analyzed is complete, that

the system state has been accurately characterized in terms of the resource attributes used

and that the semantics applied to the system description in determining the dependencies

reected in the SRM are adequate. If these conditions are met, the SRM can be used

to explore the system description for security aws. In the next section, we will develop

a mathematical analysis technique to support this exploration, but �rst we will try to

motivate the process.

Consider that each column of the SRM represents the modi�cation of some system

resource attribute or the return of some information about system resource attributes to a

user process as the result of a request made by that user process. The sources from which

the information ows are indicated by \R" entries in the SRM, while the targets of the

information ows are indicated by the \M"entries. If the system is secure, all these ows

will represent information ows that conform to the system's security policy, that is, the

32

security level of the information source will dominate the security level of the ow's target.

There are two cases to be considered:

1. The information source is a resource attribute at a security level that is not dominated

by1 that of the target, which is User Out. In this case, the system is seriously awed,

since the transfer is independent of the actions of any other user or subject of the

system. Such cases should be discovered by other means, long before covert channel

analysis is undertaken.

2. The other case is more subtle. The source of the ow may be a system resource

attribute or a user input. The target is a system resource attribute and the security

level of the source is not dominated by that of the target. In either case, we have a

security aw in which the actions of a user can cause information to ow within the

system in a manner that is contrary to the system security policy.

In exploring the system speci�cation, looking for security aws of either type, the ana-

lyst should consider the circumstances under which information ows actually occur. The

guards of the extended SRM capture these conditions explicitly. Guards that are couched

in terms of appropriate tests of the relative security levels of the sources and target reect

e�orts to enforce the system policy. If the guard can be seen to be consistent with the policy

and to cover all the sources, the ow should be legitimate. If the guard fails to consider one

or more sources and it can be seen that the sources can or do contain information at a level

that shouldn't ow to the target, then a aw has been identi�ed. Often the aw is subtle

since neither the source nor the target is a resource explicitly intended as an information

containing object and the appropriate guard formulation is not obvious. A case to look for

is one in which a resource attribute is both modi�ed and observed by users and in which

the guard fails to consider either the user or resource level for at least one of the accesses.

Such cases are likely to be found in several situations. The most common ones are:

1. Shared access to a system object, such as a �le, by users at di�ering levels when the

success or failure of a given operation depends on whether (or how) the object is being

shared.

2. Operations that allocate system resources from a common pool so that the results of

allocation operation depend on the history of past operations.

The techniques of the following section force us to assign security levels to all resource

attributes, but some of the assignments are arbitrary and the resulting analysis is uncon-

vincing without substantial justi�cation. Whether performed by \the seat of the pants"

or using more formal techniques, there is no substitute for experience, skill, and a devious

mind in performing this analysis.

5.1.4 Finding Covert Channels

A security aw does not a covert channel make. For the aw to be exploited, it is necessary

to �nd a scenario that allows the aw to be exploited to transfer information between

1The convoluted language is necessary to cover the case where the levels of the source and target are not

comparable. This can occur, for example in the case of ows between compartments or categories of the

same security level.

33

two user processes that would not be allowed to communicate directly under the system's

security policy. To do this, the analyst must �nd a sequence of system operations that

allows the sending process to modify a system resource attribute in violation of the system

policy and allows the receiving user to detect the modi�cation.

For this purpose, the transitive closure of the SRM is often useful. The basic and

extended SRMs allow us to determine the direct sources of information that contribute to

the modi�cation of a system resource attribute or to a user output. The transitive closure

of the SRM allows us to determine the indirect sources of information, that is information

that requires a sequence of system operations to propagate to a given resource attribute or

output.

The fragment of code that we have considered thus far only contains a single operation

and is structured in such a way that performing the transitive closure adds no new infor-

mation to the system. Consider, however, the following Basic SRM which comes from the

example of Kemmerer [13] but has been modi�ed to make the ows to and from the user

explicit.

System Operation

Resource Write Read Lock Unlock Open Close File File

Attribute File File File File File File Loc'd Opn'd

ID

Process Access R R R R

Rights

ID

Security R R R R

Classes

Locked R M R

Files By

Locked R RM RM R R

In{Use R R RM RM R

Set

Value M R

User In R R R R R R R R

User Out M M M

The transitive closure is formed by noting that the read of a resource attribute in

one operation when that resource attribute has been modi�ed in a second operation is an

indirect read of all the resource attributes that contributed to the modi�cation. We can

form the transitive closure, following Kemmerer's method, by looking at each entry that

contains an \R" and checking to see if there is an \M" in the same row. If there is, we

check the entries in the \M" column to see if it references (directly or indirectly) resource

attributes not already referenced in the \R" column. For each such attribute, we add an

\r" to the corresponding resource attributes in the \R" column. This process is repeated

until it converges and no more indirect references can be added. The results of performing

a transitive closure on the above SRM are as follows:

34

System Operation

Resource Write Read Lock Unlock Open Close File File

Attribute File File File File File File Loc'd Opn'd

ID

Process Access r r R r R r R R

Rights

ID

Security r r R r R r R R

Classes

Locked R r rM R r r r r

Files By

Locked R r RM RM R r R r

In{Use r R R r RM RM r R

Set

Value M R

User In R R R R R R R R

User Out M M M

Note that most of the previously empty entries in the SRM contain indirect or \r"

references. This indicates that, for this system, information ows rather freely among the

operations. For larger system descriptions and fully expanded SRMs, this is less likely to

be the case, and clusters of operations and resource attributes will appear. These clusters

are appropriate places to start looking for scenarios that allow users to exploit a security

aw and create a covert channel.

At times, it may be useful to use the process of computing the transitive closure in the

search for covert channel scenarios. This may be done by working from the awed operation

backwards to the initiating operation and forwards to the receiving operation.

In Kemmerer's example, the security policy forbids users with only read access to a

�le from communicating with those who have read/write access. A security aw exists in

the Lock File operation because a user with read/write access can modify the Locked

attribute of the �le based on whether the �le's In{Use Set is empty or not. Since Lock

File does not return any information to the user, we must look for other ways to observe

the Locked attribute. We note that File Loc'd can return information about the Locked

attribute. Performing a transitive closure of the File Loc'd operation with respect to the

Locked attribute indicates a transitive read of the In{Use Set attribute via the Lock

File operation, and we have identi�ed the receiving portion of the scenario. We then look

for operations that can modify the In{Use Set. Both Open File and Close File can

do this and can be successfully invoked by users with only read access to the �le. This

provides the sending portion of the scenario.

When a potential covert channel is identi�ed, it is necessary to see whether it can

actually be exploited to transfer information in violation of the system's security policy.

There are four possible cases to consider.

1. A legal or overt channel operates in parallel with the potential covert channel. In this

case, the scenario does not include a real security aw and something is wrong with

the analysis.

2. No useful information can be gained from the channel. This will be the case if the

35

only information that can be signaled over the channel is information that the receiver

already possesses.

3. The sending and receiving processes are the same. Processes are allowed to \mumble."

4. A covert channel exists and should be analyzed using the techniques of the next

chapter.

5.2 Information Flow Formulas

Information ow formulas (also known as Security Veri�cation Conditions (SVCs) are usu-

ally considered only in the context of a mechanical ow tool. SVCs form a basis for reasoning

about the security of information ows and have a role in manual as well as automated

analyses.

Several covert channel tools have been built based on the generation of information ow

formulas. These tools are discussed in more detail in appendix A below. These tools require

a restricted form of a state machine speci�cation for the system being analyzed. A security

level is assigned (sometimes arbitrarily) to each state component and to the invokers of the

system operations. For each transfer of information within the system, a putative theorem

is generated that, if true, guarantees that the information transfer proceeds according to

the system's security policy.

This approach is overly conservative for several reasons:

1. It considers operations in isolation. It is often the case that there is no way to exploit

the apparent insecurity of a given routine.

2. The required labeling of every state component with a classi�cation results in inap-

propriate labels for some components. In many cases, the number of failed theorems

is a function of the labeling strategy used, and substantial e�ort is required to choose

a suitable labeling.

If it is possible to �nd a labeling that results in no failed theorems, then the model

is free of covert storage channels. Failed theorems do not necessarily indicate exploitable

channels, but substantial e�ort is required to ensure that this is the case. Most real systems

exhibit a fair number of failed theorems when this approach is applied.

5.2.1 Deriving SVCs from a detailed SRM

The fragment of code used in connection with the above discussion of the SRM approach

can be used to demonstrate the nature of the formulas that would be produced by the

mechanical information ow tool. If we present the fragment as an equivalent set of guarded

assignment statements, it becomes

if b then a := c;

if not b then a := d ;

if true then u := c;

36

In addition to the guarded assignments that characterize the system in terms of con-

ditional information ows, it is necessary to know the security level associated with each

of the system entities, a, b, c, d, and u. Without a loss of generality, we will de�ne a

unique level function for each entity, leaving the arguments required unspeci�ed. We will

name these functions Level of a(...) through Level of d(...) and Level of u(...). As can be

seen from the SRM and the guarded assignments, information ows into a from c when

b=true, into a from d when b=false, and into u from c unconditionally. These ows are

secure if and only if the targets of the ows have security levels that dominate those of the

sources when the ow condition is satis�ed. This gives rise to the following information

ow formulas:

b! Level of a(:::) � Level of c(:::)

:b! Level of a(:::) � Level of c(:::)

Level of a(:::) � Level of b(:::)

Level of u(:::) � Level of c(:::)

If each of these formulas can be proven, then the fragment is secure.

The general mechanism for generating formulas like the ones in the above example is

as follows:

1. De�ne an appropriate security level for each system resource attribute. Levels may be

de�ned as constants or as functions of system resource attributes. The same function

may apply to a large number of resource attributes.

2. For each guarded ow indicated in the extended SRM, construct a formula of the

form G ! Lt � Ls where G is the guard expression, Lt is the security level of the

ow target, and Ls is the security level of the ow source. The �rst two formulas

above are of this kind.

3. For each unguarded ow indicated in the extended SRM, construct a formula of

the form Lt � Ls where Lt is the security level of the ow target, and Ls is the

security level of the ow source. Unguarded ows include both ows from the resource

attributes that appear in guard expressions (the third formula above) and ows from

the sources of guarded assignments for which the guard expression is true (the last

formula above).

5.2.2 Reasoning about SVCs

In mechanical ow tools, the attempts are made to prove SVCs with the aid of a mechanical

theorem prover. Typically, the vast majority of the formulas are either trivially (read

obviously) true or they can be proven by appealing to simple heuristics such as the fact

that System High dominates all levels, etc. The same approaches can be used in analyzing

manually generated SVCs, or even in the process of examining the SRM for possible security

aws. If the analyst cannot come up with a simple argument or informal proof for the

security of a given ow, it should be put on a list for further examination and possible

consideration as a security aw.

37

5.2.3 Identifying security aws

Those formulas that cannot be proven identify potential security aws, however it is not

always the case that an unprovable formula is a positive indicator of a aw in the system. If

the formula is untrue, constructing a counterexample may be a useful aid in identifying not

only the aw but in constructing a scenario for exploiting it. In many cases, the formula

can neither be proven nor disproven. If this is the case, the system description may be

missing some critical piece of information that would allow the proof to go through. In a

manual analysis, it may be su�cient to appeal to that information, justifying the appeal

with the appropriate sources, and declaring the ow to be secure.

If an SVC cannot be proven, it is still necessary to perform the analysis indicated in

section 5.1.3 above to identify and characterize the aw. In real systems, there are often

many formulas that cannot be proven. Examination of the reasons results in a class of cases

that will be discussed in the next section.

5.2.4 Formal ow violations

Formal ow violations are conditions that result in SVCs that are false or cannot be proven,

but that cannot be shown to result in actual security aws in the system. There is a

tendency for some analysts to declare many of the formulas that they cannot prove to

be the result of formal ow violations. Since some mechanical ow tools produce large

numbers of unprovable or di�cult to prove formulas, this can result in the overlooking of

actual aws. There are a number of situations that lead to formal ow violations that can

be safely ignored. The safe approach is to understand the cause of each false or unprovable

SVC and to provide a case for ignoring the apparent violation.

Some of the more common causes for the appearance of formal ow violations are:

1. The use of an inappropriate level of abstraction in describing an operation. Sets

and mappings are often used in high level speci�cations to represent namespaces,

�le systems, etc. The operation that creates a new object may inspect the entire

namespace to prevent duplicates and then modify it by adding the new entry. This

results in the appearance of a bidirectional ow involving the size of the set even when

names are polyinstantiated to prevent a namespace channel. No actual information

is passed since the size of the namespace is not available directly, and the user is

only able to know that it is greater than one after the insertion. Formulating the

namespace in such a way that it is partitioned by level would avoid the formal ow

violation but the system behavior would not change.

2. Conservative replacement in de�ning the ow semantics for the speci�cation language

being analyzed can suppress the detail needed to show that a given ow is secure.

3. The simpli�cation of guard expressions can result in formal ow violations, particu-

larly if the original and simpli�ed forms have di�erent orders of evaluation. This can

be a problem in converting from forms that apply tests in sequence, such as nested

if ... then ... else ... structures, to conjunctions of the nested tests.

38

5.3 Covert ow trees

CFTs[32] are a relatively new approach. Supported by an X-window based graphical tool,

they provide a way of looking for scenarios that can be used to form covert channels. The

information required to construct a covert ow tree is essentially the same information

needed for the construction of a Basic Shared Resource Matrix. Each operation is charac-

terized in terms of a reference list, a modify list, and a return list. The return list contains

those resources that are referenced in modifying User Out. The CFT as presented by Por-

ras and Kemmerer does not distinguish ows into multiple targets, but the extension to

include this should be straight forward.

5.3.1 Constructing covert ow trees from dependency data

The construction of CFTs from the dependency information is similar to the piecemeal

construction of the transitive closure of the SRM discussed above. The analyst identi�es a

resource attribute on which to focus the analysis. The tree is then constructed of actions

that result in the modi�cation of the resource attribute by the sender and recognition

of the modi�cation by the receiver. The left hand branch of the tree is the series of

operations invoked by the sender to e�ect the modi�cation; the right hand branch is the

series of operations invoked by the receiver to recognize the modi�cation. The trees are

constructed by adding any operations that contain the target in their modify list to a direct

recognition branch of the recognition path and those containing the target in their reference

list to the inferred recognition branch. The process continues by adding direct and inferred

recognition operations for the resources on the modify lists of the operations previously

added recursively until all paths end in direct recognitions or a predetermined depth is

reached and the remaining inferred recognition paths are terminated with labels of \false."

A basic SRM, adapted from [31] is shown in �gure 5.1. The covert ow tree for attribute

\A" as derived from the SRM is shown in �gure 5.2. Modi�cation of an attribute occurs

when an \M" appears in its row in the SRM. Direct recognition is not obvious from the

basic form of the SRM, but is made explicit in the notation of [31]. Inferred recognition is

due to transitive reads as discussed in section 5.1.4 above. The complete CFT as shown

in �gure 5.2 would be pruned by eliminating all paths that end with operations labeled

\FALSE" prior to analysis. As can be seen from the SRM, no operations support the

recognitions whose paths are identi�ed in this fashion.

5.3.2 Identifying security aws

Security aws are identi�ed using CFTs in much the same way as they are identi�ed using

the SRM, by �nding a weak link and a scenario involving it. The CFT analysis yields

sequences of operations to be performed by the sender and receiver to send information.

These sequences are �rst simpli�ed to remove pairs of operations that cancel and to add

operations that must be used to establish an e�ective precondition for an operation in the

sequence (e.g. opening a �le before it can be written). The sequences are then examined to

determine which ones represent legal operations and those are also removed. The remaining

sequences are then analyzed to see if they contain a awed operation that would allow the

establishment of a covert channel.

39

Resource Operation

Attribute Op 1 Op 2 Op 3 Op 4

A M R R

B M M R M

C M

D R

User In R R R

User Out M M

Figure 5.1: A basic SRM

5.4 Non{interference formulations

The non-interference approach to covert channel analysis is advocated some developers

and analysts; however, the techniques seem to have a large subjective component in the

formulation of the view function. Is non-interference the Emperor's new Clothes of covert

channel analysis?

5.4.1 Non-Interference

The non-interference approach formalizes the notion that one user should not be aware of

any activity by another user that he does not dominate. This approach was introduced by

Goguen and Meseguer [9] and has been applied to a number of systems including the SAT

abstract model[10].

The technique requires that a view of the system state be constructed for each user. A

system is said to be secure if a user's view of a state derived from a sequence of instructions

is identical to a user's view of a state derived from the purged sequence of instructions. A

purged sequence of instructions is produced by removing all instructions issued by users

whose clearance is not dominated by that of the given user.

Proof of security is, in e�ect, by induction over all possible instruction sequences. The

actual proof technique involves creation of an unwinding theorem that allows consideration

of each operation independently. To avoid the problems associated with the independent

treatment of operations (as in the information ow technique), the state view function

is constructed so as to characterize potential views in states reachable from the one in

question. Construction of the view function is nontrivial. The success or failure of the

approach depends on the skill of the speci�er in characterizing the system properly.

Although the intuitive notion of non{interference is simple, the analysis necessary is

formal, based on a Formal Top Level Speci�cation (FTLS) for the system in question

and an equally formal description of the view function and unwinding theorem. To date,

the literature does not contain any objective approach to the construction of the latter

from the former. An early attempt[10] to apply the technique to the SAT, a very high

level abstraction for a predecessor of the LOCK, found a level-based channel that was also

identi�ed using the SRM approach. The SRM approach also found a second channel based

on subverting the SAT's domain mechanism. The non{interference approach did not �nd

40

Figure 5.2: CFT for the basic SRM

41

this channel because the view function failed to consider domains. The CFT approach [31]

has since discovered an additional domain based channel in the SAT speci�cation.

The nature of the formulas that result from unwinding make relating their failed proofs

to actual system aws di�cult at best. Using the non{interference approach without tool

support is not likely to be fruitful. The technique may hold promise for A1 or beyond

systems, but it should probably be avoided until the research community provides more

concrete results and experience.

42

Section 6

Analyzing Covert Channels

Once a potential covert channel has been identi�ed, its importance must be determined.

This consists of determining its information carrying capacity as well as evaluating the

importance and nature of the information that it can compromise. Trusted applications

may have di�erent criteria for analysis in these areas than general purpose systems and may

be subject to di�erent classes of threats. In addition to theoretical evaluations, experimental

work may be required.

6.1 Exploiting Security Flaws

At the heart of every covert channel is a security aw, that is, a situation in which invoking a

system operation causes an information ow that violates the intent of the system's security

policy. If the system is completely free of such aws, it will be free of covert channels, but

it is not necessarily the case that every aw leads to one or more covert channels. For a

usable covert channel to exist, it must be possible for one user to force a change in state

through the aw and for another, prevented by the security policy from communicating

with the �rst, to detect the change. There may be many reasons that prevent the aw from

being exploited. Some of the more obvious ones might be:

1. The value of the resource does not, in fact, change. It is possible for the same value

to be given a variable as it had before. It is not uncommon to unconditionally reset a

ag at the end of an operation even though some paths through the operation render

this unnecessary.

2. The change is not observable. The aw is e�ectively \write only" and there is no way

that the intended recipient can detect the change.

3. The change is always overwritten in the process of moving it to the recipient so that

the information intended for transmission is destroyed before it can be read.

This is not to say that security aws should be overlooked. Deciding that a awed

system does not present a covert channel is risky and should not be done lightly. Failure to

identify an appropriate covert channel scenario for exploiting a given aw may only mean

that the analyst is not clever enough.

43

6.2 Covert Channel Scenarios

Once a aw has been discovered, the analyst's job is to �nd a means by which the aw

can be exploited. Often the discovery of the aw and the scenario occur simultaneously,

especially when the analysis is guided by intuition rather than driven by formal techniques

such as attempts to prove SVCs. There are no cut and dried, sure �re, approaches. The

analyst needs a thorough understanding of the system and a good intuition for possible

aw mechanisms. The question of what is shared and why will probably provide the best

clues. Unfortunately, scenarios for covert channels that have been discovered in operational

systems do not appear in the literature and much of the covert channel analysis work that

has been done on such systems appears to be classi�ed. Reports such as [10] and [31] are

useful because they provide detailed examples of such scenarios. See also the scenario in

appendix B on page 78.

6.2.1 Half Bit Mechanisms

The transfer of a full bit of information over a covert channel requires that the receiver be

able to tell that a bit was sent and what its value was. Since many signaling mechanisms

only allow the receiver to determine that a change in a resource attribute has occurred, it

is dangerous to assume that lack of a change has meaning. In this case, the mechanism has

a capacity of one-half bit per use since it can signal either a \1" or a \0" but not both. Full

bit mechanisms can be created from two half bit mechanisms. In searching for scenarios,

the analyst should consider carefully those cases where only a change can be detected as

these mechanisms may be far more common than higher capacity ones.

6.2.2 Signaling Protocols

A covert channel scenario de�nes a communications protocol between the sender and the

receiver. The protocol may be unidirectional or bidirectional, synchronous or asynchronous.

In a unidirectional protocol, the receiver is passive from the sender's viewpoint. The sender

has no way of knowing whether the message is being received or not. This may be sat-

isfactory if the sender is able to operate continuously, possibly using redundancy or error

correcting techniques, or if it is possible to externally synchronize periods of operation so

that there is some assurance that the receiver will get the message.

Bidirectional protocols involve an active receiver who is able to respond to the actions of

the sender, controlling the rate of transmission and possibly the need for repetitions in the

case of noisy channels. If the sender and receiver have tight control on their own scheduling

and access to suitably accurate time references, synchronous operation is possible. In this

case, half bit mechanisms can be used as full bit mechanisms since failure of a resource to

change value in a �xed interval is just as positive a signaling mechanism as an observed

change. In the absence of a mutual time reference, the operation is asynchronous and two

half bit channels plus feedback from the receiver are required to create a full bit channel.

6.2.3 Talking to Outsiders

Covert channels are usually considered to have subjects of the system being analyzed as

senders and receivers. In systems that are distributed, especially, there may be a threat

44

of compromise via signals intended for external observers who are not subjects under the

control of a system or network TCB. Examples are signaling mechanisms involving packet

headers, address modulations, frequency of transmission, etc. While signaling mechanisms

of this sort are beyond the scope of this work, there is an increasing body of literature

concerning them [4], and the techniques for identifying these mechanisms are similar to

those discussed here. For example, it may be the case that a security aw that appears

to be \write only" with respect to the TCB results in an observable phenomenon to an

outsider.

There is increasing economic pressure to use commercial, unsecured networks to connect

secure systems, relying on encryption to protect the bodies of messages. A number of

potential threats can be posited in such environments, and research is required to develop

analysis techniques and countermeasures.

6.3 Trusted Applications - Trusted to do What?

Trusted applications are the subject of substantial controversy at the present time. One

school of thought holds that conventional TCBs are adequate and that applications pro-

grams should not and need not be trusted. The other school holds that the notion of

security enforced by a typical TCB is inadequate for many applications and that more

exibility is required so that some portion of the application will, of necessity, require trust

and, e�ectively, extend the TCB. Both sides appeal more to rhetoric than to reason and

experimental evidence to support either side is minimal.

One key aspect of the question is often overlooked. What is the trusted application

trusted to do or not to do? If the application is to be given simultaneous accesses that

violate the system's security policy, it must be trusted to enforce the intent of the policy,

just as the TCB does. If the notion of trust involves some form of assured functionality,

i.e. guaranteed delivery in a secure mail system, the application may not be in a position

to compromise the MLS properties directly, but may require a high degree of assurance.

If the application is in a position to compromise MLS security, it may contain security

aws or otherwise be exploitable as part of a covert channel. Unfortunately, the systemwide

nature of covert channel analysis does not seem to o�er much hope for an e�ective incre-

mental technique that can be applied to trusted applications. At the very least, it seems

necessary to extend the basic system analysis to consider all cases in which aws in a trusted

application could be exploited in connection with information transfers in the TCB and

vice versa. This is clearly another area that requires research.

6.4 Analyzing Threats

The NCSC's evaluated products list is based on a \one size �ts all" philosophy to some

extent. The evaluators pay only limited attention to the intended use of the systems

being evaluated and the emphasis is increasingly on components or building blocks for

systems. This leaves the consideration of the impact of security aws and covert channels

to accreditors and customers. The original guidelines for high assurance systems suggested

that channels with bandwidths below 100 bits per second, the speed of a teletype machine,

were acceptable. In reality, what is acceptable depends on what is being protected, what

45

its sensitive lifetime is, and how big it is. For example, high volume operational reports

may be downgraded on a daily basis. If these are large enough and only compromise of the

whole report is meaningful, the material may be publicly releasable long before it could be

transmitted over a 100 bit per second line. On the other hand, if the system is used to

manage small, highly sensitive, long-lived items, such as the master keys for an encryption

key distribution system, covert channels capable of passing a few hundred bits per year

may not be tolerable.

Another consideration is the threat environment in which the system resides. Systems

that are widely accessible to a variety of cleared and uncleared personnel may be much

more at risk than systems that operate in closed environments. In the early days of multi-

level security, a stated goal was to build systems that would protect top secret material

in environments as open as university computing centers. Few, if any, still consider this a

reasonable goal, though the trend towards the use of public networks to transfer sensitive

materials seem to pose similarly unrealistic goals.

Systems that are dedicated to particular missions, use a small, stable software base,

and allow access only by cleared personnel probably are much less at risk than systems for

general use. Network access serves to broaden the user community and further increase the

risk.

6.5 Channel Capacity

The capacity of a covert channel is a function of three things:

1. The quantity of information that can be transmitted per execution of a scenario,

2. The time required to exercise the scenario, and

3. The e�ect of other system activities on the e�ectiveness of the transfer.

The last factor is often dependent on the environment, workload of the system, etc., and

the conservative approach is to assume no degradation.

The covert channel analysis should provide an answer to the �rst question, the per

execution capacity. The time required can often be estimated from the system's design

characteristics, but should be veri�ed experimentally. One factor that must be considered

in analyzing channel capacity is the e�ect of performance enhancements. Upgrading a

system with faster components is common and can have signi�cant e�ects. Users and

administrators need to understand the factors involved in channel performance and consider

carefully the e�ects of potential upgrades.

In a uniprocessor system, context switching time may dominate many covert signaling

mechanisms. In shared memory multiprocessors, this factor may be negligible. As the

trend towards such systems accelerates, fast covert channels are likely to become much

more common.

6.6 Countermeasures

Once covert channels have been found, there are a number of choices that can be made.

These range from living with the channel to reducing its capacity to eliminating it alto-

46

gether.

6.6.1 Auditing

If an operation that contains a security aw is infrequently used and leads to a low capacity

channel, auditing may be a satisfactory countermeasure. Most secure systems have an audit

requirement, so the means for recording the use of a awed operation are already present.

It is unlikely that the awed operation is used only as part of a covert channel so some way

to focus the audit analysis on malicious usage is also required. This may require auditing

other operations in the scenario as well.

Auditing su�ers from two problems. In the �rst place, use of the channel is typically

discovered after the fact, possibly long after. In the second place, the analysis of audit data

is time consuming and more art than science.

6.6.2 Reducing Channel Capacity

Increasing the time required to execute a covert channel scenario is one way to reduce the

bandwidth of the channel. In general, it leads to unacceptable results as it also reduces the

performance of the system. There appears to be one class of situations in which adding

delay may be e�ective from a practical standpoint. When the normal usage of the awed

operation requires human interactions, it may be appropriate to add delays to prevent the

same actions from being spoofed at electronic speeds by a program. Channels involving

pointer movements, etc., in windowing systems could fall into this category.

Often channels are noisy because the sender's attempts to use a channel are interleaved

with the activities of other users. These activities appear as noise or uncertainties in

the values obtained by the receiver. It is sometimes possible to add arti�cial activities to

increase the noise. These activities require system resources and may reduce the capacity of

the system. The technique has been e�ectively used to thwart tra�c analysis by presenting

a constant picture of activity to the observer. There are no published instances of its usage

for covert channel mitigation in computer systems.

It may also be possible to reduce the capacity of a covert channel by restricting the

information that can be carried per scenario execution. For example, cut and paste in

X windows requires an exchange of messages between the cutter and the paster. If we

wanted to allow a high level user to paste a low level cutting using the normal exchange

mechanisms, we could limit the choice of formats, conversion properties, etc., used in the

message and place an upper bound on the capacity of each message to transfer information

between the paster and cutter.

6.6.3 Closing the Channel

The only truly e�ective way to deal with a serious covert channel is to restructure the

system so that it is eliminated. The importance of the early identi�cation of security aws

cannot be overemphasized here since the cost of redesigning even a portion of a \�nished"

system can be very high. As multiprocessors become more common, channels such as the

shared memory buss channel discussed informally at the IEEE Symposium on Security and

Privacy in Oakland in 1991 likely to become more of a problem. This in turn, should lead

47

to new approaches to secure architectures that avoid sharing resources capable of providing

high capacity channels across security perimeters.

48

Section 7

Evaluating a Covert Channel

Analysis

This chapter has been primarily concerned with what a Covert Channel Analysis (CCA)

is and how to conduct one. This section concentrates on evaluating the results of analyses

performed by others. It provides guidelines for judging both the adequacy of the e�ort and

the su�ciency of the evidence developed.

7.1 Looking at Plans

Any trusted system or application development proposal ought to address CCA. Careful

attention to preliminary plans or approaches during source selection can prevent problems

later. The detailed CCA plan ought to be an early deliverable even though the �nal CCA

will not be performed until near the end of the development cycle.

7.1.1 What is to be analyzed?

The �nal covert channel analysis will be performed on the DTLS of the system, possibly

augmented by an examination of low level shared resources such as devices and their drivers.

The covert channel analysis plan should specify exactly the system representation that

is to be analyzed. It should note whether the system representation is to be specially

created or modi�ed to support covert channel analysis. In general, the representation to be

analyzed for covert channels should be the same one used to guide and describe the actual

implementation of the system. If tools, such as those described in Appendix A, are to be

used, special descriptive formats may be required, but otherwise they should be avoided. If

they cannot be avoided, the plan should include the measures that will be taken to ensure

that the system representation to be analyzed for covert channels is an accurate depiction

of the system as a whole.

As was noted in Section 2, a speci�cation intended for covert channel analysis must be

complete and de�nitional. The covert channel analysis plan, as part of the overall system

development plan, should indicate the steps to be taken ensure that the DTLS is suitable

for covert channel analysis. This may not be a simple task as many system developers see

security requirements as an imposition on their development style and attempt to isolate

49

security activities such as covert channel analysis so that the \real" developers can carry out

business as usual. If this happens, the system as a whole will su�er. A careful examination of

the covert channel analysis plan may help to identify a marginal or inadequate development

plan.

The approach to be used for covert channel analysis should be appropriate for the

system representation to be analyzed and the degree of assurance sought. For B2 systems

intended for use in limited threat environments, an \ad hoc" analysis may be satisfactory,

though a more rigorous approach is to be preferred. At the B3 assurance level, an analysis

based on the shared resource matrix is the least that should be accepted.

Although the TCSEC does not require an analysis for timing channels at the B levels

of assurance, there is increasing evidence that high speed timing based covert channels

are relatively easy to construct in multiprocessor systems and in systems with intelligent

peripherals such as modern disk controllers. A good covert channel analysis plan will

address these issues when the system contains these kinds of shared resources. Inserting

explicit requirements for a low level covert channel analysis examining the hardware and

peripherals into the procurement documents should be considered.

7.1.2 When will CCA be done?

To avoid the possibility of substantial redesign late in development, preliminary CCA should

be done throughout development, if for no other reason than to make sure that design de-

cisions do not require the system to be insecure from a covert channel standpoint. If covert

channel analysis activities are only planned for late stages of the system development, the

development as a whole is placed at substantial risk if serious aws are identi�ed. A low

risk development plan will include consideration of covert channel issues throughout the

development cycle. Some discussion of covert channel issues should take place at prelim-

inary design review (PDR) time. By the time Critical Design Review (CDR) occurs, the

developer should be able to present preliminary analysis results to show that covert chan-

nels have been considered in all security relevant design decisions and that the decisions

have been made to minimize security aws that could be exploited as covert channels.

7.1.3 Who is doing the work?

The single most important factor in obtaining a good covert channel analysis is the quality

and experience of the analyst. For this reason, the covert channel analysis plan should

identify the analyst(s) and their background. It is preferable to have an experienced team

or at least an experienced team leader. While a number of consulting companies o�er

training in covert channel analysis, academic exposure to covert channel techniques without

practical experience is not su�cient to ensure adequate results. Ideally, the team members

will have a combination of academic and practical experience in covert channel analysis.

They will also be familiar with the system being analyzed.

Even small developments will bene�t from a team approach to covert channel analysis.

Much of the work is simply tedious, and it is easy to overlook details that are important.

A very e�ective approach requires that individual team members convince the team of

the security (or insecurity) of the information ows identi�ed in the system. In the case

of identi�ed security aws, team brainstorming is particularly useful in developing covert

50

channel scenarios to exploit the aw. For these reasons, a plan that proposes a single

analyst should be considered to be unsatisfactory.

The proposed use of consultants to perform a covert channel analysis should be judged

carefully. It is likely that developers whose primary business is not the development of secure

systems will not have sta� members experienced in this area, and hiring a consultant may

be the only way to obtain the required expertise. At the same time, the use of a consultant

almost guarantees that covert channel issues will not receive adequate attention during the

design and development process unless the consultant has a presence and some inuence

throughout the project. If a consultant is to be used to perform a covert channel analysis

late in development, it is important that some of the developers have training or experience

in the area so that covert channels will be considered during development.

7.2 Evaluating the Results

Once a covert channel analysis has been performed and a report on its �ndings prepared,

its adequacy and results can be judged. There are a number of factors to be considered in

evaluating a covert channel analysis.

7.2.1 What did they �nd?

Except in rare cases, some security aws will be identi�ed during a covert channel anal-

ysis. If none are reported, the design principles that prevented them should be carefully

explained so as to convince the reviewer that this rather surprising result should have been

expected. If covert channels are found, the underlying aws should be identi�ed and their

presence justi�ed in terms of some system requirement or requirements. The scenarios

that permit the aws to be exploited as covert channels should be exhibited along with an

analysis of each scenario's information carrying capacity and bandwidth. Both analytical

and experimental results should be given.

7.2.2 How is the investigation described?

A good covert channel analysis report should contain a description of the process followed

that is su�ciently clear and detailed to convince the reader of the plausibility of the results.

The description should identify the system representation(s) analyzed and their place in

the development hierarchy. It should also describe the techniques used and the tools used,

if any, to support the analysis. The quali�cations of the team and the roles of the various

team members should be described. The level of e�ort expended and the time period over

which the e�ort was expended should also be described.

7.2.3 Looking at level of e�ort expended

The question of how much covert channel analysis is enough is a di�cult one. The size of the

system is one factor. More important is the richness of the system dependency structure.

Well-designed systems decompose into subsystems that are only weakly interdependent.

This greatly simpli�es analysis and reduces the e�ort required. The e�ort expended should

be proportional to the number of \M{R" dependency pairs that can be obtained from the

51

SRM describing the system. It is not possible to quantify the time required to consider

each dependency since a single argument may be adequate to demonstrate the security of

whole classes of dependencies. However, an expenditure of less than 10{15 minutes per

dependency should be carefully justi�ed. Expenditures in the 15 minute to one hour per

dependency range are probably adequate, although the development of scenarios when aws

are discovered may require several days.

7.2.4 Detecting \hand waving"

Because of the large number of dependencies present in complex systems, the analyst may be

tempted to dispose of aws via \hand waving." The reviewer of a covert channel analysis

must beware of this practice and attempt to identify it when it occurs. Signs of \hand

waving" include the following:

1. Excessive use of the term \formal ow violation" to dismiss security aws as insigni�-

cant. Each individual use of this term should be accompanied by an explanation that

convinces the reader that the apparent aw is not, in fact, a problem.

2. Wholesale justi�cations of the apparent security of large groups of apparently unre-

lated dependencies.

3. Statements to the e�ect that aws that have been identi�ed cannot be exploited

without a convincing argument to support the claim.

4. Statements of any kind that indicate only a super�cial knowledge of the system and

its operation.

5. Unclear or unconvincing writing.

7.2.5 How did the developers respond?

If the covert channel analysis �nds substantial aws in the system, remedial action on the

part of the developers is usually required. The developer's response to the CCA report

is another measure of its adequacy. If the developers appear to understand the problems

and are willing to work with the analysts to eliminate aws or restrict use of the awed

mechanisms, there is ground for optimism. If the reaction is denial or confusion, this may

indicate either an inadequate exposition of the analysis or immaturity on the part of the

developers.

7.3 How To Hedge Your Bets

Procurement regulations usually preclude the customer from taking an active role in the

design and development of a system. As a result, even if the customer has the knowledge and

manpower to resolve design problems, there is little that can be done to force changes in the

developer's approach. On the other hand, structuring the contract deliverables and reviews

to ensure that covert channel issues are adequately addressed during development should

be possible. Because of their system wide impact, covert channels have the potential to be

52

a \show stopper" and to prevent deployment of an otherwise useful and desirable system.

Given the realities, it is clear that there is little that the customer representative can do

in the face of an antagonistic or apathetic developer. The best approach is to structure

the procurement so that covert channel issues are considered up front and throughout the

development cycle. This can be done in a variety of ways:

1. Make a minimal level of covert channel analysis experience, as evidenced by a com-

bination of training and practice, a prerequisite for participation in the procurement.

Requiring that training be obtained early in the contract performance, if the expertise

is not already available, could be made a condition for participation.

2. Require preliminary CCA to be done prior to PDR and again prior to CDR and

schedule review of the results at these review meetings.

3. Monitor design decisions to ensure that Covert Channel issues are addressed on a

continuous basis.

4. Require Covert Channel impact analysis on any changes of scope or any major change

orders whether they originate with the customer or the developer.

5. Attempt to maintain a good rapport with the developers to identify problems as early

as possible.

6. Develop a disaster plan. How can the mission that was to be supported by the

procurement be sustained if the system proves to be unacceptable due to covert

channels found late in the development cycle?

53

Section 8

Conclusions and

Acknowledgments

This work has been a long time in preparation. It was begun in 1991 while the author was at

the University of North Carolina. It went through a number of drafts, guided always by the

helpful comments of the technical sta� at NRL, but never quite �nished. When the author

moved to Portland State University in the fall of 1993, it was put aside for a bit and a semi

�nal draft was produced in the fall of 1994. In May of 1995, Richard Kemmerer reviewed

it and this �nal version incorporates his suggestions and corrects the typographical errors

that he found. Comments and suggestions on earlier drafts came from numerous members

of the technical sta� at NRL, Judy Froscher, Oliver Costich, and Charles Payne, among

others. Any remaining errors are mine. Over the years, my understanding of the problems

associated with covert channel analysis in general has been sharpened by conversations

with Dick Kemmerer who introduced me to the subject, with Bret Hartman Tad Taylor

and Craig Singer who worked with me on the development of the Gypsy Information Flow

Tool at Computational Logic, Inc. and with Charlie Martin.

As is the case with many aspects of computer security, this work is dated even be-

fore it is released. A recent paper by Steve Eckmann[5] explores ways in which a class

of formal ow violations can be eliminated. The widespread growth of distributed com-

puting environments and applications makes passing information from a TCB subject to

the outside world a realistic possibility. Vehicles for this kind of signaling include message

headers, manipulation of signaling protocols[25], etc. The high speeds with which both pro-

cessors and networks operate make it possible for signi�cant covert signaling bandwidths

to be realized even with fairly elaborate signaling scenarios. Multiprocessor architectures

in which processors operate at di�erent security levels reduce or eliminate the need for

context switches between the covert sender and receiver, greatly increasing the transmis-

sion rate.[38] Meanwhile, advances in the area of theories of secure composition hold some

promise that we will be able to build systems from subsystems that are secure in some

sense that implies the absence of covert channels with con�dence that the resulting sys-

tem is also secure in the same sense[27]. From a more immediately practical standpoint,

developers are starting to investigate modular approaches to covert channel analysis that

limit the amount of analysis necessary to determine what, if any, new covert channels have

been introduced by system modi�cations or maintenance[14]. The author has some hope

54

that these techniques could prove useful in performing covert channel analyses on systems

containing COTS (Commercial, O� The Shelf) subsystems.

The reader is urged to recognize that techniques for developing trusted systems are

evolving rapidly. Follow the current literature in the �eld for new developments and abstract

from the guidelines and techniques in this document to the situation at hand.

John McHugh

Portland State University

Portland Oregon

16 December 1995

55

Bibliography

[1] David E. Bell and L. J. LaPadula. Secure computer system: Uni�ed exposition and

multics interpretation. Technical Report MTR 2997, Mitre Corp., 1975.

[2] E.W. Dijkstra. Guarded commands, nondeterminacy, and formal derivation of pro-

grams. CACM, 18-8, 1975.

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[4] Albert Donaldson, John McHugh and Karl Nyberg. Covert channels in trusted lans.

In Proceedings of the 11th National Computer Security Conference, October 1988.

[5] S. T. Eckmann. Eliminating formal ows in automated information ow analysis. In

Proceedings of the 1994 IEEE Computer Society Symposium on Research in Security

and Privacy, pages 30{38, May 1994.

[6] Jeremy Epstein, John McHugh Rita Pascale, Charles Martin, Douglas Rothnie, Hilarie

Orman, Ann Marmor-Squires, Martha Branstad, and Bonnie Danner. Evolution of a

trusted b3 window system prototype. In 1992 IEEE Symposium on Security and

Privacy, 1992.

[7] R. J. Feiertag, K. Levitt, and L. Robinson. Proving multilevel security of a sys-

tem design. In Proc. 6th Symp. on Operating System Principles, pages 57{65. ACM,

November 1977.

[8] M. Gasser, J. K. Millen, and W. F. Wilson. A note on information ow into arrays.

Technical Report M79-234, MITRE Corporation, Bedford, MA, December 1979.

[9] J. A. Goguen and J. Meseguer. Security policy and security models. In Proceedings of

the 1982 Symposium on Security and Privacy, pages 11{20. IEEE, 1982.

[10] J. T. Haigh, R. A. Kemmerer, J. McHugh and W. D. Young. Experience using two

covert channel analysis techniques on a real system design. In Proceedings of the 1986

Symposium on Security and Privacy, pages 14{24. IEEE, 1986.

[11] D. Ho�man and R. Snodgrass. Trace speci�cations: Methodology and models. IEEE

Transactions on Software Engineering, 14(9):1243{1252, September 1988.

[12] Wei-Ming Hu. Lattice scheduling and covert channels. In 1992 IEEE Symposium on

Security and Privacy, pages 52{61, Oakland, CA, May 1992. IEEE Computer Society,

Computer Society Press.

56

[13] Richard A. Kemmerer. Shared resource matrix methodology: A practical approach to

identifying covert channels. ACM Transactions on Computer Systems, 1(3):256{277,

August 1983.

[14] Richard A. Kemmerer. Private Communication, November 1995. A paper on this work

has been prepared and is awaiting publication approval.

[15] B. W. Lampson. A note on the con�nement problem. CACM, 16(10):613{615, October

1973.

[16] Steven B. Lipner. A comment on the con�nement problem. In Proceedings of the Fifth

Symposium on Operating Systems Principles, pages 192{197, November 1975.

[17] John McHugh. Towards E�cient Code from Veri�ed Programs. PhD thesis, The

University of Texas at Austin, 1983. Also ICS-Report 40.

[18] John McHugh. Active vs. passive security models: The key to real systems. In Pro-

ceedings of the 1987 Aerospace Security Conference. AIAA, December 1987.

[19] John McHugh. A formal de�nition for information ow in the gypsy expression lan-

guage. In Proceedings of The Computer Security Foundations Workshop, pages 147{

165, Bedford, MA, June 1988. Mitre Corporation.

[20] John McHugh. An assignment in covert channel analysis. Technical Report TR-90-01,

Baldwin/McHugh Associates, December 1990.

[21] John McHugh. A worked example in covert channel analysis. Technical Report TR-

90-02, Baldwin/McHugh Associates, December 1990.

[22] John McHugh. An assignment in manual covert channel analysis. Technical Report

TR-91-01, Baldwin/McHugh Associates, November 1991.

[23] John McHugh. A worked example in manual covert channel analysis. Technical Report

TR-91-02, Baldwin/McHugh Associates, November 1991.

[24] John McHugh and Robert L. Akers. Speci�cation and Rationale for the Implementation

of an Analyzer for Dependencies in Gypsy Speci�cations. Computational Logic Inc.,

May 1987.

[25] John McHugh and Leslie Young. A taxonomy of signaling channels in atm networks,

(with examples), , 1994. Technical Report TR 94-3, Computer Science Department,

Portland State University, July 1994.

[26] John McLean. A formal method for the abstract speci�cation of software. JACM,

31(3):600{627, July 1984.

[27] John McLean. A general theory of composition for trace sets closed under selective

interleaving functions. In Proceedings of the 1994 IEEE Computer Society Symposium

on Research in Security and Privacy, pages 79{96, May 1994.

57

[28] National Computer Security Center. Department of Defense Trusted Computer System

Evaluation Criteria, December 1985. DoD 5200.28-STD.

[29] Descriptive top-level speci�cation: Handbook for the Computer Security Certi�cation

of Trusted Systems. Naval Research Laboratory, Washington, DC, 1994.

[30] Security policy model: A chapter of the handbook for the computer security certi�cation

of trusted systems. Naval Research Laboratory, Washington, DC, 1994.

[31] Phil A. Porras and Richard A. Kemmerer. Covert tree analysis approach to covert

storage channel identi�cation. Technical Report TRCS 90{26, University of California

at Santa Barbara, Computer Science Department, December 1990.

[32] Phil A. Porras and Richard A. Kemmerer. Covert ow trees: A technique for identify-

ing and analyzing covert storage channels. In 1991 IEEE Computer Society Symposium

on Research in Security and Privacy, pages 36{51, Oakland, CA, May 1991.

[33] P.D. Reed and R.K. Kanodia. Synchronization with eventcounts and sequencers. Com-

munications of the ACM, Vol. 22(2):115{124, February 1979.

[34] John Rushby. Mathematical foundations of the MLS tool for revised SPECIAL. Draft

internal note, Computer Science Laboratory, SRI International, Menlo Park, Califor-

nia, 1984.

[35] Marvin Schaefer. Personal Communication, December 1992.

[36] Craig D. Singer. An extension of the gypsy information ow semantics for dynamic

and indexed types. Master's thesis, Duke University, April 1988.

[37] C. R. Tsai, Virgil D. Gligor, and C. S. Chandersekaran. A formal method for the

identi�cation of covert storage channels in source code. In 1987 IEEE Symposium on

Security and Privacy, pages 74{86, Oakland, CA, April 1987. IEEE Computer Society,

Computer Society Press.

[38] Unpublished. A large bandwidth covert channel in shared memory multi-processors.

Informal pannel session, 1991 IEEE Symposium on Security and Privacy, May 1991.

At a panel presentation at the 1991 IEEE Computer Society Symposium on Research

in Security and Privacy, a scenario was presented that resulted in a covert channel

between the CPUs of a shared memory multiprocessor that could transfer several

hundred megabits per second. I have been unable to �nd a written reference to this

channel and would be grateful for further information { John McHugh.

[39] John C. Wray. An analysis of covert timing channels. In 1991 IEEE Computer Society

Symposium on Research in Security and Privacy, pages 2{7, Oakland, CA, May 1991.

58

Appendix A

Mechanical Tools for CCA

Several tools have been built to support the mechanical Covert Channel Analysis of formal

speci�cations. While these are primarily of interest for systems being evaluated at the A1

level of the TCSEC, they are worth mentioning here.

At the time of writing, early 1993, it appears that the NSA which has maintained both

the GVE and FDM systems for a number of years has dropped support for these systems,

and it is not clear what their future availability may be.

A.1 The Gypsy Information Flow Tool (GIFT)

The GIFT is an integral part of the Gypsy Veri�cation Environment (GVE). The GIFT is

capable of producing both shared resource matrices and information ow formulas (SVCs)

from Gypsy speci�cations that conform to the GIFT's speci�cation conventions. These

conventions require the user to de�ne a single type for the security state of the system

under analysis and to express the interface to the TCB of the system in terms of Gypsy

procedures that have a \var" or modi�able parameter to represent the state. It is assumed

that the TCB interface routines are invoked in an environment that contains the actual

state. The speci�cation of each TCB routine must be de�nitional in form and must contain

an equality de�ning the output value of each var parameter in its exit assertion. The

de�ning form must contain only input parameters, constants, and literals. The GIFT will

reject speci�cations that do not conform to its conventions.

Given a conforming TCB speci�cation, the GIFT performs a dependency analysis simi-

lar to that described in section 3 above. The output can be presented either as a basic SRM,

a detailed SRM, or as lists of dependencies. If SVCs are desired, the user must de�ne a

security policy and supply a set of functions that return security attributes for the resources

and resource attributes of the security state. Isolation (equality), total order, partial order,

and lattice policies are supported, with the user being required to show that the security

level comparison function possesses the appropriate mathematical properties for the type

of policy declared. SVCs are constructed from the dependency and policy information.

The SVC generator attempts to prove the formulas using heuristics, such as the fact that

\model high" dominates all security levels, as well as using the GVE's algebraic simpli�er.

SVCs that cannot be proven by other means are left for the user to prove using the GVE's

interactive theorem prover.

59

A.2 Ina Flow

The formal development methodology (FDM) uses a speci�cation language called Ina Jo.

The information ow tool incorporated into FDM is known as Ina Flo. Ina Jo speci�ca-

tions are based on a nondeterministic state machine model, so no special conventions are

required to ensure that a speci�cation being analyzed represents a state machine. On the

other hand, nondeterminism is unacceptable in speci�cations intended for ow analysis.

Ina Flo conservatively assumes that a nondeterministic speci�cation references the entire

state, which is unlikely to result in a satisfactory demonstration of security. The PreMLS

component of FDM aids the user in writing deterministic speci�cations.

In using Ina Flo, the user is required to de�ne a security type and a comparison function

and is required to assign security levels to all state components. The tool generates formulas

that the user must prove to show that the comparison function is reexive and transitive,

and to show that the constants, SysLo and SysHi (if used), are dominated by and dominate

all levels, respectively.

Given an appropriately formed speci�cation, Ina Flo performs an information ow or

dependency analysis and produces SVCs based on the dependencies, the security labeling,

and the comparison function. These SVCs are called ow conjectures in Ina Flo and are

proved using the FDM interactive theorem prover.

A.3 The EHDM MLS Tool

EHDM is a derivative of the HDM or Hierarchical Development Methodology developed

at SRI International during the 1970s and early 1980s. The original HDM had the �rst

widely available covert channel tool [7]. Like its successor, the EHDM MLS tool requires

a special speci�cation form in which state variables are seen as indexed by security level

information. The SVCs produced by the EHDM MLS tool are couched in terms of the

index expressions for state variables that are modi�ed and the sources of the modi�cations.

In building the current EHDM tool, considerable e�ort has gone into optimizing the SVCs

so as to facilitate their proofs. These optimizations go substantially beyond those used in

the GIFT.

Although, at �rst glance, the approach taken to labeling in the EHDM MLS tool seems

to be quite di�erent from that used in the GIFT and in Ina Flo, the two are, in fact,

equivalent from a covert channel analysis standpoint. In EHDM, the security labels are, in

e�ect, built in by imposing the \indexed by security level" convention while the association

of levels with state components is external to the speci�cation per se in the other tools.

This has the general e�ect of requiring a separate MLS speci�cation when EHDM is used,

although it is probably the case that the restrictions imposed by the GIFT and by Ina Flo

also result in variants of a speci�cation being constructed for CCA purposes.

A.4 Other Tools

The three tools mentioned above are the primary sources available to the analyst wanting

to perform a covert channel analysis on a formal speci�cation for an A1 system. Several

others have been built to perform part of the analysis. Tsai's tool [37] supports the analysis

60

of C code. A dependency analysis tool has apparently been built at the Mitre Corporation.

The covert ow tree tool has been discussed in section 5.3 above.

61

Appendix B

A worked Example

This Appendix provides a complete worked example of the CCA of an example application

or system. The current example is based on [20] and [22].

B.1 Requirements

You are to design part of a multi-level secure �le server for use within a secure distributed

system. You may assume that the �le server operates as a physically isolated node within

the system, and that its only communications with the outside world are via messages sent

in by its users, and its response to those messages. You may also assume that the server

resides in a trusted environment, and that each request is properly labeled with the unique

identity of the requester and with the requester's current security level. Note that this

system is an over simpli�cation, for example, the actual read and write operations have

been omitted. A slightly more complete version of the system is described in [20] and

analyzed using the Gypsy Information Flow tool in [21].

The �le system supports the following operations.

Create File The user supplies the name of the �le to be created. If the �le name already

exists at the level of the request, the request is refused. Otherwise the �le is created

and given the level of the request as its security level.

Delete File The user supplies the name of the �le to delete, and if the �le exists at the

level of the request and is not in use by anyone other than the requester, it is deleted.

Otherwise, the request is denied.

Open File for Reading The user must supply the name and level of the �le to be read.

If the �le exists at that level, and the level of the request dominates the level to be

read, and the �le is not open for writing, the identity of the user is added to the list

of readers for the �le. Otherwise, the request is denied.

Open �le for Writing If the �le exists at the level of request and is not open for ei-

ther reading or writing, the requester is recorded as having the �le open for writing.

Otherwise, the request is denied.

62

Close File The request will indicate the name of the �le, as well as the level at which it

is to be closed. If the �le exists at the level of requester, and that is the requested

level, and the requester has the �le open for reading or writing, the �le is closed. If

the �le exists at the level given in the request and the level of request dominates this

level, and the requester is on the list of users that have the �le open for reading, the

requester is removed from the list. If the list becomes empty as a result, the �le is

closed. In any event, no response is sent to the user.

B.2 A Skeleton

The following provides a framework for one solution to the problem posed above. There

are, of course, others.

B.2.1 Preliminaries

We need to de�ne the vocabulary of the DTLS. Since we are not writing a formal speci�-

cation, type de�nitions and data structures are not explicitly required. On the other hand,

the speci�cation will be easier to read if we have a set of conventions.

1. Requests for �le system operations are issued on behalf of Users.

2. Each user has a security clearance at some Level.

3. The security levels form a lattice and can be compared with theDominates operation

which is denoted �. We say that if L1 � L2
1 then information is permitted to ow

from objects classi�ed at L1 to objects classi�ed at L2.

B.2.2 Files

1. Each �le in the system has a Name.

2. Each �le is classi�ed at some Level.

3. Names are unique within a level, but may be polyinstantiated, i.e. the same name

may be used to denote di�erent �les at di�erent levels.

4. Some mechanism must be provided to record whether a �le is open and, if it is,

whether it is open for reading or for writing.

5. Some mechanism must be provided to determine the identities of the users who have

the �le open.

B.2.3 The File System and Security State

1. The File System consists of the collection of �les that exist at any given time.

2. The security state of the �le system consists of the �les and their explicit or implicit

attributes.

1Read as L2 dominates L1 or as L1 is dominated by L2.

63

B.2.4 Requests and Responses

1. Each �le system operation can be modeled as a request, possibly followed by a re-

sponse.

2. The environment in which the �le system exists can be assumed to ensure that each

request is valid with respect to the User and Level information that it contains.

B.2.5 The TCB Interface

1. Without loss of generality, each �le system operation can be modeled as a procedure

with input parameters derived from a request and possibly output parameters that

would constitute the contents of a reply.

2. These procedures can be viewed as operations on a global state that is otherwise

inaccessible.

B.3 The DTLS

B.3.1 Data and Data Structures

By convention, we will use bold face type to refer to �les and their components. We

assume that each �le has a logical structure as follows:

�lename The name of the �le.

label The classi�cation of the �le.

readers A list of the users who have the �le open for reading. If this list is empty, the �le

is not open for reading.

writer The user who has the �le open for writing. If this is empty, the �le is not open for

writing.

contents A list of data blocks that contain the information stored in the �le. These are

numbered sequentially from 1 to the size of the �le. Since we are not modeling the

actual read and write operations, this component is not strictly necessary.

Each �le is accessed by its name and label, which are �xed when the �le is created. The

other elements may be referenced using a record like notation. For example, to refer the

7th data block of a secret �le called \warplans" we would say:

�le(\warplans", \secret").contents(7)

By convention, we will use a sans serif font to refer to variables and formal parameters.

In general, we will use the following variable names in the descriptions that follow:

user for the identity of the user making a request on the �le system.

64

clearance for the security clearance of the user making a request. This variable can be used

interchangeably with level in internal operations and is of the same type as the label

component of a �le.

name for the name of the �le to which the request applies

level for the classi�cation of the �le to which the request applies. This variable can be used

interchangeably with clearance in internal operations and is of the same type as the

label component of a �le.

set for either the readers or writer component of a �le.

B.3.2 Internal routines

We will use a teletype font for TCB routines and their pseudocode descriptions. The

following routines are used within the TCB, but are not accessible to outside users.

Exists(name, level) A function that returns T if a �le with the given name exists at the

given level, otherwise it returns F.

Providing a body for this routine would require us to develop the details of the

mechanism that supports �le lookup, etc. This could be done by using, say a mapping

from fname�levelg to the �le attribute structures. For now, we will simplify things

by assuming that the state of the �le system is unstructured, but that mechanisms

are available to provide functionality for this routine as well as for NewFile and

RemoveFile below.

ReadOpen(name, level) A function that returns T if a �le with the given name exists at

the given level and the readers list of the �le is not empty, otherwise it returns F.

ReadOpen (name, level) =

if Exists (name, level)

then

return (�le (name, level) . readers 6= Empty)

else

return (F)

end

IsReader (name, level, user) A function that returns T if a �le with the given name exists

at the given level and the readers component of the �le contains the user, otherwise

it returns F.

IsReader (name, level, user) =

if Exists (name, level)

then

return (user in �le (name, level) . readers)

else

return (F)

end

65

IsOnlyReader (name, level, user) A function that returns T if a �le with the given name

exists at the given level and the readers component of the �le contains only the user,

otherwise it returns F.

IsOnlyReader (name, level, user) =

if Exists (name, level)

then

return (user = �le (name, level) . readers)

else

return (F)

end

Note that we use = here to mean that the readers component has exactly one element

and that element matches the user in question.

WriteOpen(name, level) A function that returns T if a �le with the given name exists at

the given level and the writer component of the �le is not empty, otherwise it returns

F.

WriteOpen (name, level) =

if Exists (name, level)

then

return (�le (name, level) . writer 6= Empty)

else

return (F)

end

IsWriter (name, level, user) A function that returns T if a �le with the given name exists

at the given level and the writer component of the �le matches the user, otherwise

it returns F.

IsWriter (name, level, user) =

if Exists (name, level)

then

return (user = �le (name, level) . writer)

else

return (F)

end

Insert (user, set) This is a procedure that modi�es either the readers or writer com-

ponent of a �le, denoted by set, by adding the user to it. We use the notation � to

denote the insertion. If the user is already in the set the � operation has no discernible

e�ect.

Insert (user, set) =

set := set � user

66

Remove (user, set) This is a procedure that modi�es either the readers or writer com-

ponent of a �le, denoted by set, by removing the user from it. We use the notation 	

to denote the removal. If the user is not in the set the 	 operation has no discernible

e�ect.

Insert (user, set) =

set := set 	 user

NewFile(name, level) A procedure with a global e�ect on the system state. If a �le with

the given name does not exist at the given level, one is created having the given

name as its �lename, the given level as its label and with its readers, writer, and

contents components empty. If a �le with the given name exists at the given level,

the operation has no e�ect on the system state.

RemoveFile(name, level) A procedure with a global e�ect on the system state. If a �le

with the given name exists at the given level, it is removed. If a �le with the given

name does not exist at the given level, the operation has no e�ect on the system state.

Respond(...) A procedure that sends its arguments to the user who made the current

request. If this routine is not called, the user receives no return information from the

request.

B.3.3 The TCB routines

Create File The user supplies the name of the �le to be created. If the �le name already

exists at the level of the request, the request is refused. Otherwise the �le is created

and given the level of the request as its security level.

Create_File (user, clearance, name) =

if Exists (name, clearance)

then

Respond (``File name already exists.")

else

NewFile (name, clearance)

end

Delete File The user supplies the name of the �le to delete, and if the �le exists at the

level of the request and is not in use by anyone other than the requester, it is deleted.

Otherwise, the request is denied.

Delete_File (user, clearance, name) =

if Exists (name, clearance)

then

if ((ReadOpen (name, clearance)

and IsOnlyReader (name, clearance, user))

or (WriteOpen (name, clearance)

and IsWriter (name, clearance, user))

67

or (not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)))

then

RemoveFile (name, clearance)

else

Respond (``File name is in use.")

else

Respond (``File name does not exist.")

end

Open File for Reading The user must supply the name and level of the �le to be read.

If the �le exists at that level, and the level of the request dominates the level to be

read, and the �le is not open for writing, the identity of the user is added to the list

of readers for the �le. Otherwise, the request is denied.

Open_File_for_Reading (name, level, clearance, user) =

if level � clearance

then

if Exists (name, level)

and not WriteOpen (name, level)

then

Insert (user, �le (name, level) . readers)

else

Respond (``Can't open name for reading at level ")

end

else

Respond (``Attempted Security violation")

end

Open file for Writing If the �le exists at the level of request and is not open for ei-

ther reading or writing, the requester is recorded as having the �le open for writing.

Otherwise, the request is denied.

Open_File_for_Writing (name, clearance, user) =

if Exists (name, clearance)

and not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)

then

Insert (user, �le (name, level) . writer)

else

Respond (``Can't open name for writing")

end

Close File The request will indicate the name of the �le, as well as the level at which it

is to be closed. If the �le exists at the level of requester, and that is the requested

level, and the requester has the �le open for reading or writing, the �le is closed. If

68

the �le exists at the level given in the request and the level of request dominates this

level, and the requester is on the list of users that have the �le open for reading, the

requester is removed from the list. If the list becomes empty as a result, the �le is

closed. In any event, no response is sent to the user.

Close_File (name, level, clearance, user) =

if Exists (name, level)

then

Remove (user, �le (name, level) . readers)

Remove (user, �le (name, level) . writer)

end

Surprisingly simple. The Removes are no{ops if the user is not a reader or writer of

the �le in question. If the user is a reader or writer, it must be the case that an open

succeeded and that the security checks were satis�ed at that time. We assume that

the user cannot change levels while holding open �les.

B.4 DTLS Analysis

B.4.1 The Canonical State

Given the relative simplicity of the example, it is not surprising that the system state is

correspondingly simple. The state components and attributes that are a�ected by the TCB

operations are:

size (�les) This attribute is a�ected by the creation and deletion of �les.

�les (N#) (L#) . readers This is an explicit component of each �le. The notations

N# and L# record the fact that the �lename and classi�cation are used to access

a particular �le and its components.

�les (N#) (L#) . writer Another explicit component of each �le.

�les (N#) (L#) . contents Likewise. This is not mentioned in any operation ex-

cept NewFile.

size (�les (N#) (L#) . readers) A �le attribute that can be a�ected by opening

the �le for read or by closing it.

size (�les (N#) (L#) . writers) Another �le attribute that can be a�ected by

opening the �le for write or by closing it.

domain (�les (N#) (L#)) The name space for the �le system is fname�levelg.

Creating a �le modi�es this name space as does deleting one.

69

B.4.2 Dependency Analysis

We analyze the DTLS to determine what interactions between the requesters and the state

components occur for each request and each state component. We will record the results

of our initial analysis as a simple shared resource matrix which is shown in �gure B.1.

To make the matrix more compact, we introduce some obvious abbreviations for the state

components and for the operations.

State TCB Operation

Component C F D F O R O W CL F

size(F) RM RM R R R

F(N#)(L#).R R M R RM

F(N#)(L#).W R R RM RM

F(N#)(L#).C

size(F(N#)(L#).R) R M R RM

size(F(N#)(L#).W) R R RM RM

domain(F(N#)(L#)) RM RM R R R

User In R R R R R

User Out M M M M

Figure B.1: Basic Shared Resource Matrix

Several things are worth noting about the results. The �rst is that the accesses to

the size attributes of the readers and writer components mimic those to the components

themselves. This is to be expected since the access forms that we use do not reference

individual elements. As a result, �nding a match tells us that the size attribute is not

zero, while not �nding a match does not tell us that it is. Similarly, checking to see if a

component is empty can tell us that its size is zero.

As expected, the contents component is never referenced. The explanation for the

entries is as follows, along with a detailed shared resource matrix for each routine. In

principle, nothing prevents the creating of SRM wallpaper for large systems, and such an

approach is useful when looking for scenarios with which to exploit a aw in the system.

Create File

The guard Exists references the �le system namespace. If the guard is true, information

is passed to the user. If it is false, the creation of the �le modi�es both the size of the

�le system and the namespace. One might be tempted to consider the components and

attributes of the newly created �le as modi�ed as well, but we will not do this because

their values are not dependent on the request in any way and the fact of their existence is

reected in the name space modi�cations.

Create_File (user, clearance, name) =

if Exists (name, clearance)

then

70

Respond (``File name already exists.")

else

NewFile (name, clearance)

end

Guard Guard Expression

G1 Exists (name, clearance)

G2 not Exists (name, clearance)

Figure B.2: Guards for Create File

State Create File

Component G1 G2 G2

size(F) R RM R

F(N#)(L#).R

F(N#)(L#).W

F(N#)(L#).C

size(F(N#)(L#).R)

size(F(N#)(L#).W)

domain(F(N#)(L#)) R R RM

User In R R R

User Out M

Figure B.3: Detailed Shared Resource Matrix for Create File

This operation is relatively straightforward. The results are shown in �gure B.3. Note

that there are two ows under the second guard, one into the size attribute and one into

the domain attribute. While we could combine these because they have exactly the same

sources, we will treat them separately. In general, distinct targets have di�erent sources

and should be separated.

Delete File

The guard Exists references the name space. If it is not true, information is passed back to

the user. If it is true, then an inner guard references the readers and writer components

of the �le in question. Again, information is passed back to the user, via a response if the

�le cannot be deleted, or the lack of a response if it is deleted. In the latter case, both the

size and contents of the name space are modi�ed.

Delete_File (user, clearance, name) =

if Exists (name, clearance)

71

then

if ((ReadOpen (name, clearance)

and IsOnlyReader (name, clearance, user))

or (WriteOpen (name, clearance)

and IsWriter (name, clearance, user))

or (not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)))

then

RemoveFile (name, clearance)

else

Respond (``File name is in use.")

else

Respond (``File name does not exist.")

end

Guard Guard Expression

G1 Exists (name, clearance)

!

((ReadOpen (name, clearance)

and IsOnlyReader (name, clearance, user))

or (WriteOpen (name, clearance)

and IsWriter (name, clearance, user))

or (not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)))

G2 Exists (name, clearance)

! not

((ReadOpen (name, clearance)

and IsOnlyReader (name, clearance, user))

or (WriteOpen (name, clearance)

and IsWriter (name, clearance, user))

or (not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)))

G3 not Exists (name, clearance)

Figure B.4: Guards for Delete File

Again, there are two ows under the �rst guard as shown in �gure B.5. The if then

structure of the speci�cation has been converted to an implication. This allows us to use

the outer guard in proving the security of ows from the inner guard if we are attempting

information ow proofs. If analysis of this routine were to indicate a possible security aw,

decomposing the guards further might help in isolating the problem. This is particularly

true in the case of G1 which controls a state modi�cation.

72

State Delete File

Component G1 G1 G2 G3

size(F) RM R R R

F(N#)(L#).R R R R

F(N#)(L#).W R R R

F(N#)(L#).C

size(F(N#)(L#).R) R R R

size(F(N#)(L#).W) R R R

domain(F(N#)(L#)) R RM R R

User In R R R R

User Out M M

Figure B.5: Detailed Shared Resource Matrix for Delete File

Open File for Reading

The outer guard compares the user's clearance with information provided by the user. In

the Gypsy formulation, the former would be part of the state. Here it is a \trustworthy"

parameter. If the outer guard is not satis�ed, the user is noti�ed. If the outer guard is

satis�ed, the inner guard references the name space and the writer component of the �le

in question. Under the true branch of the inner guard, the readers component of the �le

is modi�ed which also modi�es its size. Under the false branch, the user is noti�ed.

Open_File_for_Reading (name, level, clearance, user) =

if level � clearance

then

if Exists (name, level)

and not WriteOpen (name, level)

then

Insert (user, �le (name, level) . readers)

else

Respond (``Can't open name for reading at level ")

end

else

Respond (``Attempted Security violation")

end

Note that under the �rst guard of �gure B.7, security level considerations play a role in

determining whether or not the state is modi�ed. Under the second guard, they determine

whether the user receives a message. This is one place where we should look for a possible

security aw.

The third guard is interesting in that it doesn't reference the state at all. The user is

presumed to know his or her own clearance. Asking for read access to a �le at a higher

level is either stupid or a mistake.

73

Guard Guard Expression

G1 level � clearance

!

(Exists (name, level)

and not WriteOpen (name, level))

G2 level � clearance

! not

(Exists (name, level)

and not WriteOpen (name, level))

G3 not level � clearance

Figure B.6: Guards for Open File For Reading

State Open File for Reading

Component G1 G1 G2 G3

size(F) R R R

F(N#)(L#).R M

F(N#)(L#).W R R R

F(N#)(L#).C

size(F(N#)(L#).R) M

size(F(N#)(L#).W) R R R

domain(F(N#)(L#)) R R R

User In R R R R

User Out M M

Figure B.7: Detailed Shared Resource Matrix for Open File For Reading

74

Open file for Writing

The guard references the name space, and the readers and writer components of the �le

in question. If it is true, the writer component of the �le in question is modi�ed which

also modi�es its size, otherwise the user is noti�ed.

Open_File_for_Writing (name, clearance, user) =

if Exists (name, clearance)

and not WriteOpen (name, clearance)

and not ReadOpen (name, clearance)

then

Insert (user, �le (name, level) . writer)

else

Respond (``Can't open name for writing")

end

Guard Guard Expression

G1 Exists (name, clearance)

and not WriteOpen (name, clear-

ance)

and not ReadOpen (name, clearance)

G2 not Exists (name, clearance)

or WriteOpen (name, clearance)

or ReadOpen (name, clearance)

Figure B.8: Guards for Open File for Writing

State Open File for Writing

Component G1 G1 G2

size(F) R R R

F(N#)(L#).R R R R

F(N#)(L#).W RM R R

F(N#)(L#).C

size(F(N#)(L#).R) R R R

size(F(N#)(L#).W) R RM R

domain(F(N#)(L#)) R R R

User In R R R

User Out M

Figure B.9: Detailed Shared Resource Matrix for Open File for Writing

75

In this case, the second guard of �gure B.9 has been transformed to a more reasonable

form.

Close File

Despite the simple formulation, complex ows are involved. The guard examines the name

space. The remove operation both examines and modi�es the component in question. A

close inspection of the semantics of the 	 operation indicates that it should probably be

treated as a guarded operation as well, making no change in the set if the element to be

removed is not there. Note that there is no ow to the user under this operation.

Close_File (name, level, clearance, user) =

if Exists (name, level)

then

Remove (user, �le (name, level) . readers)

Remove (user, �le (name, level) . writer)

end

Guard Guard Expression

G1 Exists (name, level)

G2 not Exists (name, level)

Figure B.10: Guards for Close File

State Close File

Component G1 G1 G1 G1 G2

size(F) R R R R R

F(N#)(L#).R RM R

F(N#)(L#).W RM R

F(N#)(L#).C

size(F(N#)(L#).R) R RM

size(F(N#)(L#).W) R RM

domain(F(N#)(L#)) R R R R R

User In R R R R R

User Out

Figure B.11: Detailed Shared Resource Matrix for Close File

By looking into the Remove routines, we can see that the modi�cations of the readers

and writer component are disjoint. If we treated the 	 operator as a conditional, the �rst

guard of �gure B.10 would expand into two distinct cases, each of which would have two

76

modify branches, exactly like those shown and a \no{op" branch. The second guard is

shown only for completeness. Since no modi�cations occur under it, it does not need to be

considered at all, and would usually be omitted.

B.5 Security Analysis

If the system has security aws, they must involve operations in which the dependency

analysis indicates a ow between security levels. Looking back at the speci�cations, we

�nd that only the operations Open File for Reading and Close File can a�ect a �le

that is not at the level of the user who issues the request. Both of these operations involve

a ow of information from the user to a component of the �le. By itself, this is not a

positive indication that a aw exists. After all, it would be possible to treat the readers

component of the �le as being \system high" so that ows into it from any level would be

secure.

Suppose we do this. We can now argue that Open File for Reading and Close File

are secure since all their information ows are into the state are upward. Open File for

Reading produces a ow to the user, but it doesn't depend on the readers component so

we are still secure, provided the writer component of the �le is classi�ed at a level below

the clearance of the requester. Let's consider it to be at the same level as the �le. Close

File has no ow back to the user, but it may alter the writer component of the �le. We

note that this will be the case only if the user seeking to close the �le matches the contents

of the writer component. This, in turn can only be the case if that user opened the �le

for writing, an act that required equality of levels. Thus Close File is secure as well.

Now we must look at the cases where the user can obtain information from the readers

component of a �le. From the basic SRM in �gure B.1 on page 70, we can see that this

occurs in Delete File and Open File for Writing. Inspecting the speci�cations and the

detailed ows for Delete File, we see that a �le cannot be deleted if its readers component

contains a reader other than the user trying to delete the �le. Since this information must

be classi�ed at a level dominated by that of the user seeking to delete the �le, our previous

assignment of \system high" to the component is generating a security aw here. Open

File for Reading manifests a similar problem. A bit of thought will convince us that

there is no level that can be assigned to the readers component of a �le that will solve the

problem.

In addition, it is necessary to look at the possibility of a aw involving the global, �le-

system-wide attributes. We note that both Create File and Delete File modify the size

of the �le system and its name space. Can either of these operations be awed?

We argue that they are secure, despite the fact that the SRM indicates ows to and

from them in both operations. Note that the references to these components are in terms

of the Exists function, which checks to determine if the �le system contains a particular

�le. If the �le is found, the user knows that the size of the �le system is at least 1 because

it contains the �le mentioned in the request. None of the operations releases any more

information than that. On the other hand, we can argue that there is no way to assign

a classi�cation to these resources so that the information ows involved in creating and

deleting �les will be strictly secure. This is a good example of a formal ow violation.

Can anything be done to remove this non-aw? One approach would be to look at what

77

the Create File and Delete File operations really need. Both must look at the portion

of the name space that covers �les at the level of the requested operation. If we kept a

separate namespace for each level, these operations could be made secure as could all the

operations that need to check for the existence of a �le at a given level. In this case, the

formal ow violation is due to representing an operation at too high a level of abstraction.

While this is not always the cause of such violations, it is usually a good starting point for

subsequent analysis.

B.6 The Channel

A high level user can open a �le for reading that is at a level below him. This causes a ow

of information from his level to the level of the �le when the user's name is added to the

user set of the �le. This can be detected by a user at the level of the �le when an attempt

to open the �le for writing fails. Closing the �le by the high level reader will allow the low

level write open to succeed. The high and low users can establish synchronization with an

additional �le into which the low level user writes to indicate a successful exchange.

For example, consider the following scenario where the �les sync, mark and space are

at the low level and the users are Low and High.

1. Low creates �les sync, mark and space.

2. Low opens sync for writing, writes \I am ready" in it, then closes it.

3. High opens sync for reading, reads it, and closes it, repeating until the \I am ready"

message is seen.

4. High opens mark for reading to send a 1, space to send a 0.

5. Low repeatedly attempts to open both mark and space for writing. If this succeeds

for both, they are closed and this step is repeated. If low succeeds for one, but not

for the other, a bit has been sent.

6. High closes the open �le mark or space.

7. Low repeatedly attempts to open the �le it failed to get in step 5) until it succeeds.

8. Low acknowledges the end of the cycle by writing a message to sync as in step 2)

above.

9. High looks for the acknowledgment as in step 3) above.

10. The cycle repeats from step 4) until the message has been transmitted.

With mutual prearrangement, a very e�ective communications path can be set up. By

using \private" �les, i.e. ones that other users would not have any reason to open for

reading, the channel can be quite noise free. Its bandwidth depends on system response

time, but can be quite high if only a few milliseconds are required for a cycle of requests.

78

