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Abstract. Traditional methods for evaluating the amount of anonymity
afforded by various Mix configurations have depended on either measur-
ing the size of the set of possible senders of a particular message (the
anonymity set size), or by measuring the entropy associated with the
probability distribution of the messages possible senders. This report ex-
plores further in detail an alternative way of assessing the anonymity
of a Mix system by considering the capacity of a covert channel from a
sender behind the Mix to an observer of the Mix’s output.

Initial work considered a simple model [5], where an observer (Eve) was
restricted to counting the number of messages leaving a Mix configured
as a firewall guarding an enclave with one malicious sender (Alice) and
some other naive senders (Clueless;’s). Here, we consider the case where
Eve can distinguish between multiple destinations, and the senders can
select to which destination their message (if any) is sent each clock tick.

1 Introduction

In [5] the idea of measuring the lack of perfect anonymity (quasi-anonymity) via
a covert channel was initiated. This idea was formalized in [6]. Our concern in
this report is to identify, to analyze in detail, and to calculate the capacity of, the
covert channels that arise from the use of a Mix [1,8] as an exit firewall from a
private enclave (as briefly addressed in [5, Sec. 4].) In general, we refer to a covert
channel that arises, due to a state of quasi-anonymity, as a quasi-anonymous
channel [6]. The quasi-anonymous channel also serves the dual role of being a
measure of the lack of perfect anonymity. Note that [2] uses a similar model for
statistical attacks in which Eve correlates senders’ actions with observed output.

* This is an extended version of [7]. Research supported by the Office of Naval Re-
search.



2 Exit Mix-firewall Model

There are N + 1 senders in a private enclave. Messages pass one way from the
private enclave to a set of M receivers. The private enclave is behind a firewall
that also functions as a timed Mix [8] that fires every tick, ¢, hence we call it a
simple, timed Mix-firewall. For the sake of simplicity we will refer to a simple,
timed Mix-firewall as a Mix-firewall in this report. One of the N + 1 senders,
called Alice, is malicious. The other N clueless senders, Clueless;,i = 1,... , N,
are benign. Each sender may send at most one message per unit time ¢ to the
set of receivers. All messages from the private enclave to the set of receivers pass
through public lines that are subject to eavesdropping by an eavesdropper called
Eve. The only action that Eve can take is to count the number of messages per
t going from the Mix-firewall to each receiver, since the messages are otherwise
indistinguishable. Eve knows that there are N+1 possible senders. The N clueless
senders act in an independent and identical manner (i.i.d.) according to a fixed
distribution C;,i = 1,... , N. Alice, by sending or not sending a message each t
to at most one receiver, affects Eve’s message counts. This is how Alice covertly
communicates with Eve via a quasi-anonymous channel [6].
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Fig. 1. Exit Mix-firewall model with NV clueless senders and M distinguishable receivers

Alice acts independently (through ignorance of the clueless senders) when
deciding to send a message; we call this the ignorance assumption. Alice has the
same distribution each ¢. Between Alice and the N clueless senders, there are
N + 1 possible senders per ¢, and there are M + 1 possible actions per sender
(since each sender may or may not transmit, and if it does transmit, it transmits
to exactly one of the M receivers).

We consider Alice to be the input to the quasi-anonymous channel, which is
a proper communications channel [9]. Alice can send to one of the M receivers
or not send a message. Thus, we represent the inputs to the quasi-anonymous
channel by the M + 1 input symbols 0,1,..., M, where i = 0 represents Alice
not sending a message, and i € {1,..., M} represents Alice sending a message
to the ¢th receiver R;. However, note that the “receiver” in the quasi-anonymous



channel is Eve. Eve receives the output symbolse;,j =1,... , K. Eve receives e;
if no sender sends a message. Each other output symbol in the quasi-anonymous
channel corresponds, up to being indistinguishable by Eve, to a way that the
N + 1 senders can send or not send, at most, one message each, out of the private
enclave, provided at least one sender does send a message.

For the sake of simplicity we introduce a dummy receiver Ry (not shown
above). If a sender does not send a message we consider that to be a “message”
to Ro. For N 4 1 senders and M receivers, the output symbol e; observed by
Eve is an M + 1 vector (aé,a{, ....,ag\/[), where a] is how many messages the
Mix-firewall sends to R;. Of course it follows for all j that Zf\io al = N+1.

The quasi-anonymous channel that we have been describing is a discrete
memoryless channel (DMC). We define the channel matrix M as an (M +1) x K
matrix, where M[i, j] represents the conditional probability that Eve observes
the output symbol e; given that Alice input i. We model the clueless senders
according to the i.i.d. C; for each period of possible action :

P(Clueless; doesn't send a message) = p

1—
P(Clueless; sends a message to any Rj,j > 0) = % = Tp

where in keeping with previous papers, ¢ = 1 —p is the probability that Clueless;
sends a message to any one of the M receivers. From above, when Clueless;
does send a message, the destination is uniformly distributed over the receivers
Ry,...,Rp. We call this the semi-uniformity assumption. Again, keep in
mind that each clueless sender has the same distribution each ¢, but they all act
independently of each other.

We model Alice according to the following distribution each ¢:

P(Alice sends a message to R;) = x;

Of course, this tells us that

M
xo = P(Alice doesn't send a message) = 1 — Z T -

i=1
We let A represent the distribution for Alice’s input behavior, and we denote by
E the distribution of the output symbols that Eve receives. Thus, the channel
matrix M along with the distribution A totally determine the quasi-anonymous
channel. This is because the elements of M take the distributions C; into account,
and M and A let one determine the distribution E describing the outputs that
Eve receives, P(Eve receives e;).

Now that we have our set-up behind our exit Mix-firewall model, we may

now go on to analyze various cases in detail.

3 Capacity Analyses of the Exit Mix-firewall Model

The mathematics of the problem gets quite complex. Therefore, we start with
some simple special cases before attempting to analyze the problem in general.



The mutual information between A and F is given by
I(A,E)=H(A) — H(A|E) = H(E) — H(E|A) = I(E, A).
The capacity of the quasi-anonymous channel is given by [9]

C= mgxI(A,E) ,

where the maximization is over the different possible values that the z; may take
(of course, the x; are still constrained to represent a probability distribution).
Recall M[i,j] = P(E = ej|A = i), where M[i, j] is the entry in the i'" row
and ;' column of the channel matrix, M. To distinguish the various channel
matrices, we will adopt the notation that My ps is the channel matrix for NV
clueless senders and M receivers.

3.1 One Receiver (M = 1)

Case 1 — No clueless senders and one receiver (N =0, M =1)

Alice is the only sender, and there is only one receiver R;. Alice sends either 0
(by not sending a message) or 1 (by sending a message). Eve receives either e; =
(1,0) (Alice did nothing) or es = (0,1) (Alice sent a message to the receiver).
Since there is no noise (there are no clueless senders) the channel matrix Mg ; is
the 2x2 identity matrix and it trivially follows that P(E = e;) = zo, and that
P(E = 62) = 2.

€1 €2

0/1 0
M‘”:l(o 1>

Since g = 1— 1, we see that® H(E) = —zqlogxo — (1 —z¢) log(1 —x0). The
channel matrix is an identity matrix, so the conditional probability distribution
P(E|A) is made up of zeroes and ones, therefore H(FE|A) is identically zero.
Hence, the capacity is the maximum over zp of H(E), which is easily seen to
be unity* (and occurs when o = 1/2). Of course, we could have obtained this
capacity® without appealing to mutual information since we can noiselessly send
one bit per tick, but we wish to study the non-trivial cases and use this as a
starting point.

Case 2 — N clueless senders and one receiver (M = 1)
This case reduces to the indistinguishable receivers case with N senders analyzed
in [5] with both an exit Mix-firewall that we have been discussing and an entry

% All logarithms are base 2.

* The units of capacity are bits per tick ¢, but we will take the units as being under-
stood for the rest of the report. Recall that all symbols take one ¢ to pass through
the channel.

® This uses Shannon’s [9] asymptotic definition of capacity, which is equivalent for
noiseless channels (in units of bits per symbol).



Mix-firewall (with the receivers behind the latter). Alice can either send or not
send a message, so the input alphabet again has two symbols. Eve observes
N + 2 possible output symbols. That is, Eve sees e; = (N + 1,0), eo = (N, 1),
es = (N —1,2), ---, eny2 = (0, N + 1). A detailed discussion of this case can
be found in [5].

3.2 Some Special Cases for Two Receivers (M = 2)

There are two possible receivers. Alice can signal Eve with an alphabet of three
symbols: 1 or 2, if Alice transmits to Ry or R», respectively, or the symbol 0 for
not sending a message. Let us analyze the channel matrices and the entropies
for different cases of senders.

The symbol e; that Eve receives is an 3-tuple of the form (a{;, a{, ag), where
aZ is the number of messages received by it" receiver.% As before, the index i = 0
relates to Alice not sending any message. The elements of the 3-tuple must sum
to the total number of senders, N + 1,

2
Zaf:N—Fl.
i=0

Case 3 — No clueless senders and two receivers (N =0, M = 2)
Alice is the only sender and can send messages to two possible receivers. The
channel matrix is trivial and there is no anonymity in the channel.

0

0 1

Moo =1 0
2 0

The subscript 0.2 represents one sender (Alice alone) and two receivers. The 3x 3
channel matrix My 2|7, j] represents the conditional probability of Eve receiving
the symbol e;, when Alice sends to the receiver R; (A = i). ‘0’ stands for not
sending a message.

The mutual information I is given by the entropy H(E) describing Eve

I(E,A) = H(E) = —z1logz — z2logazs — (1 —x1 — x2) log(l — x1 — x2).

The capacity of this noiseless covert channel is log3 =~ 1.58 (at z;=1/3, i =
0,1,2). For M = 2 this is the largest capacity, which we note corresponds to
Zero anonymity.

Case 4 — N =1 clueless sender and M = 2 receivers

% Recall that the a{’s of the output symbol are not directly related to A, which denotes
the distribution of Alice.
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Fig. 2. Case 4: system with NV =1 clueless sender and M = 2 receivers

The following row vector describes the probabilities of the possible output sym-
bols when only one clueless sender is involved.

(1,0,0) (0,1,0) (0,0,1)
( » q/2 /2 )

The message-set matriz given below shows how the various output symbols can
be formed. The rows correspond to Alice’s actions, and the columns, correspond
to the actions of Clueless. Row and column labels are added elementwise to form
the matrix entry, which is the output symbol corresponding to the channel state.

(1,0,0)
(0,1,0)
(0,0,1)
The set of distinct symbols formed in the matrix cells constitutes the set of
output symbols Eve may receive. In this case, there are three repetitions in the
message-set matrix, so Eve may receive 9 - 3 = 6 symbols.

Let us consider the channel matrix.

(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)
0 P q/2 q/2 0 0 0
Mio=1 0 p 0 q/2 q/2 0
2 0 0 p 0 q/2 q/2

The 3 x 6 channel matrix M; »[é, j] represents the conditional probability of Eve
receiving the symbol e; when Alice sends to R;. As noted, the dummy receiver
Ry corresponds to Alice not sending to any receiver (however this is still a
transmission to Eve via the quasi-anonymous channel).



Given the above channel matrix we have:

H(E) = —{pwo log[pzo]
+[qwo/2 + pr1]loglgro /2 + pri]
+[qwo/2 + pr2]logqro /2 + pa2]
+[gx1/2]1loglqx1 /2] + [qx1/2 + qx/2]l0gqr: /2 + g2 /2]
+gz2/2]log[qz2/2]}.

The conditional entropy is given by

2 6
H(E[A) ==>"|p plejlz:) logplejlai) | = ha(p) ,
1

i=0 j=
where ha(p) denotes the function

ha(p) = — (1 —p)/2log((1 —p)/2) — (1 —p)/2log((1 —p)/2) — plogp

=—(1—-p)log((1 —p)/2) —plogp .

The mutual information between Alice and Eve is given by

I(A,E) = H(E) - H(E|4) ,

1.6
1.2 R
=
0.6 R
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p = P(Clueless not sending a message) ——>

Fig. 3. Capacity for N =1 clueless sender and M = 2 receivers



and the channel capacity is given by
C= max I(AE)

= max —{pzo log[pzo]

+[qwo/2+px1]log[qro/2+pr1 ]

+[gxo /24 px2] log[qro /24 prs)
+[gx1/2]loglqxy /2] +[qx1 [ 2+qx2 /2] logqgxy [ 24qx2 /2]
[

+[gx2/2]10glqx=2/2]} —ha(p).

Note that the maximization is over z; and z2, since zg is determined by
these two probabilities (holds for any N). This equation is very difficult to solve
analytically and requires numerical techniques. Figure 3 shows the capacity for
this case with the curve N = 1. From the plot the minimum capacity is approx-
imately 0.92, when p = 1/3. This is less than 1.58, which is the corresponding
value for N = 0 case.

Case 5 — N = 2 clueless senders and M = 2 receivers

FEve

\

Clueless _ R

\
/

Alice Mix-firewall

Clueless2 T R»

Fig. 4. Case 5: system with N = 2 clueless senders and M = 2 receivers

The row vector describing the output symbols and their probabilities with
only the two clueless senders only is given by

(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)
( Pq Pq /A @2 ¢4 )

The symbol (2,0,0) has probability p? because both clueless do not send a mes-
sage. The symbol (1,1,0) has probability 2p(q/2) because either Clueless; does
not send a message and Cluelesss sends a message to R; or visa versa. The other
values behave similarly. The message set matrix, which has the contributions
from the clueless as the column index and the contributions from Alice as the



row index, is as follows.

(2,0,0) (1,1,0) (1,0,1) (0,2,0) (0,1,1) (0,0,2)
(1,0,0) /(3,0,0) (2,1,0) (2,0,1) (1,2,0) (1,1,1) (1,0,2)
(0,1,0) { (2,1,0) (1,2,0) (1,1,1) (0,3,0) (0,2,1) (0,1,2)
(0,0,1) \ (2,0,1) (1,1,1) (1,0,2) (0,2,1) (0,1,2) (0,0,3)

By inspection of the matrix, we notice that the output symbols with more repeti-
tions will have higher probability of being seen by Eve, when compared to others.
That is, output symbol (1,1, 1) will have a greater probability of being observed
than (3,0,0) or (0,3,0).The probability of observing a symbol also depends on
the probability distribution of the transmitter over the receivers (i.e., the value
of ¢). There are eight repetitions in the message-set matrix, so the number of
total possible symbols Eve may receive 18 - 8 = 10 symbols. The channel matrix
M, is given below.

(3,0,0) (2,1,0) (2,0,1) (1,2,0) (1,1,1) (1,0,2) (0,1,2) ¢(0,3,0) (O0,2,1) (0,0,3)

0 p° rg Pa a*/4 a*/2 7> /4 0 0 0 0
Mzo =1 0 p 0 Pq Pq 0 a /4 g /4 ¢ /2 0
2 0 0 P 0 g Pq a’/2 0 g /4 g /4

The 3 x 10 channel matrix Ms 57, j] represents the conditional probability of
Eve receiving e; when Alice sends a message to receiver R;.
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Fig. 5. Capacity for N = 2 clueless senders and M = 2 receivers
Figure 5 shows the capacity for this case N = 2. Again, the minimum capacity
is found at p = 1/3 = 1/(M + 1). From the plot the minimum capacity is
approximately 0.62, when p = 1/3.



3.3 Some Special Cases for Three Receivers (M = 3)

Case 6 — system with N =1 clueless senders and M = 3 receivers
Alice or Clueless can send to three possible receivers or refrain from sending
(denoted by ‘0’). The probabilities of the various output symbols from the one

clueless sender are given below.

<]‘70707 0> <07 1707 0> <07 07170> (0’07 07 ]‘>

( » q/3 q/3 q/3
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Fig. 6. Case 6: system with NV =1 clueless senders and M = 3 receivers

Now let us examine the number of possible message set symbols obtained if

we merge the individual message sets of Alice and Clueless.

0)

) )

= O O O O

)

) ) )

(1,0,0,
(2,0,0
(1,1,0,
(1,0,1
(1,0,0

)

0,0,1,0
1,0,1,0
0,1,1,0
0,0,2,0
0,0,1,1

) ) )

)

o~ oo
~o oo

- O O O
~ -~ ~—

) M

Y

(0,1,0
(1,1,0
(0,2,0
(0,1,1
(0,1,0

As we can see from the above message-matrix, there are six repetitions in the
message sets formed, so Eve may receive = 16 - 6 = 10 different symbols.

The channel matrix M; 3is given below.

(2,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,2,0,0) (0,1,1,0)
0 p a/3 a/3 a/3 0 0
1 0 p 0 0 q/3 a/3
2 0 0 p 0 0 a/3
3 0 0 0 p 0 0

The 4 x 10 channel matrix M, 3[i, j] represents the conditional probability of

Eve receiving e; when Alice sends a message to receiver R;.
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(0,1,0,1)
0

a/3
0

a/3

(0,0,2,0)

a/3

0

0

(0,0,1,1)
0
0
a/3
a/3

(0,0,0,2)

0

0

0
a/3
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Fig. 7. Capacity for N =1 clueless sender and M = 3 receivers

Figure 7 shows the capacity for this case of N = 1. The minimum capacity
is found at p = 1/4 = 1/(M + 1). From the plot the minimum capacity is
approximately 1.25, when p = 1/4.

Case 7: system with N = 2 clueless senders and M = 3 receivers
The row vector describing how the clueless users influence the output symbols
is given below.

(2,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,2,0,0) (0,1,1,0) ¢(0,1,0,1) (0,0,2,0) (0,0,1,1) (0,0,0,2)
( » 2pa/3 2pq/3 2pa/3 a>/9 2¢°/9 2¢°/9 7>/9 2¢°/9 /9 )

Now let us examine the size of the set of output symbols obtained if we merge
the individual message sets of Alice and the two clueless senders:

(2,0,0,0) (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,2,0,0) (0,1,1,0) (0,1,0,1) (0,0,2,0) (0,0,1,1) (0,0,0,2)
(1,0,0,0) /(3,0,0,0) (2,1,0,0) (2,0,1,0) (2,0,0,1) (1,2,0,0) (1,1,1,0) (1,1,0,1) (1,0,2,0) (1,0,1,1) (1,0,0,2)
(0,1,0,0) | (2,1,0,0) (1,2,0,0) (1,1,1,0) (1,1,0,1) (0,3,0,0) (0,2,1,0) (0,2,0,1) (0,1,2,0) (0,1,1,1) (0,1,0,2)
(0,0,1,0) { (2,0,1,0) (1,1,1,0) (1,0,2,0) (1,0,1,1) (0,2,1,0) (0,1,2,0) (0,1,1,1) ¢0,0,3,0) (0,0,2,1) (0,0,1,2)
(0,0,0,1) \(2,0,0,1) (1,1,0,1) (1,0,1,1) (1,0,0,2) (0,2,0,1) (0,1,1,1) ¢0,1,0,2) (0,0,2,1) (0,0,1,2) (0,0,0,3)

As we can see, there are 20 repetitions in the symbols formed. Hence, the total
symbols seen by Eve become = 40 - 20 = 20 symbols.

If we look through the columns (1,1,0,0), (0,1,1,0) and (1,0,1,0), we can
find the element (1,1,1,0) common to all the three columns. There are two more
similar cases for a common element in three columns. From this, we conclude that
the message sets with even distribution of messages seem to have a single element
common to many of the them, whereas those with skewed distribution seem to
be unique. This is expected, as the ways to distribute over several receivers is
multiple, while there is only one way for all senders to send to the same receiver.

11



The channel matrix (split into two) is given below.

(3,0,0,0) (2,1,0,0) (2,0,1,0) (2,0,0,1) (1,2,0,0) (1,0,2,0) (1,0,0,2) (1,1,1,0) (1,1,0,1) (1,0,1,1)
2

0 P 2pq/3 2pq/3 2pq/3 a*/9 a*/9 /9 2¢%/9 2¢%/9 2¢° /9
1 0 p 0 0 2pq/3 0 0 2pq/3 2pq/3 0
2 0 0 p? 0 0 2pq/3 0 2pq/3 0 2pq/3
3 0 0 0 p? 0 0 2pq/3 0 2pq/3 2pq/3
(0,3,0,0) (0,2,1,0) (0,2,0,1) (0,1,2,0) (0,1,0,2) (0,1,1,1) ¢(0,0,3,0) (0,0,2,1) (0,0,1,2) ¢(0,0,0,3)
0 0 0 0 0 0 0 0 0 0 0
1 /9 2¢%/9 2¢%/9 72/9 /9 2¢%/9 0 0 0 0
2 0 /9 0 2¢%/9 0 2¢%/9 /9 2¢%/9 /9 0
3 0 0 /9 0 2¢%/9 24¢%/9 0 /9 2¢%/9 a?/9

The 4 x 20 channel matrix My 3[i, j] represents the conditional probability
of Eve receiving e; when Alice sends a message to receiver R;. The generalized
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Fig. 8. Capacity for N = 2 clueless senders and M = 3 receivers
formula for the matrix elements is given by

—_ (ajfl) 3—a’ i
m(0,j) = | @-Delagapl /3T forag =1,2,3
0 for a =0
2 al o gd i
m(1,5) = i@ —Diahtalt? o(q/3)* for ai = 1,2,3
0 foral =0
2 al o gd i
m(2,j) = aptal (s —1)ajt? 2(q/3)" " for a2' =1,2,3
0 foral =0

12



I adladt(al —
a)l.aflal!(al

2 al (q/3)2—a for a’ = 1,2,3
o) = { —p"(a/3) or aj

fora} =0

Figure 8 shows the capacity for this case in the curve when N = 2. The minimum
capacity is found at p = 1/4 = 1/(M + 1). From the plot the minimum capacity
is approximately 0.89, when p = 1/4, which is less than the lowest capacity for
the N =1 case.

FEve

Clueless _ R

Alice > MIX-firewall ~ Ro

Cluelesss R3

Fig. 9. Case 7: system with N = 2 clueless senders and M = 3 receivers

3.4 Some Generalized Cases

Case 8: N =1 Clueless and M receivers

Eve

Clueless

\,
P

MIX-firewall

Alice

Fig. 10. Case 8: system with N = 1 clueless sender and M receivers
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We generalize the scenario to one clueless transmitter and M receivers. The
probability describing the actions of only the one clueless sender is given below.

(1,0,0,0,...,0) (0,1,0,0,...,0) (0,0,1,0,...,0) (0,0,0,1,...,0) ... (0,0,0,0,...,1)
( p a/M a/M a/M a/M )

The message set matrix is given below.

(1,0,0,0,...,0) (0,1,0,0,...,0) (0,0,1,0,...,0) (0,0,0,1,...,0) . (0,0,0,0,...,1)

(1,0,0,0,...,0) r(2,0,0,0,...,0) (1,1,0,0,...,0) (1,0,1,0,...,0) (1,0,0,1,...,0) . (1,0,0,0,...,1)
(0,1,0,0,...,0) | (1,1,0,0,...,0) (0,2,0,0,...,0) (0,1,1,0,...,0) (0,1,0,1,...,0) (0,1,0,0,...,1)
(0,0,1,0,...,0) | (1,0,1,0,...,0) (0,1,1,0,...,0) (0,0,2,0,...,0) (0,0,1,1,...,0) (0,0,1,0,...,1)
(0,0,0,1,...,0) | (1,0,0,1,...,0) (0,1,0,1,...,0) (0,0,1,1,...,0) (0,0,0,2,...,0) (0,0,0,1,...,1)
(0,0,0,0,...,1) \(1,0,0,0,...,1) (0,1,0,0,...,1) (0,0,1,0,...,1) (0,0,0,1,...,1) ... (0,0,0,0,...,2)

The number of output symbols that may be seen by Eve is identical to the
total possible distinct pairs in the message-set matrix shown above. There are
two indistinguishable transmissions (including null transmissions) and they are
sent into M + 1 distinct receivers (urns) (this also includes the null transmission,
which by convention goes to Ry, not shown in the figure). Combinatorics tells us
then that there are (M;' 2) distinct combinations (symbols) that Eve may receive.
The channel matrix is given below.

(2,0,0,0,...,0) (1,1,0,0,...,0) (1,0,1,0,...,0) ... (1,0,0,0,...,1) (0,2,0,0,...,0) ... (0,0,0,0,...,2)
0 P q/M a/M q/M 0 0
1 0 P 0 0 /M 0
2 0 0 P P 0 0 0
3 0 0 0 - 0 0 0
M 0 0 : » 0 ' a/M

] . e
The (M +1) x (M2+2) channel matrix My 5[, 7] represents the conditional prob-
ability of Eve receiving e; when Alice sends a message to receiver R;.
The probability distribution among the elements of the channel matrix can
be calculated by the formula below.

#0Vi=1,23, ,Mandj=1,2,3,--, ("7

J N_j .
mi’j:{p%(q/M) ap a ., 2

S {z)<af31><q/M)f“5+1 DA A0 V=012, ()
0,j — -l =
0 : ap=0

The conclusions and more generalizations related to this case are discussed
in the results section.

Case 9: N clueless senders and M = 2 receivers

In this case, we generalize the problem to N clueless transmitters for the two
receivers case. The total number of message set symbols seen by Eve, if only
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the clueless are transmitting, can be calculated as the number of combinations
in which N transmitters can send (or not send) a message times the number of
combinations in which the messages sent can be distributed into two receivers.

If £ out of NV transmitters send a message, then the & messages sent can be di-
vided into two receivers in k+1 possible combinations ((k,0), (k—1,1),...,(0,k)).

message set size=1 4+ 2 + 3 + 4 + ---+ (N +2)

N+2
3
i=0
= (N+2)(N+3)/2
FEve
Clueless:
_ R
Alice — MIX-firewall
Clue:lessl' /
: R
Cluelessn

Fig. 11. Case 9: system with N clueless senders and M = 2 receivers

The probability of each channel state with clueless only is as follows.
(N,0,0) (N —1,1,0) (N —1,0,1) (N —2,2,0) (N —2,1,1) (N —2,0,2) ... (0,0,N)

( N NpN~lp/2 NpNTl¢/2 N(N-1)pN72¢?/8 N(N -1)pN*¢*/4 N(N-1)pN2*/8 ... (¢/2)V)

Now let us merge the individual message sets of Alice and the N clueless
transmitters to determine the number of symbols received by Eve.

(N,0,0) (N —1,1,0) (N—1,0,1) (N —2,2,00 (N-2,1,1) (N—2,0,2) ... (0,0,N)
(1,0,0) <<N+1,0,0> (N,1,0) (N,0,1) (N -1,2,0) (N-1,1,1) (N-1,0,2) ...  (1,0,N) )
(0,1,0) [ (N,1,0)  (N—1,2,00 (N—1,1,1) (N=2,3,00 (N-2,2,1) (N=21,2) ... (0,1,N)
(0,0,1) (N,0,1) (N —1,1,1) (N —1,0,2) (N —2,2,1) (N —2,1,2) (N —2,0,3) ... (0,0,N+1)

As observed before, the message set (N/3+41, N/3, N/3) is the most uniform mes-
sage distribution. Hence, it has maximum number of repetitions in the message
set matrix and will have a greater probability of being observed than (N +1,0,0)
or (0,1,N) .

15



The channel matrix My » is given below.

(N +1,0,0)  (N,1,0) (N,0,1) (N —1,2,0) (N —1,1,1) (N —1,0,2)
0 »N NpN7lgs2 NpNTlg/2 NN = 1)pNT2¢%/8 N(N = 1)pN 726274 N(N - 1)pN 72428
1 0 N 0 NpN—1g/2 NpN—1g/2 0
2 0 0 pN 0 NpN—1g/2 NpN=1g/2

The 3 x ((N + 2)(N + 3)/2) channel matrix My »[i, j] represents the condi-
tional probability of Eve receiving e; when Alice sends a message to receiver R;.
The probability distribution in the channel matrix can be imagined as nesting
of two binomial distributions: First, between messages sent and received; sec-
ond, the distribution of messages sent to the two receivers. So, given the vector
(a},al,al), the element of the channel matrix can be generalized by the formula
below.

(0,0, N +1)
0
0
(a/2)N

mo,j = (ag]\i 1>p(“51)(prob. distribution of (N — (al — 1)) messages to Ry and Ry)
N j N —(a) —1) i j
— (ag—1) 0 2)%1 | 2)%2
() (YY)t
N j N — (aj -1 i
= . (ag—1) 0 2 N—(al—-1)
R G i
N\ i (N -ad} —dd
e (%)p 0 <a{ - 10) (a2

N a’ N—G% N—al
= (Y

Note that ag does not explicitly appear but is implicitly in the above since
(a) + a? + a]) — 1 = N, this relationship will be seen to be important in the
following general case (where we use a generalized combinatorial formula). The
conclusions and more generalizations related to this case are discussed in the
results section.

Case 10 — N clueless senders and M receivers
We now generalize the problem to N clueless senders and M receivers (refer
again to Figure 1). There are N + 1 indistinguishable transmissions (including
null transmissions) and they are sent into M + 1 distinct receivers (urns) (this
also includes the null transmission, which by convention goes to Ry, not shown
in the figure). Combinatorics tells us then that there are K = (Nj\',]\ff'l) possible
symbols e;.

The rows of our channel matrix correspond to the actions of Alice. The
ith row of My_ar describes the conditional probabilities p(ej|z;) (For simplicity

we will not always explicitly note that j = 1,..., (VM *").). By convention e,
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always corresponds to every sender not sending a message (which is equivalent to
all senders sending to Ry). Therefore e; is the M +1 tuple (N+1,0,...,0). Given
our simplifying semi-uniformity assumption for the clueless senders’ distribution,
this term must be handled differently.

The first row of the channel matrix is made up of the terms My a/[0,j]. Here,
Alice is not sending any message (i.e., she is “sending” to Rp), so Alice con-
tributes one to the term af in the M + 1 tuple (a),al,al,... a%,) associated
with e;. In fact, this tuple is the “long hand” representation of e;. Therefore
the contributions to the M + 1 tuple (aé -1, a{, aé, ... ,a@) describe what the
N clueless senders are doing. That is, aé — 1 clueless senders are not sending
a message, a{ clueless senders are sending to Rj, etc. Hence, the multinomial
coefficient (a6_17a]{___7a§-w) tells us how many ways this may occur.” For each
such occurrence we see that the transmissions to Ry affect the probability by
p%~1 and the transmissions to R;,7 > 0, due to the semi-uniformity assump-
tion, contribute (q/M )@ . Since the actions are independent, the probabilities

multlply, and since ao —1+a]+--+a), = N, we have a probability term

of p“o_l(q/M yN+1=a5_ Multiplying that term by the total number of ways of
arriving at that arrangement we have that:

Muar[0,4]= (o 1,0]... 02, )P0 (@/M)VHI 700
The other rows of the channel matrix are MN wmli, j], @ > 0. For row i > 0,

we have a combinatorial term ( i ) for the N clueless
ap,ay,..- _1,0, 71a+1, ,aM

senders, aj) of which are sending to R and N — a)) of which are sending to the
R;,i > 0. Therefore, we see that under the uniformity assumption,
M. ali, ] = " )P (q/M)NT i > 0.

(aé,a{,...,a{ 1,a —1,a’ R '7‘1?\/1

We show the plots of the mutual information when the clueless senders act
(as assumed throughout the report) in a semi-uniform manner and when Alice
also sends in a semi-uniform manner (i.e., x; = (1 — z9)/M, i = 1,2,...,M).
We conjecture based upon our intuition, but do not prove, that Alice having
a semi-uniform distribution of destinations Ry, ..., Ry when the clueless senders
act in a semi-uniform manner maximizes mutual information (achieves capacity).
This has been supported by all of our numeric computations for capacity. With
this conjecture, we can reduce the degrees of freedom for Alice from M to 1 (her
distribution A is described entirely by (), which allows greater experimental
and analytical exploration.

The channel matrix greatly simplifies when both the clueless senders and
Alice act in a totally uniform manner. That is, when zo = 1/(M + 1), then
z;=(1—29)/M =1/(M +1) for all z;, and p=1/(M + 1). We have

N
My.m[0,5]= [ : ) oot (q/p)NH1I-ab,
N.M[ ).7] (aé—l,a{,...,a&) (q/ )

" The multinomial coefficient is taken to be zero, if any of the “bottom” entries are
negative.

17



which simplifies to

N 1
My r[0,5] = - ) (— )V
w0, 7] <af)—1,a{,...,a§\4>(M+1)

(Note this form for i = 0 is due to the total uniformity of the C;s.). We also have

N j j
My mli, il =1( ; . . : o) p¥(g/M)N % i >0
N.M[ ,.7] (a{)’a{ ’agipag _17a2+1,“. ’agvl>p (Q/ ) ) )
which simplifies to
N 1
Mvarlidl = (g 0 o )G >0
’ ap,ai,...,a_y,al —lal ... a),) M+1" "’

1 2 3 4 ) 6 7 8 9 10

0.3113|1.5849|2.00002.3219|2.5850|2.8074|3.0000|3.1699(3.2192|3.4594
0.2193]0.9172|1.2500{1.5219|1.7515(1.9502|2.1250|2.2811|2.4219|2.5503
0.1675|0.6204(0.8891|1.1204(1.3218|1.4996|1.6586|1.8021|1.9328|2.0529
0.1351]0.4555|0.6760(0.8423|1.0515|1.2112|1.3560(1.4882|1.6097|1.7221
0.1133|0.3537|0.5371]0.7080(0.8649|1.0090{1.1410|1.2630(1.3761|1.4813
0.0976|0.2864/|0.4408]0.5893]0.7288|0.8588|0.9798|1.0925|1.1978|1.2965
0.0857)0.2392|0.3710]0.5010(0.6255|0.7434|0.8544|0.9587|1.0570|1.1496
0.0765(0.2048|0.3187]0.4334|0.5450(0.6522|0.7542|0.8510(0.9428|1.0298
0.0691|0.1789(0.2785|0.3803|0.4809|0.5786{0.6726|0.7626|0.8484/0.9303
0.0630(0.1587|0.2467|0.3377)0.4288|0.5183|0.6051|0.6888|0.7692|0.8463

~ 1

Table 1. C(1/(M + 1)) = lower capacity bounds for all p, N =0,...,9,
and M =1,...,10

To determine the distribution E describing Eve we need to sum over the
columns of the channel matrix and use the total uniformity of A.

P(E=¢;)=Y P(E=¢j|A=i)P(A=i),i=0,...,M.

This gives us
M

1 N 1 N +1
P(E = ¢)) = A ST O ) = N<, )
( i) (M+1) ZZ;(%,...,a{_l,ag—l,a{_i_l,...,afw) (M+1) apy ... 0,

From this we can compute the entropy H(FE) without too much trouble:

H(E) = (ﬁ)NZ (a%f\_fflj ) <N10g(M+1)—log (a%’]_vflj )) .

- S ayy Sy
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However, the conditional entropy is more complicated, but is expressible. There-
fore, we wrote Matlab code to calculate the mutual information, which is conjec-
tured to achieve capacity, when both the clueless senders act in a semi-uniform
manner and Alice acts in a totally uniform manner. Local exploration of nearby
points all yield lower mutual information values.

Table 1 tabulates the results of numerical calculations of capacities for dif-
ferent combinations of values of N and M using Matlab. We conjecture that
when Alice acts in a totally uniform manner (that is every Alice probability is
1/(M + 1)) that capacity is achieved when the p values are the same, and this
capacity is the lower bound for all capacities. The table gives capacity with p
fixed at 1/(M +1), which we determined numerically to be less than the capacity
for other values of p.

4 Discussion of Results

1.6

12

0.9172

\
\
=
S 06 |
g \
o]
© |
0.3} J .
\
\
0 ‘ ‘ ‘ ‘ L
0 0.25 0.33 05 075  0.87 1

p = P(Clueless not sending a message) ——>

Fig. 12. Capacity for N =1 to 4 clueless senders and M = 2 receivers

Figure 12 shows the capacity as a function of p with M = 2 receivers, for
N = 1,2,3,4 clueless senders. In all cases, the minimum capacity is realized
at p = 1/3, and the capacity at p = 1 is log3. As N increases, the capacity
decreases, with the most marked effects at p = 1/3.

In Figure 12, the capacity (of course under the semi-uniformity assumption
for C; which is in force throughout the report)) was determined numerically for
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Fig. 13. Capacity for N = 1,2, 4 clueless senders and M = 3 receivers

any choice of A. However, for the remaining plots, we applied the semi-uniformity
conjecture (that Alice is better off behaving semi-uniformly if that is what the
clueless senders do).

Thus, xg is the only free variable for Alice’s distribution in what follows.

Figure 13 shows the capacity as a function of p with M = 3 receivers, for
N =1,2,4 clueless senders. As expected, in all cases, the minimum capacity is
realized at p = 1/4, and the capacity at p = 1 is log4 = 2. As N increases,
the capacity decreases, with the most marked effects at p = 1/4. The minimum
capacity is greater when compared to corresponding value in the M = 2 case
(refer to plot 12).

The mutual information as a function of z¢ is shown in Figure 14 for M = 2
receivers and N = 1 clueless sender for p = 0.25,0.33,0.5,0.67. Here, note that
the curve with p = 0.33 has the smallest maximum value (capacity), and that
the value of xy at which that maximum occurs is zg = 0.33. The zg value that
maximizes the mutual information (i.e., for which capacity is reached) for the
other curves is not 0.33, but the mutual information at zo = 0.33 is not much
less than the capacity for any of the curves.

Figure 15 shows the mutual information curves for various values of zy as a
function of p, with N = 2 clueless senders and M = 2 receivers. Similarly, Figure
16 shows the mutual information curves for various values of xg as a function of
p, with N = 2 clueless senders and M = 3 receivers.

In the figure 15, note that the curve for 2o = 1/(M +1) = 1/3 has the largest
minimum mutual information, and also has the greatest mutual information at
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Fig. 14. Mutual information vs. o for N = 1 clueless sender and M = 2 receivers, for
p =0.25,0.33,0.5,0.67

Mutual Information

0 i i i
0 0.250.33 0.5 0.75 1

p=(1-q)——>

Fig. 15. Mutual information vs. p for N = 2 clueless senders and M = 2 receivers
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Fig. 16. Mutual information vs. p for N = 2 clueless senders and M = 3 receivers

the point where p = 1, i.e., when there is no noise since Clueless; is not sending
any messages. The capacity for various values of p is, in essence, the curve that
is the maximum at each p over all of the zy curves, and the lower bound on
capacity occurs at p=1/3 =1/(M +1).

Also observe that the zp = 0.33 curve has the highest value for p = .33,
but for other values of p, other values of zy have higher mutual information
(i.e., Alice has a strategy better than using o = 0.33). However, the mutual
information when xy = 0.33 is never much less than the capacity at any value
of p, so in the absence of information about the behavior of the clueless senders,
a good strategy for Alice is to just use zg = 1/(M + 1). These observations
are illustrated and expanded in the next two figures. Note the differences in
concavity between Figure 14 and Figure 15 . We will discuss concavity again
later in the report.

Figure 17 shows the optimal value for zg, i.e., the one that maximizes mu-
tual information and hence, achieves channel capacity, for N = 1,2,3,4 clueless
senders and M = 3 receivers as a function of p. A similar graph in [5] for
M = 1 receiver is symmetric about x¢o = 0.5, but for M > 1 the symmetry is
multidimensional, and the graph projected to the (p,z¢)-plane where the des-
tinations are uniformly distributed is not symmetric. However, note that the
optimum choice of zg is 1/(M + 1) both at p = 1/(M + 1) and at p = 1, that
is, when the clueless senders either create maximum noise or when they do not
transmit at all (no noise). As N increases, the optimum zq for other values of
p is further from 1/(M + 1). Also observe that Alice’s best strategy is to do
the opposite of what the clueless senders do, up to a point. If they are less
likely to send messages (p > 1/(M + 1)), then Alice should be more likely to
send messages (xg < 1/(M + 1)), whereas if Clueless; is more likely to send
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Fig. 17. Value of z¢ that maximizes mutual information for N = 1,2,3,4 clueless
senders and M = 3 receivers as a function of p

messages ((p < 1/(M + 1)), then Alice should be less likely to send messages
(xg > 1/(M +1)).

Figure 18 shows the degree to which the choice of xy = 1/(M +1) can be sub-
optimal, for N = 1,2, 3,4 clueless senders and M = 3 receivers. The plot shows
the mutual information for the given p and zy = 1/(M + 1), normalized by di-
viding by the capacity (maximum mutual information) at that same p. Hence, it
shows the degree to which a choice of g = 1/(M + 1) fails to achieve the maxi-
mum mutual information. For N = 2, it is never worse than 0.94 (numerically),
but for NV =4, its minimum is 0.88. The relationship of suboptimality for other
choices of M and N, or for other distributions, is not known.

In Figure 19, we show the lower bound on capacity of the channel as a function
of p for N = 1 clueless sender and various values of M receivers. Numerical
results show that this lower bound increases for all p as M increases, and the
lower bound on the capacity for a given M occurs at p = 1/(M + 1), which is
indicated by the dotted lines in the figure.

For Figure 20, we take the capacity at p = 1/(M + 1), which we found
numerically to minimize the capacity of the covert channel, and plot this lower
bound for capacity for many values of N and M. We retain the assumption
that ; = (1 —z)/(M + 1) for i = 1,2,..., M, that is, given the semi-uniform
distribution of transmissions to the receivers by the clueless senders, it is best
for Alice to do likewise. Along the surface where N = 0, we have the noiseless
channel, and the capacity is log(M + 1), which is also the upper bound for
capacity for all N and M. The values along the surface when M = 1 give us the
same values we derived in [5].
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Fig. 19. Capacity for N = 1 clueless sender and M =1 to 5 receivers
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Fig. 20. Capacity for N = 0 to 9 clueless senders and M =1 to 10.

5 Comments and Generalizations

We first note that the maximum capacity of this (covert) quasi-anonymous chan-
nel is log(M + 1) for M distinguishable receivers, and is achievable only if there
are no other senders (N = 0), or equivalently, if none of them ever send (p = 1),
i.e., when the channel is noiseless.

Here are some of the observations from the different cases considered, un-
der the semi-uniform assumption for the clueless senders and the semi-uniform
conjecture for Alice, followed by some generalizations.

1. The capacity C(p, N, M), as a function of the probability p that a clueless
sender remains silent, with N clueless senders and M receivers, is strictly
bounded below by C(ﬁ, N, M), and is achieved with o = 1/(M + 1).

2. The lower bound for capacity for a given number M of receivers decreases
as the number IV of clueless senders increases,

Clagm> N, M) > Clg7, N +1,M).

3. The lower bound for capacity for a given number N of clueless senders in-

creases as the number M of distinguishable receivers increases,

Clagm N, M +1) > O35, N, M).

These observations are intuitive, but we have not shown them to be true
numerically in the general case (we did for the case that M = 1 in [5]). It is
interesting to note that increasing the number of distinguishable receivers in-
creases the covert channel capacity, which in some sense decreases the (sender)
anonymity in the system (Alice has more room in which to express herself).
This is a bit contrary to the intuitive view of anonymity in Mix networks, where
more receivers tends to provide “greater anonymity.” In this light, we note that
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Danezis and Serjantov investigated the effects of multiple receivers in statisti-
cal attacks on anonymity networks [3]. They found that Alice having multiple
receivers greatly lowered a statistical attacker’s certainty of Alice’s receiver set.

While the graphs and numerical tests support that the “worst” thing the
clueless senders can do is to send (or not) with uniform probability distribution
over the R;, 71 =0,1,2,..., M, we have not proven this mathematically. Nor have
we proven that, under these conditions, the best Alice can do is to send (or not) to
each receiver R; with uniform probability, z; = 1/(M + 1) for i =0,1,2,..., M,
although the numerical computations support this. The proof in [5] of these
conjectures for the case where M = 1 relied, in part, on the symmetry about
xo = 0.5, which is not the case when M > 1, so another approach must be used.
However, we should still be able to use the concavity/convexity results from [5].
Note that our conjecture that the best that Alice can do is to send in a semi-
uniform manner, and the results illustrated in Figure 8, seem to be an extension
of the interesting results of [4].

6 Conclusions and Future Work

This report has taken a step towards tying the notion of capacity of a quasi-
anonymous channel associated with an anonymity network to the amount of
anonymity that the network provides. It explores the particular situation of a
simple type of timed Mix (it fires every tick) that also acts as an exit firewall.
Cases for varying numbers of distinguishable receivers and varying numbers of
senders were considered, resulting in the observations that more senders (not
surprisingly) decreases the covert channel capacity, while more receivers increases
it. The latter observation is intuitive to communication engineers, but may not
have occurred to many in the anonymity community, since the focus there is
often on sender anonymity.

As the entropy H of the probability distribution associated with a message
output from a Mix gives the effective size, 27, of the anonymity set, we wonder
if the capacity of the residual quasi-anonymous channel in an anonymity system
provides some measure of the effective size of the anonymity set for the system as
a whole. That is, using the covert channel capacity as a standard yardstick, can
we take the capacity of the covert channel for the observed transmission charac-
teristics of clueless senders, equate it with the capacity for a (possibly smaller)
set of clueless senders with maximum entropy (i.e., who introduce the maximum
amount of noise into the channel for Alice), and use the size of this latter set
as the effective number of clueless senders in the system. This is illustrated in
Figure 12, with the vertical dashed line showing that N = 4 clueless senders
that remain silent with probability p = 0.87 are in some sense equivalent to one
clueless sender that sends with p = 0.33.

The case in which the Mix itself injects dummy messages into the stream ran-
domly is not distinguishable from having an additional clueless sender. However,
if the Mix predicates its injection of dummy messages upon the activity of the
senders, then it can affect the channel matrix greatly, to the point of eliminating
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the covert channel entirely. We are also interested in the degree to which the
Mix can reduce the covert channel capacity (increase anonymity) with a limited
ability to inject dummy messages.

In future work we will analyze the situation where we have different (and
more realistic) distributions for the clueless senders. We are also interested in
different kinds of exit point Mix-firewalls, such as threshold Mixes, timed Mixes
(where the time quantum is long enough to allow more than one message per
sender to be sent before the Mix fires), timed-pool Mixes, and systems of Mixes.
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