Handbook for the Computer
Security Certification of
Trusted Systems

Chapter 1: Overview

Chapter 2: Development Plan

Chapter 3: Security Policy Model

Chapter 4: Descriptive Top-Level Specification
Chapter 5: Design

Chapter 6: Assurance Mappings
Chapter 7: Implementation

Chapter 8: Covert Channel Analysis
Chapter 9: Security Features Testing
Chapter 10: Penetration Testing

NRL Technical Memorandum 5540:081A, 24 Jan 1995

Naval Research Laboratory, Code 5540, Washington, D.C. 20375-5337

For additional copies of this report, please send e-mail to
landwehr@itd.nrl.navy.mijlor retrieve PostScript via
http://www.itd.nrl.navy.mil/ITD/5540/publications/handbook
(e.g., using Mosaic).

Assurance M appings.
A Chapter of the
Handbook for the Computer Security Certification of
Trusted Systems

John MCHugh, Principal Investigator

Department of Computer Science
Portland State University
Portland, Oregon

Charles Payne
Naval Research Laboratory
Washington, DC
and
CharlesR. Martin
The University of North Carolina
Chapel Hill, North Carolina

Contents

1

Introduction
1.1 Organizationof ThisChapter

Overview of the Assurance M appings

21 Whatisanassurancemapping?
211 DTLStoPolicyMapping
212 CodetoDTLSMapping

2.2 Where doesthe assurance mapping fit inthelifecycle?

2.3 What risks are dealt with through an assurance mapping?

24 Whatresourcesarerequired?

Mapping the DTL S to the Security Policy

3.1 Identifying thetarget security policy
3.2 Mapping the SPM tothe COMPUSEC Policy
3.3 MappingtheDTLStotheSPM

Mapping the Implementation tothe DTLS

41 OVEIVIEW e
411 Babystepsvs. GiantSteps.
412 MantenanCe
4.1.3 Theroleof standardslike2167AandSDD

4.2 Decomposingthe TCB
42.1 AnaysisoftheCode.
422 Graphbasedmethods
423 Dedingwithdatastructures
424 CodeandDatathatdonotmapup

4.3 DTLSDecomposition
4.3.1 ldentifying mappable specificationsintheDTLS
432 AnaysisofaDTLS

4.4 ldentifying TCBtoDTLSCorrespondence
441 Hooks
4.4.2 Constructing hooksinthemapped codebase
443 HooksintheDTLS
444 Tabularmethods
445 Databases

45 Makingthe Mapping Argument

Eventually, there are two “machines”. On the one hand there is the physical
machine that ... can go wrong On the other hand there is the abstract
machine .. ., the “thinkable” machine for which the programmer programs
and with respect to which the question of program correctness is settled.

Originally | viewed it as the function of the abstract machine to provide a
truthful picture of the physical reality. Later, however, | learned to consider
the abstract machine as the “true” one, because that is the only one we can
“think”; it is the physical machine’s purpose to supply “a working model”,
a (hopefully!) sufficiently accurate physical simulation of the true, abstract
machine.

Edsger W. Dijkstra
A Discipline of Programming
1976

1 Introduction

A system must satisfy strict assurance requirementsfor successful evaluation at the B3 class of
the Trusted Computer System Evaluation Criteria (TCSEC) [9]. Many of these requirements
are essentially requirements on process or on documentation. Unlike many other areas, TC-
SEC requirements are ajob of selling to an uncertain buyer: TCSEC evaluation is a matter of
convincing aresponsible team of evaluatorsthat the system can be trusted to manage sensitive
datain an appropriate fashion.

The definition of an “appropriate fashion” comes from the system’s security policy, and
from security requirementswhich are detail ed in the descriptivetop-level specification (DTLYS).
The detailed information necessary to convincethe evaluatorsisprovided in theform of anas-
surance mapping between the trusted computing base (TCB), which implements the security-
related functions, and the security policy, which defines the secure behavior of those functions.
The job of the developers is to sell the trustworthiness of the system to the evaluators using
these mappings by making a convincing argument that the TCB correctly enforcesthe security
policy. In other words, the developer must convince the evaluators that the physical machine
embodied in the TCB isan accurate simulation of the true, abstract machine prescribed by the
security policy. The abstract machine isfirst described in the Security Policy Model.

Thischapter identifiesthe certification goalsfor the assurance mappings. Unlike other cer-
tification deliverables, the assurance mappings are generated throughout the development life-
cycle. They are acollection of documents rather than a single document, and a member of the
collection may be part of another certification deliverable, such as the Security Policy Model.
The devel oper must present the mappings as a coherent whole.

This chapter aso describes methods that can be used to hand-examine the code for mini-
mality, because the TCSEC aso requires the TCB to be “minimized” in the sense that it con-
tains nothing not required to correctly implement the security-related functions. Proving that
this requirement has been met is very difficult to do.

1.1 Organization of This Chapter

Whilethe assurance mappingsare generated throughout al most the entire devel opment effort—
from the security modeling exercise to the implementation in source code—and while they
address all security-relevant requirements from the most abstract to the very low-level and de-
tailed, the process of constructing these mappings changes little throughout the development
process. The same technique is applied repeatedly. Section 2, “Overview of the Assurance
Mappings,” discussesthe technique and answers some commonly asked questions. For conve-
nience, we divide the assurance mappingsinto two major parts. Section 3 addressesthe DTLS
to security policy mapping, and Section 4 addresses the TCB code to DTLS mapping. There
isadearth of literature in thisarea. Those references that have come to our attention are listed
in the bibliography.

2 Overview of the Assurance Mappings

2.1 What isan assurance mapping?

Given two representations = and y of astructure, if we can expresstheir behavior as assertions
A, and A, respectively, then we say that y correspondsto z if

Ay = Ay

In other words, if 2 behaves in a particular way, then y must also, but x is allowed to exhibit
some behavior that y does not. Viewed another way, the traces in which y may engage are a
subset of the tracesin which z may engage. Inour case, A, and A, are assertions on security—

critical behavior.

In reality, assurance mappings are much less mathematical than suggested above, but we
must understand the semantics of the exercise rigorously in order to determine that it isbeing
performed correctly. A simpler approach is described below and illustrated in Figure 1.

fate

X

Iy

AR

y

Figure 1. Abstract Mappings

1. ldentify the critical elements of y (illustrated by the closed circlesin Figure 1).

2. Derive acorrespondence between the critical elements of 4 and all of =:. Show that non-
critical elementsof y (theopen circlesin Figure 1) do not need to be mapped toz. Ensure

that all of = ismapped to y, asillustrated.

3. Attempt to express the critical properties that are satisfied by z, i.e., A,, interms of y,
i.e., A,, using the element correspondence.

4. Examine y carefully, and demonstrate informally that it satisfies the conditions of A,

Therefore, an assurance mapping consists of four components:

e An exhaustive identification of mappable elements of the primary structure.

e An exhaustive identification of the mappable elementsin a secondary structure.

e A mapping: anidentification of the elements of the primary structure with subsets of the

elements of the secondary structure.

e A rigorous and convincing argument that the properties of the primary structure are re-
flected in the secondary structure.

All of the mappable elements of the primary structure, e.g., x, are considered critical. Most
of the mappable elements of the secondary structure, e.g., y, are considered critical. While
non-critical elements are not mapped, their presence in y must be justified.

2.1.1 DTLStoPolicy Mapping

For the DTL S to policy mapping, we proceed in two steps. First we demonstrate that the Se-
curity Policy Model (SPM) is an accurate restatement of the policy. It may not be true that
the SPM isacomplete restatement of the security policy, because for reasons of ssmplicity, the
SPM may not restate all of the requirementsin the policy. For example, the SPM may not in-
clude atrusted audit requirement. The expense of formalization and proof may preclude the
developer from modeling any requirements that do not address specifically the prevention of
security violations. We noted in the Handbook chapter on the SPM that compl eteness of the
SPM may be negotiated between the devel oper and the evaluator. Consequently, aslight inter-
pretation of our mapping procedure is necessary for the SPM to security policy mapping. In
the steps and figure above, let x be the SPM and y be the security policy. Steps1 and 2 remain
the same. For steps 3 and 4, reverse the occurrences of = and y.

Second, we demonstrate that the kernel callsand system structures of the DTLSare consis-
tent with the instructions and the computational framework of the SPM. The kernel calls and
system structures of the DTL S represent requirements on the underlying TCB. The SPM’sin-
structions are a computational representation of the formal assertions. The DTLS kernel calls
should restate the instructions at alower level of abstraction. The mapping betweenthe DTLS
and the SPM will resemble Figure 1 when x isthe SPM and y isthe DTLS. In other words,
al instructionsin the SPM should be mapped to the calls of the DTLS, but some callsin the
DTLS may not map to SPM instructions. The unmapped DTLS calls must be justified in the

mapping.

21.2 CodetoDTLS Mapping

Universe

System Requirements
DTLS

M\T\

[1\ le 1]
|

H\\ \1 e\ 1

\\/\ Al
AR

Figure 2: A Codeto DTLS Mapping

/—.

P

Applying the abstract mapping process of Figure 1 to the code to DTLS mapping, results in
the situationillustrated in Figure 2. The DTLS can be viewed as though it is contained within
amore general set of System Requirements. The System Requirements are, in turn, contained
within an arbitrary Universe of requirements. All of the critical features of the TCB (the closed
circles) are either responding to some requirement of the DTL S or to some System requirement
that isnot part of the DTL S but must be contained in the TCB for some reason. We should not
find any TCB functionality that responds solely to requirements from the external universe (as
represented by the open circlesin thefigure).

Conceptually, the system overall could be described in terms of an assurance mapping be-
tween al the system specifications and all the code implementing those specifications. We are
concerned with constructing an assurance mapping between the components of the TCB and
the mappable elemeents, i.e., the requirements, in the DTLS. The mappable elements for the
DTLS wereidentified earlier during the DTLS to SPM mapping. The TCB source code must
now be decomposed into a collection of separately identified, discrete components.

Each component of the TCB must be identified as contributing to the satisfaction of some
requirement. Many of these requirements are contained within the DTLS; some of these re-
quirements may not be. All requirementsin the DTLS must be identified with components of
the TCB that implement those requirements. This means that the TCB will actually contain
two parts: acollection of components that are mapped to components of the DTLS, and those
that are not.

Devel oping confidence in the TCB breaks similarly into two parts: we must first argue that
those TCB components mapped to the DTL S requirements satisfy those requirements. It is
equally important to identify those TCB componentsthat arenot mapped to requirementsinthe
DTLS, and then answer two questions about each: (1) what other system-wide requirements
do these components satisfy; and (2) why must these components bein the TCB?

2.2 Wheredoesthe assurance mapping fit in thelife cycle?

Assurance mappings tie together views of the system at different levels of detail and abstrac-
tion. Because the validity of a mapping can be affected by changes to either of the items for
which correspondence is being shown, the actual mapping process and the production of the
final mapping documentsshould take placelatein the devel opment portion of thelife cycle pro-
cess. The project manager should ensure that great effort is not spent producing mappings that
will require extensive revisions due to changes in the system representations being mapped.
Experience shows that substantial code changes can and do occur during system integration
and testing, no matter how undesirable that may be. Thus, the code to DTL S mapping should
be deferred until it is clear that the code will not undergo substantial change.

On the other hand, the system security policy is usually defined early in the development
process. If arational development approach isfollowed, the DTLSwill also be an early deliv-
erable. The mapping between the DTLS and the security policy can be performed whenever
both have been defined and it is clear that neither will undergo substantial revision. A cau-
tionary note isin order, however. Although it is undesirable, it is all to common to separate
the system development responsibilities from the security engineering responsibilities. Asa
result, the TCSEC deliverables, i.e., the security policy, DTLS, etc., are developed in parallel
with the system implementati on—creating two views of the system that diverge dueto poor or

non-existent communications between the two development teams. If this occurs, the DTLS
and the security policy may haveto change after theimplementationisfinished in order toalign
them with the actual system. If thiskind of approach isfollowed, performing the mapping be-
tween the policy and the DTLS in the absence of the implementation may incur substantial
risks of rework.

Thisis not to say that all mapping work should be ignored until the items that are to be
mapped are finished. Asthe security policy, DTLS, and implementation are being created, the
devel opers must constantly be aware that the mapping will be required at some point. Aswork
products such as the security policy, the SPM, the DTLS, and the design for the implementa-
tion are being developed, each should be evaluated with respect to the mapping requirement.
Design tradeoff analyses should include ease of mapping to the DTLS as a factor in consid-
ering alternative designs. The implementation should be structured to facilitate the mapping.
The DTL S should be organized so as to support both the code and security policy mappings.

2.3 What risks are dealt with through an assurance mapping?

There are two classes of risks that are (at least partially) mitigated by the assurance mapping
process. Thefirst isthe risk that security flaws have been deliberately introduced into the sys-
tem malicioudly, to create a subvertable system. The second istherisk that errorsinthedesign
or implementation of the system could result in its compromise. Following the taxonomy of
Landwehr[6], we see awide variety of flaws that could be detected in the mapping process.
These flaws are divided into two primary classes: intentional and inadvertent.

In particular, the mapping processis one place in which a search for intentional, malicious
flaws can be made. These would typically include Trojan Horse and Trapdoor mechanisms
and could include Logic/Time Bomb mechanisms. In the intentional, nonmalicious category,
the mapping processis not intended to address covert channels, though it might identify mech-
anismsthat could be used to construct covert channels. It could identify flawsin the miscella-
neous category, intentional, nonmalicious, other, but many of the examples given in this cate-
gory are based on very subtle flaws that would be more likely to be discovered during penetra-
tion or security testing. In general, the analysis of the implementation that is required during
the code to DTL S mapping should be sufficiently thorough to minimize the possibility that in-
tentional malicious code has been introduced into the implementation. It should also aid in
identifying intentional, nonmalicious flaws.

The mapping process should help identify many inadvertent flaws that may arise during
implementation. Because each part of the implementation must be shown to respond to either
a DTLS requirement or to some other system functional requirement that must be a part of
the TCB, the inspection process involved in the mapping will focus on a variety of potential
problems. These are variously categorized as:

e validation errors that occur when a program fails to check assumptions made about pa-
rameters,

e domain errors in which assumptions about protection domains are viol ated,

e seridlization or aliasing errors that permit unexpected changes in validated parameters
either because they are accessible in multiple threads of control or by different namesin
the same thread of control (time of check to time of use errors),

7

e identification/authorization errorsin which the identity or authority of an invoking agent
isinadequately checked,

e boundary condition errorsin which constraints on resource all ocation are not adequately
checked, and

e other exploitable logic errors, which is a catch-all for errors that do not fall into one of
the above categories.

If carried out conscientiously, the codeto DTL S mapping will have agood chance of iden-
tifying implementation errorsin al of the categories listed. Errorsin the DTLS or in the se-
curity policy can aso be identified during the mapping process. Whenever the mapping effort
uncovers an inconsistency between the entities being mapped, the inconsistency must be re-
solved. It isnot necessarily the case that the more concrete representation is at fault and there
is always the possibility that the implementor’sintuition led to a correct solution in spite of a
faulty specification. It is also possible for the mapping process to identify errors even though
afaulty specification has been faithfully implemented. For thisto happen, we must rely on the
experience and skill of the mapping team and their ability to identify aspects of the system that
“just don’t feel right.”

24 What resourcesarerequired?

The mapping process requires both time and manpower to perform. The codeto DTLS map-
ping will consume far more resources than the DTL S to security policy mapping. The amount
of time that should be allocated is difficult to estimate as it depends on a variety of factorsin-
cluding the extent to which the code and DTL S are similarly structured, the amount of detail in
the security policy andinthe DTLS, etc. Theeffort issubstantial and we do not have sufficient
historical data to accurately bound the level of effort involved. Asarule of thumb, the effort
allocated for a correspondence mapping on a pair of entities (code and DTLS or DTLS and
security policy) should be at least five timesthat allocated for doing a detailed walkthrough or
inspection on the more concrete of the entities involved in the mapping. In cases where the
entities being mapped involve greatly different levels of abstraction or where the entities have
substantially different structures, much more effort will be required.

The team that performs the mapping should be familiar with both the system requirements
and with the implementation. At the same time, the need to consider the possibility of inten-
tional, malicious flaws dictates that developers (or specifiers) should not be responsible for
mapping their own work. In a suitably large system, it should be possible to have developers
responsible for one component or subsystem perform the mapping for another. An alternative
isto have the mapping performed by an external group such as the developer’s quality assur-
ance organization or an independent verification and validation contractor. In any event, the
mapping team must be capabl e of understanding and explaining to the evaluators the structure
and functioning of each of the entities being mapped. Having the mapping performed by an
independent group can also serve to examine the quality of the implementation and the usabil -
ity of its documentation. Asis noted in the Implementation Evaluation Guideline chapter of
this handbook [3], these are important factors that are not directly addressed by the evaluation
criteria.

The evaluator has certain obligationsin eval uating amapping that is presented by the devel -
opers. In particular, the evaluator must be prepared to interpret the TCSEC’' s mapping require-
ments for the trusted system and the mission that it supports. The evaluator must be familiar
with the specification techniques used at each stage of the life cycle, and he or she should be

aware of alternative mapping techniques. Finally, the evaluator must understand the purpose
and scope of the assurance argument.

Assumptions Security

Assertions Policy
)
Assumptions
-~ Assertions Informal Description
Instructions)]
. Security Policy
Model
l_,| Computational Framework
| Assertions Formal Description
Instructions
/—D
) .
S System Structures Descriptive
| Top-Level
Kernel Calls Specification

Figure 3: Mapping the DTL Sto the Security Policy

3 Mappingthe DTLSto the Security Policy

The TCSEC imposes the following requirements on the DTLS, SPM and security policy for a
B3 TCB.

e Theforma model shall be “proven that it is sufficient to enforce the security policy”.

e “The specific TCB protection mechanisms shall be identified and an explanation given
to show that they satisfy the model.”

This section describes the assurance mappings, highlighted in Figure 3, necessary to satisfy
these requirements. The arrows along the left illustrate the mappings that we will consider.
We proceed from top to bottom to form the argument that the DTLS is sufficient to satisfy
the security policy. First, however, we must understand which security policy the DTLS must
satisfy.

3.1 ldentifying thetarget security policy

As Sterne noted, there are many definitions of the term “security policy” [14]. Sterne distin-
guishes three major types of policy:

e security policy objectives — constraints imposed from outside an organization, such as
by a government entity,

10

e organizational security policy — constraints that an organization imposes on its own
practices, and

e automated security policy — constraintsthat an organization places on the computer that
supports the organization.

Unfortunately, two critical elements are missing from his policy framework: the mission in
which the organi zation engages (and which the computer supports), and the use of information
security (INFOSEC) countermeasures (instead of just computer security countermeasures) to
support that mission. We modified Sterne' sframework toincludetheseelements[11]. Figure4
illustrates our modified policy framework and the derivation of a computer security (COM-
PUSEC) policy from the security policy objectives.

Central to our policy framework is the INFOSEC policy that defines requirements on the
INFOSEC countermeasures. These countermeasures can be drawn from any of the INFOSEC
disciplines, such as TEMPEST, administrative security, COMPUSEC, communications secu-
rity, physical security, personnel security and others. Together they addressthe threatstargeted
by the INFOSEC policy, which in turn addresses threats to the organization’s mission.

The COMPUSEC policy defines requirements on the COMPUSEC countermeasure, i.e.,
the trusted system. It identifies the assertions that must be enforced by the trusted system, and
it identifies any assumptions about enforcement provided by the trusted system’s environment
(i.e., the other INFOSEC countermeasures). The COMPUSEC policy is the target of our as-
surance mapping.

3.2 Mappingthe SPM to the COMPUSEC Policy

Effective communication of the SPM includes an informal description of the model, aformal
description, and a validity argument. The informal description includes a user’s view of the
system being modeled, a set of assertionsthat the system must enforce, the set of assumptions
that underlie those assertions, and the behavior-generating instructionsfor the model. Thefor-
mal description restates the assertions and the instructionsin a mathematical framework.

The validity argument embodies the assurance mapping between the SPM and the COM-
PUSEC policy. The assertions and assumptions of the informal description are shown to be
derived from the COMPUSEC policy, the formal assertions are shown to correspond to the
informal assertions, and the behavior-generating, formal instructions are shown to satisfy the
constraints of the formal assertions. Each of these elements of the validity argument is ad-
dressed below.

1. Map the informal description of the SPM to the COMPUSEC poalicy.

To begin, the COMPUSEC policy should be examined for explicit and implicit asser-
tions and assumptions. They will be the targets of the mapping. Then a correspondence
argument, e.g., atable, should be constructed that maps the assertions and assumptions
of the informal description of the SPM to the assertions and assumptions of the COM-
PUSEC policy. The mapping should include any justification for requirements in the
COMPUSEC policy that are not restated in the SPM.

2. Map the formal description to the informal description.

11

Security Policy

Objectives

Organizational

Security Policy
\v '/

Operations Concept
Definition
Operationa
Requirements

Security Requirements
Analysis

Physical Security
Poli

Personnel Security
Poli

Administrative
Security Poli

Y
COMPUSEC
Policy

Figure 4: Derivation of the COMPUSEC Policy

12

In other words, they should be two descriptions of the same entity! Thiswill not be a
rigorous mapping; instead, as the formal description is constructed, it should be obvious
how it relates to the informal description.

3. Demonstrate the sufficiency of the SPM.

We demonstrate that the SPM is sufficient to enforce the COMPUSEC policy by proving
that the behavior generated by the SPM’s formal instructions satisfies the constraints of
the formal assertions (which are derived from the COMPUSEC policy). Thisis one of
the most difficult tasks of the modeling effort. The assertions are post-conditions for
each instruction. We provethat an empty sequence of instructionssatisfiesthe assertions,
then we prove that, for each instruction, if an arbitrary sequence of length n satisfies
the assertions, then the sequence with the chosen instruction appended al so satisfies the
assertions. Thisistheonly formal proof requiredinthe assurance argument for aTCSEC
B3 evaluation.

If these three steps are completed successfully, then by transitivity we can assert that the
formal instructions satisfy the COMPUSEC policy. Theformal instructions are a strong foun-
dationfor creating asecure designfor thetrusted system: they are expressed in acomputational
framework that models the trusted system, and they manipul ate abstract representations of the
data structures upon which the security of the systemwill be based. The primary task hereafter
is demonstrating that the formal instructions are implemented correctly.

3.3 Mappingthe DTLStothe SPM

The assurance mapping from the DTLS to the SPM is a demonstration that the kernel calls
and system structures of the DTLS correspond to the formal instructions and computational
framework, respectively, of the SPM. We must argue that the kernel calls are an appropriate
refinement of the formal instructions. Then we will argue in Section 4 that the TCB code cor-
rectly implements the requirements specified in the kernel calls.

However, our task isnot so straightforward if the SPM does not include behavior-generating
instructions. McLean [7] notes that the term “security model” has two distinct uses: as a par-
ticular mechanism for enforcing confidentiality and as a specification of the system’s confi-
dentiality requirements. The latter use, McLean continues, isnot a“model” at all sinceit does
not specify aparticular mechanism. The mechanismto which McL ean refers are the behavior-
generating instructions. Millen [8] calls an SPM with instructions a concrete SPM, while an
SPM without instructionsis called an abstract SPM. Whether the SPM is concrete or abstract
impacts the assurance mapping significantly.

The Bell and LaPadula SPM [1] isaconcrete SPM. It contains eleven instructions, or rules
of operation, that may be mapped to top-level TCB functions. Bell and LaPadula’'s exposi-
tion of the SPM includes an interpretation for the Multics architecture. Theinterpretationisa
mapping between the Multics TCB functions and the rules of the SPM. The Secure Military
Message System (SMMS) SPM [5], on the other hand, is an abstract SPM. The SMMS SPM
defines an abstract state transition function 7" that represents all possible transitions in which
the system could engage.

There are severa reasons for choosing an abstract SPM over a concrete SPM. Good soft-
ware engineering suggests that design decisions should be delayed aslong as possible. Formu-

13

lating the instructions so that the assurance mapping is simplified assumes some knowledge of
the TCB architecture (at least at the DTLS level of abstraction), so if the SPM can be defined
without these assumptions, it will represent more implementations.

A trusted system development — with many trapsto trip its progress— may benefit more
from a concrete SPM than from an abstract SPM. The analysis required to specify the instruc-
tions represents the kind of forethought that is needed to avoid the traps. However, if the de-
veloper chooses to define an abstract SPM, then one of the following scenarios must occur to
compl ete the assurance mappings. The developer must

e create a set of instructions, show that they satisfy the SPM’s assertions, and then map
the kernel callsto these instructions, or

e map the SPM’scomputational framework to the system structuresof the DTLS, interpret
the formal assertions for the system structures using the mapping, then prove that the
kernel calls satisfy the interpreted assertions.

As we shall see below, the developer engages the second scenario anyway when he demon-
strates the sufficiency of the DTLS, but we still believe that creating the instructionsinitially
isbeneficial.

Given a concrete SPM then, the following steps compl ete the mapping from the DTLS to
the SPM.

1. Identify the kernel calls and system structures of the DTLS
Pay particular attention to the effect of each kernel call and the system structures that it
mani pul ates.

2. ldentify the instructions and computational framework for the SPM.

3. Construct the mapping.

Determine the correspondence between the DTL S system structures and the SPM com-
putational framework first. If an instruction affects particular elements of the computa-
tional framework, then the corresponding kernel call should manipulate the correspond-
ing system structures. Kernel callsthat do not map to instructions must be justified.

4. Demonstrate the sufficiency of the DTLS,

Once the kernel calls that correspond to the formal instructions are identified, then they
must be shown to exhibit the same behavior as the instructions. Given the mapping be-
tween the system structures and the computational framework, it should be possible to
interpret the SPM’s formal assertions roughly for the DTLS and argue informally that
the kernel calls satisfy those constraints.

14

4 Mapping the Implementation tothe DTLS

The TCSEC imposes the following requirement on the assurance mapping between the TCB
implementation and the DTLS.

The TCB implementation (i.e., in hardware, firmware, and software) shall be in-
formally shown to be consistent with the DTLS. The elements of the DTL S shall
be shown, using informal techniques, to correspond to the elements of the TCB.

[9]

4.1 Oveview

This section acts as a catalog of tools and techniques for performing the mapping. It coversa
variety of techniquesthat are useful in achieving the goal of demonstrating that the code of the
system TCB performs exactly and only the functions required by the DTLS.

The purpose of performing acodeto DTL S mapping isto devel op evidencethat will satisfy
the evaluators that the system in question is, in fact trustworthy. A large part of this process
is organizing and presenting the evidence gathered during the actual mapping into a coher-
ent and well documented argument that supports the devel oper’s contention that the systemis
what it purportsto be. This section will discuss ways in which the evaluator can apply critical
judgment to the evidence that will be presented by the developer. It should also provide the
developer with ample guidelines for organizing and presenting this evidence.

Recall our definition of an assurance mapping. It consistsof four parts. (1) anidentification
of the elements in the TCB to which requirements can be mapped; (2) an identification of the
elementsof theDTLS, which are called requirements; (3) an actual mapping in both directions,
that is a pairing of sets of elementsin the TCB and the DTLS requirements they satisfy, and
vice versa, along with an identification of those TCB elements which cannot be paired; (4) a
convincing argument for each case that the elements of the TCB correctly do what is required
by the DTLS, or contribute to satisfying some other system requirement and actually belong
inthe TCB.

The methods we describe address each of these components of an assurance mapping:

1. Identifying all mappable elementsin the TCB.
2. |dentifying al mappable elementsinthe DTLS.
3. Constructing and maintaining the actual mappings.

4. Making the implementation arguments.

4.1.1 Baby stepsvs. Giant Steps

For complex systems, the gap between the code and the DTL S may be too large to bridge with
asingle mapping. In this case, thereislikely to be a hierarchy of increasingly complex spec-
ifications between the DTLS and the code. It may be necessary to construct a hierarchy of
mappings, say codeto “C-Spec”, “C-Spec” to “B-Spec” and “B-Spec” to DTLSto develop an
appropriately convincing argument.

15

Whether or not such an approach is necessary is a function of the size and complexity of
the TCB, and of the abstractness of the DTLS. Because the intermediate representations re-
quire evaluation to ensure the accuracy and completeness of the final result, the hierarchical
approach requires more effort. In fact, the hierarchical process consists of constructing a se-
guence of assurance mappings from one layer to the next, with appropriate arguments at each
level for each collection in the mapping. Asaresult, it should only be used when attempts at
a single-step mapping become too large or to complex to be convincing.

4.1.2 Maintenance

Few, if any, computer systemsareever finished. Asthe system evolvesduring use, themapping
must be kept up to date if assurance isto be preserved.

This processis not trivial. There is atendency for developers and maintenance program-
mers to view documentation of any kind as someone else’s job. We know of projects where
large investments have been made in documenting the internals of systems only to have the
investment lost when the documents were not maintained as the system evolved.

Because assurance mappings link several views of a system, it iscritical to maintain them
along with the code and specifications. Not only must the links between the representations be
kept up to date, but the arguments that they support must be revalidated after each change.

Maintaining the assurance mappings requires effort. If this effort isnot planned for, bud-
geted, and ultimately expended, the initial assurance will slip away, never to be recovered.

4.1.3 Theroleof standardslike 2167A and SDD

The TCSEC deals with only the security aspects of system building and although it giveslip
service to good software engineering practices, it does nothing to relate the activities that it
requiresto those required by other applicable software engineering standards. We advocate an
integrated approach.

Although many developers view them as nothing more than a burden that causes the cre-
ation of unnecessary and unusable documentation forms,the purpose of standardssuch as2167A
and SDD isto impose a uniform process on development practices and to capture the results
of the processin a uniform fashion.

If the process is followed, or the documentation is organized as though it had been [10],
the use of these standards can make a direct and substantial contribution to the development
of the mapping. On the other hand if the standards are given lip service and the required doc-
uments judged on format rather than on content, the standards will not play a substantive role
in the development of the mapping and the information that they should contain will have to
be obtained elsewhere, probably at considerable additional expense.

4.2 Decomposingthe TCB

This subsection deal swith the problem of identifying those elements of the TCB, whether rep-
resented as code or data, that perform a discrete function that can be mapped to either an im-
plicit or explicit requirement of the TCB or that must be contained within the TCB to satisfy
some unstated meta requirement.

16

4.2.1 Analysisof the Code

In analyzing the code, there are anumber of factorsthat should be kept in mind. In thissection,
we point out some of the key issues.

Thisisa codeto DTL S mapping. The mapping processisdriven by the code. Each seg-
ment of code is analyzed to determine what it does and how this helps to satisfy some DTLS
requirement.

Each component of the code does something. The code analysis should abstract what
the codeisdoing. If the codeiswell constructed, thiswill be simple. If the codeis convoluted
and complex, determining its functionality will be difficult and the mapping dubious.

What it does ought to map to an identifiable DTL S derived specification. Thisisthe
actual mapping process. The correspondence between code and specification should be man-
ifest. In acleanly implemented system, most mapping items will be one to one. Each code
fragment will map to exactly one specification. It is possible that a given code fragment will
map to more than one specification and that more than one fragment will map to asingle spec-
ification.

Codethat mapsto no specissuspect. Codethat cannot be clearly mapped to someDTLS
derived requirement is suspect. It requires careful justification and an explanation for its ex-
istence. If it represents some essential functionality not covered by the DTLS, consideration
should be given to revising the DTLS and repeating the DTL S based assurance steps such as
covert channel analysis and DTLS to FSPM mapping. If it cannot be justified, it should be
removed.

Specs without code to satisfy them are worse. They represent a failure to implement
some required security relevant functionality.

4.2.2 Graph based methods

Calling trees or graphs starting with each TCB entry point and showing the routines that can
be reached from the entry point are a useful technique. Routines that appear in more than one
graph need careful attention to ensure that they do not permit information flows between func-
tions that should be isolated. In this section, we outline a process for developing the calling
trees and consider some of the issues that may arise in using this approach.

Calling tree analysis. Under the assumption that each TCB function startswith a subroutine
entry, the calling tree that starts with that entry identifies a chunk of code that is poten-
tially executed by invoking the TCB function.

Calling treesvs. dlices: Technically, we want the slice of code that can be executed as are-
sult of acall onaTCB routine. Thiswill be contained within the routines identified by
the calling tree. If the code associated with the operation does not start with acall to a
subroutine, we may have to explicitly identify the dlice.

Shared Subroutines: If wehaveacalling tree, or the slice contains subroutine calls, we need
to check to seeif the same subroutines are being shared among the slices associated with
morethan one TCB function. If thisisthe case, we need to analyzefor potential informa-
tion flows between TCB functions. Subroutines that access or modify global variables
or that retain values between calls require special attention.

17

Difficult cases: In some cases, we may need to identify and analyze separately the threads
that make up adlice. Thisislikely to be the case when a cursory analysis seemsto in-
dicate a troublesome sharing of information between TCB routines. It may be the case
that the parametersused in theindividiual invocationsof the shared routines partition the
execution pathsin such away that the unwanted sharing does not occur. Serious consid-
eration should be given to partitioning the code into separate routines so that subsequent
modifications do not inadvertantly introduce sharing where none is intended.

4.2.3 Dealing with data structures

Active code is not the only portion of the TCB that must be mapped. The state of the TCB
is represented by values contained in its data structures. These must also be described in the
mapping and the rel ationship between the TCB data structures and theimplicit or explicit state
abstraction of the DTLS explained.

Implicit data structures may arise in the DTLS in a variety of ways. The DTLS may use
adjectivessuch as“locked” asin“locked file” to talk about resultsthat are represented by data
structures or variables and their valuesin the TCB. An important part of the mapping process
is the preparation of a list of variables, variable fields, etc. that represent the “state” of the
TCB. A key characteristic of state data items is persistence. A persistent variable retains a
value from one state transition to the next. Depending on the language used to implement the
TCB, persistent variables may be represented in avariety of ways. Oneisasglobal variables,
either scoped to be accessible within amodule or accessible by any routine withinthe TCB. In
Ada, these will typically be package-level variables. In C, they will be variables declared at
thefile scope or explicitly declared st at i ¢. Other languages may be use different constructs
to obtain the same effect.

One subtle point in identifying persistent variables comes about because certain variables
may be mapped onto particular hardware registers or memory locations, and may be affected
in non-obvious ways as a result of hardware operations. Another arises when what appears
to be asimple dataitem at the DTLS level isimplemented as the result of a computation. For
example, “devicebusy” at the DTL Slevel might be computed withinthe TCB from the current
size of the device buffer — with a size of zero denoting a non-busy status.

4.2.4 Codeand Datathat do not map up

We have identified TCB code that does not map to explicit DTLS requirements. There are
severa possibilities:

e The code implements some functionality implicitinthe DTLS, but not explicitly called
for. For example, the DTL S may describe each of the TCB functionsasthough it were a
subroutine callable by the user while the TCB implementation is actually invoked viaa
system call instruction, the arguments of which identify the function to be called. Inthis
case, the code to decode the system call and dispatch to the correct routine responds to
the implied requirement for a method to invoke the operations described by the DTLS
but cannot be attributed to any particular function.

e Code that responds to an understood meta requirement. The DTLS describes the op-
erations that a user may invoke in an operating system TCB but does not describe the

18

mechanisms that are used to decide which user process will be run at agiven time. The
scheduler code for the system responds to a meta requirement, but cannot be attributed
to any security relevant functionality described in or implied by the DTLS.

The need for the TCB to contain functionality of this sort means that the Code to DTLS
mapping will not always identify a specific DTLS requirement that is satisfied by a TCB ele-
ment.

4.3 DTLS Decomposition

The DTL S ought not beincompl ete, but we may have to deal with non functional or distributed
requirements such as:

e The TCB shall beimplemented in awell structured manner.
e When invoked, a TCB operation shall be performed promptly.

4.3.1 Identifying mappable specificationsin theDTLS

The DTLS can take many forms. Good DTLS representations are non-procedural. With rare
exceptions, code isimperative and procedural. The the task at hand isto identify the specific
sections of the DTLS to which particular segment of code responds. The approach is to de-
compose the DTLS to identify the specific functions that it requires the system to perform or
the results that it requires the system to achieve.

Each function should be identified and listed separately. The purpose of this decomposi-
tion isto ensure that each requirement specified in the DTLSis explicitly identified. In awell
constructed DTLS, developing thelist will be straightforward, but even inthiscaseit is possi-
blefor apparently simple abstract operationsto give rise to multiple concrete requirements. A
DTLSthat iswritten in natural language may also contain implicit requirements that must be
made explicit in the decomposition process. It isalso likely to contain separable requirements
conjoined in a single sentence.

The decomposition should be accompanied by a cross reference (possibly expressed in a
tabular form as described below) that traces each individual requirement to an identifiable re-
gioninthe DTLS. The coordinate system used to create the cross reference isimmaterial, but
it should take into account the fact that the DTL S may not be static. Using section, paragraph,
and sentence offsets is less subject to drastic upset in the face of minor changes than is using
line numbers.

The decomposition should include a placeholder for “null” or immaterial functionality that
can be used to represent those portions of the DTL S (if any exist) that do not contain functions
or requirementsthat will beimplemented. If thisisdone, it will be possibleto analyzethe cross
reference to show that it coverstheentire DTLS. Thisisone part of showing the completeness
of the code to DTL S mapping.

4.3.2 Analysisof aDTLS

A good DTLSisnon procedural, inthat it stressesthe desired result rather than away inwhich
theresult can be obtained. Performing the mapping often requiresanalyzing the DTLSto iden-
tify theindividual requirementsthat are realized by the code. It may be necessary to transform

19

the DTLS substantially to obtain mappable requirements. This section examines some of the
issues associated with the analysisof aDTLS.

Thetypical DTL Sisatextual document. The DTLSisrelatively informal. Evenwhen it
has a significant mathematical content, it relies on expository material for asubstantial portion
of its meaning.

We must identify the individual specifications and requirements. Extracting require-
ments from the DTLS may be trivial or complex, depending on the form of the DTLS and the
degree of abstraction that it uses. Relatively abstract concepts such as mathematical sets and
mappings may be usedinthe DTLS. Theimplementation codeisrequired to realize equivalent
functionality through an appropriate choice of data structuresand algorithms. It isimportant to
note that the code need not implement all the mathematical operations possiblefor the abstrac-
tion, only those that are actually used in the DTLS. This simplification is often overlooked.

Thisimpliesapossible post processing step. Post processing extractsfromthe DTLSthe
list of individual requirements that can be targets of mapping from code. This postprocessing
can be facilitated with some care in the construction of the DTLS. Using constructs whose
meaning isclear isabig help. Organizing the DTL S so that requirementsare clearly and easily
separable is aso a winner. Ensuring that the DTLS is structured in such a way as to avoid
distributing a single requirement across multiple sectionsis also a help.

Softwar e Engineering Environments can help. Anintegrated Software Engineering En-
vironment can provide avariety of support functionsthat will simplify extracting requirements
fromthe DTLS. Among these are data dictionaries, cross reference facilities, etc. For aDTLS
written in a pseudo code supported by the SEE, avariety of additional tools may be available.

Theresult of TheDTL Sanalysismust beacollection of identifiable specification items.
It isthese items that will be the primary targets of the mapping process. They will also serve
other roles in the development of the system.

Specitemsmust beclear and testable. Testable servestwo purposeshere. From the map-
ping point of view, atestable spec item is one for which inspection of the code will determine
whether or not the code meets the specification. In addition, it should be possible to devise a
suitable, system-level, test case to demonstrate that the system meets the spec requirement.

Spec items may refer to operations performed by single functions or proceduresor

They may refer to operations performed by athread of control. Theformer are usually
the easiest to map as the code to satisfy the specislocalized. A requirement that is satisfied by
athread of control or by multiple segments of code are harder to map as an argument for the
collective satisfaction of the requirement needs to be presented.

4.4 ldentifying TCB to DTLS Correspondence

This section describes the techniques to be used in the preparing the TCB and DTL Sto facili-
tate the mapping process. It also discusses tools and techniquesthat will help in recording and
presenting the mapping.

441 Hooks

The process of performing the mapping processis simplified by annotating both the code and
the DTL S with cross references that facilitate the comparison of the two representations. We
refer to these as hooks. Hooks may beinthe form of absolute references to document sections,

20

to page numbers, or to specific routinesin the code can cause maintenance problemsasthe sys-
tem evolves. Or one may use symbolic hooks, relying on atool such as a document processor
to produce the appropriate entries in the final document. This is an area where mechanized
support should be used if at all possible.

4.4.2 Constructing hooksin the mapped code base

A properly implemented TCB will be built to simplify the mapping process. Its structure will
closely mimic the structure of the DTLS. Hooks to facilitate the mapping process can be in-
serted into the code as comments pointing out the structural relationship between the code and
the DTLS and identifying the DTL S requirements that the coded is intended to satisfy.

When an explicit requirements list such as the one discussed above is combined with ap-
propriate code hooks and data structure mappings, the evaluation of a codeto DTLS mapping
is greatly simplified. The comments should be designed to permit the evaluators to identify
the particular DTLS requirement to which the code is responding. The comments should be
scoped in away that permits code that responds to no requirements to be identified. If the
DTLS has been decomposed into a list of discrete requirements prior to inserting these com-
ments, the comments should be directed to the list entries. If they are directed to the DTLS
and aDTL S decomposition is subsequently produced, they should be changed to facilitate the
mapping process.

443 HooksintheDTLS

The placement of hooksin the TCB is simplified by the fact that the DTL S exists prior to the
design and coding phases that produce the TCB. While it is not feasible to make explicit ref-
erence to yet to be written code in the DTLS, these references can be added, either during the
coding process or during the reviews involved in preparing the mapping. The use of symbolic
hooks that can be mechanically transformed into appropriate cross references ishighly recom-
mended.

444 Tabular methods

Constructing a convincing argument requires the components of the argument to be presented
in some usable form. One simple form is by presenting the arguments and their support in a
tabular form. Thesetableswould provide achecklist to ensurethat both the codeandthe DTLS
are completely accounted for in the mapping process.

These tables are not an end in themselves. Rather, they are a means for focusing the eval-
uators attention on the arguments that provide the mapping process with the meaning that pro-
vides assurance. Analysis of these tables can identify regions of the DTLS, code, or data that
have been omitted from the mapping, but simply having been included in a mapping among
componentsis not sufficient to provide assurance. Ensuring that each componentinthe DTLS
isrepresented in the TCB doesn't assure that every DTL S component is appropriately mapped
to the components of the TCB to which they apply. It is the responsibility of the analyst to
ensure that the meaning of the DTLS is represented in the TCB.

21

445 Databases

Databases are useful for recording data about the mapping process and about the code being
analyzed. They can support the analysis process by aiding the analyst in answering questions
about the system under consideration.

There are anumber of commercially available database systemsthat can be used to support
mapping activities. They run on platformsranging from PCsto mainframes. Using a database
to maintain information about the mapping has a number of advantages. The foremost benefit
isthat a database approach provides a flexible way to generate reports about both the context
and status of the mapping. A secondary benefit is the possibility of using the database system
to answer questions about the mapping. For example, if DTLS, code, and dataitemsare appro-
priately identified, it will be possible to determine whether code that responds to no discrete
DTLS requirements exists.!

Developers and evaluators should be aware of developments in areas such as object ori-
ented databases and hypertext that may simplify the mapping representation processin the fu-
ture.

45 Makingthe Mapping Argument

In previous sections, we' ve described approaches and techniques for the analysis of the TCB
and DTL Sinto appropriate elemental components, and techniquesfor building and document-
ing the associations. Having used some appropriate technique to define the collections of sep-
arable requirements from the DTLS, the appropriate components of the TCB, and a mapping
among them, we must finally construct the assurance argument.

Theassurance argument isthe part of thisprocessthat must actually convincetheeval uator;
itisthemost important part of themapping. Thisargument must present aconvincing casethat,
despite the differencesin detail, level of abstraction, and notation, the TCB does exactly what
the DTLS requires, and that it is doing nothing except what is required to meet the security-
critical requirements of the system asawhole.

To be convincing, this argument needs to be sufficiently rigorous to allow the evaluator to
feel confident that the argument is sound, and the argument needs to be sufficiently completeto
allow the evaluator to feel confident that the argument leaves no gaps. The question of what is
“sufficiently rigorous and complete” isone that must be settled on a case by case basis— what
would be an appropriate level of rigor for a C2 system is quite different from what is required
inan Al system.

Thus these arguments may take many forms, depending on the degree of assurance that is
required. In highly secure systemsit may be appropriate to make a complete formal verifica-
tion of the TCB (athough thisis a stronger degree of verification than is currently required of
A1l systems.) Formal verification provides very strong assurance that the requirements of the
DTLS have been satisfied by the TCB. However, aformal verification requires the specifica-
tions of the DTLS to be stated as or transformed into mathematical statements, and requires
afull proof of correctness of the TCB. While thisis not impossible, it requires substantial re-
sources and careful planning early in the process.

LExists may be too strong. What the database query can show is gapsin the indices, e.g., code regions that
have not been mapped to some DTLS requirements.

22

One step back from performing afull formal verification of the TCB’s meeting itsrequire-
ments is to verify the TCB through hand-proof techniques. Where a full formal verification
requires the use of various tools such as theorem provers or proof-checkers to provide assur-
ance of the validity of the proof, hand-proof techniques use instead documented rigorous rea-
soning performed by a human. Thisis usualy understood to provide less assurance than a
fully-formalized machine-checked proof, but is it nothing to scoff at: mathematicians have
managed to get along with only hand-proof for thousands of years.

Both full verification and hand-proof would be avery convincing way to approach the TCB
to DTLS mapping. Both are stronger methods than those required for B3 evaluation. In place
of these morerigorous methods, most eval uationsat the B3 level will depend on mathematically-
stated prose or straightforward prose arguments.

These can be used effectively, but must be used with care. Itisentirely too easy for aprose
argument to dlip over into hand-waving. The evaluation of the TCB is one of the most impor-
tant componentsof assuring trust in atrusted system. Evaluators should and must be somewhat
suspicious; they should approach these mapping arguments with acritical eye.

23

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D.E. Bell and L.J. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Mitre Technical Report MTR-2997, Mitre Corp., Bedford, MA, March
1976.

JamesW. Freeman and Richard B. Neeley. A structured approach to code correspondence
anaysis. In Proc. 5th Annual COMPASS. Conference on Computer Assurance, pages
109-116. |IEEE, June 1990.

CTA Incorporated. Implementation evaluation guideline, a chapter of the handbook for
the computer security evaluation of trusted systems. To be published asaNRL Technical
Memorandum, October 1993.

Sue Landuer. Personal Communication, 1990. Telephone conversation with Carl
Landwehr of NRL.

C. Landwehr, C. Heitmeyer, and J. McLean. A security model for military message sys-
tems. ACM Transactions on Computer Systems, 2(3):198-222, August 1984.

Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi. A taxonomy
of computer program security flaws, with examples. Technical report, Naval Research
laboratory, November 1993.

John McL ean. Proving noninterference and functional correctness using traces. Journal
of Computer Security, 1(1), 1992.

Jonathan K. Millen. Models of multilevel computer security. Mitre Technical Report
MTR-10537, The Mitre Corporation, January 1989. Also in Advances in Computers,
Vol. 28, Academic Press.

National Computer Security Center, Ft. Meade, MD. DoD 5200.28-STD, Trusted Com-
puter System Evaluation Criteria, December 1985.

David L. Parnas and Paul Clement. A rational design process. How and when to fake it.
| EEE Transactions on Software Engineering.

Charles N. Payne, Judith N. Froscher, and Carl E. Landwehr. Toward a comprehensive
INFOSEC certification methodology. In Proceedings of the 16th National Computer Se-
curity Conference, pages 165-172, Baltimore, MD, September 1993. NIST/NSA.

Jane Solomon. Specefication-to-code correlation. In|EEE Symposium on Security and
Privacy, 1982.

National Computer Security Center staff. Department of defense trusted computer system
evaluation criteria. Department of Defense Computer Security Center, December 1985.
DoD 5200.28-STD.

Daniel F. Sterne. On the buzzword ‘ security policy’. In Proc. Symposium on Research
in Security and Privacy. |[EEE, June 1991.

24

