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1. Introduction

Tra�c analysis in anonymizing network con�gurations can be used to open a covert

communication channel. Recently, Moskowitz et al. [2] have developed a mathematical model

(whose salient feature is given by equation (1.1) below) that describes the situation of oneway

messages passing from private Enclave1 to private Enclave2 in which each communication

is encrypted and passes through exit and entry mix �rewalls. Furthermore, there are n +

1 senders in Enclave1, and one of them called Alice is malicious. The other n clueless

transmitters are benign. Every sender may send at most one message per unit time t to

Enclave2. All messages from Enclave1 to Enclave2 pass through a public line that is subject

to eavesdropping by an eavesdropper called Eve who knows the value of n. The only action

Eve can take is to count the number of messages per t going from Enclave1 to Enclave2.

The n clueless transmitters all send their messages per t as independently and identically

distributed Bernoulli random variables with parameter q. Alice acts independently (through

ignorance of the n clueless senders) when deciding to send a message. Thus, Alice by sending

or not sending a message a�ects the number of messages that Eve counts. This in brief is

the covert channel.

A normalizing noise term S(n) is de�ned corresponding to the degree of anonymity

a�orded by the n clueless senders transmitting as fair coins (q = 1=2) which is the situation

when maximal anonymity occurs. For n = 1; 2; 3; : : : S(n) is shown in [2] to be given by

S(n) =
1

2n

nX
k=0

2
641
2

0
B@ n+ 1

k

1
CA ln

0
B@ n+ 1

k

1
CA�

0
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k

1
CA ln

0
B@ n

k

1
CA
3
75 ; (1:1)

and by employing Shannon's information theory the capacity is given by 1�S(n)= ln 2. More-

over, an important property of this model is that the capacity should decrease monotonically

to zero with increasing n.

For brevity in the sequel we de�ne T (n) � 2nS(n). The expression for T (n) is of interest

in its own right, since it is the di�erence of two divergent sums that contain products of

binomial coe�cients and their logarithms. Moreover, these types of sums appear not to be

readily found in the mathematical literature.
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In the present investigation we shall obtain in section 2 a simpler algebraic representa-

tion for T (n) which contains the sum
nX

k=0

0
B@ n

k

1
CA ln(k + 1) that is similar, for example, to a

particular sum involved in a representation for ln �(x + 1) deduced by Stirling for x > �1
(see [1, equation (5.47)]). We shall also derive two integral representations and two repre-

sentations involving integrals for S(n). Then in section 3 we give a detailed proof that S(n)

is monotonically increasing with increasing n. This property of S(n) alluded to above was

veri�ed numerically in [2] for n � 7750. Finally, in section 4, we show that S(n) ! ln 2 as

n!1. We record some consequences of the latter as well.

2. Reduction of S(n) to a simpler sum

Recall that T (n) = 2nS(n) where S(n) is given by equation (1.1). We shall show below

that

T (n) = 2n ln(n+ 1)�
nX

k=0

0
B@ n

k

1
CA ln(k + 1) (2:1)

and so S(n) may be written elegantly as

S(n) =
1

2n

nX
k=0

0
B@ n

k

1
CA ln

�
n + 1

k + 1

�
: (2:2)

To prove the latter we de�ne

�(n) �
nX

k=0

0
B@ n

k

1
CA ln

0
B@ n

k

1
CA ;

where the binomial coe�cient

0
B@ n

k

1
CA = n!=k!(n� k)! which we agree vanishes if k > n or if

k < 0. Thus

�(n) = lnn!
nX

k=0

0
B@ n

k

1
CA� nX

k=0

0
B@ n

k

1
CA ln k!�

nX
k=0

0
B@ n

k

1
CA ln(n� k)! : (2:3)
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The �rst sum equals 2n. By noting that

0
B@ n

k

1
CA =

0
B@ n

n� k

1
CA (2:4)

and reversing the order of summation (i.e. by letting k 7! n � k) in the third sum, we see

that the second and third sums in equation (2.3) are equal so that

�(n) = 2n lnn!� 2
nX

k=0

0
B@ n

k

1
CA ln k! (2:5a)

and so

�(n+ 1) = 2n+1 ln(n+ 1)!� 2
n+1X
k=0

0
B@ n+ 1

k

1
CA ln k! : (2:5b)

From equation (1.1) and the de�nitions of T (n) and �(n) it is evident that

T (n) =
1

2
�(n+ 1)� �(n)

and so by using equations (2.5) we have

T (n) = 2n ln(n+ 1) +
n+1X
k=0

2
642
0
B@ n

k

1
CA�

0
B@ n+ 1

k

1
CA
3
75 ln k! : (2:6)

Now observing that 0
B@ n+ 1

k

1
CA =

0
B@ n

k

1
CA+

0
B@ n

k � 1

1
CA (2:7)

equation (2.6) gives

T (n) = 2n ln(n+ 1) +
nX

k=0

0
B@ n

k

1
CA ln k!�

n+1X
k=1

0
B@ n

k � 1

1
CA ln k! :

Finally, since

n+1X
k=1

0
B@ n

k � 1

1
CA lnk! =

nX
k=0

0
B@ n

k

1
CA ln(k + 1)!

we obtain equation (2.1).
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Thus also

S(n) = ln(n + 1)� 1

2n

nX
k=0

0
B@ n

k

1
CA ln(k + 1) (2:8)

which shows that �S(n) is the di�erence of a divergent weighted sum of logarithms ln(k +

1) (since
nX

k=0

2�n

0
B@ n

k

1
CA = 1) and the montonically increasing logarithm ln(n + 1). This

observation brings to mind and is analogous to one of the many formulations for Euler's

constant  (cf. e.g. [1, equation (6.65)]) which is the limiting value as n !1 of the much

simpler di�erence of the divergent harmonic series
nX

k=1

1=k and ln(n+1). (However, we show

in section 4 that S(n) ! ln 2 as n ! 1.) We have already noted that series of the type

appearing in equation (2.1) appear in the literature in other contexts.

We conclude this section by deriving four integral representations for S(n). We start

with (see [3, section 2.6.17., equation (1)])

ln
�
n+ 1

k + 1

�
=
Z 1

0
(xn � xk)

dx

lnx
; (2:9)

where n > �1 and k > �1. Multiplying both sides of equation (2.9) by the binomial

coe�cient

0
B@ n

k

1
CA and summing over the index k gives

nX
k=0

0
B@ n

k

1
CA ln

�
n+ 1

k + 1

�
=
Z 1

0
[2nxn � (1 + x)n]

dx

lnx
:

Dividing each side of the latter equation by 2n and noting equation (2.2) we deduce for

n = 1; 2; 3 : : :

S(n) =
Z 1

0

�
xn �

�
1 + x

2

�n� dx

lnx
: (2:10a)

Now making the transformation x = e�t in the latter integral yields

S(n) =
Z
1

0
e�(n+1)t

" 
1 + et

2

!n

� 1

#
dt

t
: (2:10b)

However, letting n = 0 in equation (2.9) we may start with

ln(k + 1) =
Z 1

0
(xk � 1)

dx

lnx
:
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Multiplying the latter equation by

0
B@ n

k

1
CA and summing over k now gives

nX
k=0

0
B@ n

k

1
CA ln(k + 1) =

Z 1

0
[(1 + x)n � 2n]

dx

lnx

which upon dividing by 2n and noting equation (2.8) yields

S(n) = ln(n+ 1) +
Z 1

0

�
1�

�
1 + x

2

�n� dx

lnx
:

Upon making the transformation x = e�t in the integral this result can also be written as

S(n) = ln(n + 1) +
Z
1

0

" 
1 + e�t

2

!n

� 1

#
e�t

t
dt :

3. Monotonicity and boundedness of S(n)

We now prove that S(n) is increasing with increasing n � 1, i.e. S(n + 1) > S(n) for

n = 1; 2; 3; : : :.

By employing equation (2.8) we have

2n+1[S(n+ 1)� S(n)] = 2n+1 ln
�
n+ 2

n+ 1

�
+ 2

nX
k=0

0
B@ n

k

1
CA ln(k + 1)�

n+1X
k=0

0
B@ n+ 1

k

1
CA ln(k + 1) :

(3:1a)

Now utilizing equation (2.7)

n+1X
k=0

0
B@ n+ 1

k

1
CA ln(k + 1) =

nX
k=0

0
B@ n

k

1
CA ln(k + 1) +

n+1X
k=1

0
B@ n

k � 1

1
CA ln(k + 1) (3:1b)

and noting that
n+1X
k=1

0
B@ n

k � 1

1
CA ln(k + 1) =

nX
k=0

0
B@ n

k

1
CA ln(k + 2) (3:1c)
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we have from equations (3.1)

2n+1[S(n+ 1)� S(n)] = 2n+1 ln
�
n + 2

n + 1

�
�

nX
k=0

0
B@ n

k

1
CA ln

 
k + 2

k + 1

!
: (3:2)

There are two cases to consider: n odd and n even. Accordingly, letting n 7! 2n in

equation (3.2) gives for n = 1; 2; 3; : : :

22n+1[S(2n+ 1)� S(2n)] = 22n+1 ln
�
2n + 2

2n + 1

�
�

2nX
k=0

0
B@ 2n

k

1
CA ln

 
k + 2

k + 1

!
:

Since

0
B@ 2n

k

1
CA �

0
B@ 2n

n

1
CA where equality holds if and only if k = n we have

22n+1[S(2n+ 1)� S(2n)] > 22n+1 ln
�
2n+ 2

2n+ 1

�
�
0
B@ 2n

n

1
CA 2nX

k=0

ln

 
k + 2

k + 1

!
: (3:3)

The sum of logarithms in the latter inequality is equal to ln(n+1
n
) and it is easy to show that

0
B@ 2n

n

1
CA =

22np
�

�(1
2
+ n)

�(1 + n)
:

Thus de�ning for n = 1; 2; 3; : : :

�(n) � 1

2
p
�

�(1
2
+ n)

�(1 + n)
(3:4)

we can write inequality (3.3) as

S(2n+ 1)� S(2n) > ln
�
2n + 2

2n + 1

�
� �(n) ln

�
n + 1

n

�
: (3:5)

Now �(1) = 1=4 and it is easy to show that �(n+ 1) < �(n). Thus equation (3.5) gives

S(2n+ 1)� S(2n) > ln
�
2n+ 2

2n+ 1

�
� 1

4
ln
�
n+ 1

n

�

= ln

" 
n + 1

n+ 1=2

!�
n

n+ 1

�1=4#
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and so

S(2n+ 1)� S(2n) >
1

4
ln

"
n(n+ 1)3

(n+ 1=2)4

#
:

It is readily shown for n � 1 that n(n+ 1)3=(n+ 1=2)4 > 1 and so S(2n+ 1) > S(2n).

Next, letting n 7! 2n+ 1 in equation (3.2) gives for n = 0; 1; 2; : : :

22n+2[S(2n+ 2)� S(2n+ 1)] = 22n+2 ln
�
2n+ 3

2n+ 2

�
�

2n+1X
k=0

0
B@ 2n + 1

k

1
CA ln

 
k + 2

k + 1

!
:

Since

0
B@ 2n+ 1

k

1
CA �

0
B@ 2n+ 1

n

1
CA =

0
B@ 2n + 1

n+ 1

1
CA where equality holds if and only if either

k = n or k = n+ 1 we have

22n+2[S(2n+ 2)� S(2n+ 1)] � 22n+2 ln
�
2n+ 3

2n+ 2

�
�
0
B@ 2n+ 1

n

1
CA 2n+1X

k=0

ln

 
k + 2

k + 1

!
; (3:6)

where equality holds if and only if n = 0. The sum of logarithms in the latter inequality is

equal to ln(2n+3
2n+1

) and it is easy to show that

0
B@ 2n + 1

n

1
CA =

22n+1p
�

�(3
2
+ n)

�(2 + n)

so that noting equation (3.4)

0
B@ 2n+ 1

n

1
CA = 22n+2�(n+ 1) :

Thus we obtain from equation (3.6)

S(2n+ 2)� S(2n+ 1) � ln
�
2n+ 3

2n+ 2

�
� �(n+ 1) ln

�
2n+ 3

2n+ 1

�
;

where n = 0; 1; 2; : : :. Since �(1) = 1=4 and �(n+ 1) decreases with increasing n

S(2n+ 2)� S(2n+ 1) � ln
�
2n + 3

2n + 2

�
� 1

4
ln
�
2n + 3

2n + 1

�

=
1

4
ln

"
(2n+ 1)(2n+ 3)3

(2n+ 2)4

#
:
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Finally, setting m = 2n + 1 is is easy to show that m(m + 2)3=(m + 1)4 > 1 for m � 1 and

so S(2n+ 2) > S(2n+ 1) which completes the proof of the monotonicity of S(n).

We conclude this section by showing for n � 1 that

S(n) < 2(1� 2�n�1) < 2 : (3:7)

Assuming the latter, since S(n) is monotonically increasing and bounded we may de�ne

� � lim
n!1

S(n) ; (3:8)

where from inequalities (3.7) we must have 0 < � < 2.

To show inequalities (3.7), upon observing that

ln
�
n + 1

k + 1

�
<

n+ 1

k + 1
(k = 0; 1; : : : ; n) ;

we have from equation (2.2)

S(n) <
n + 1

2n

nX
k=0

0
B@ n

k

1
CA 1

k + 1
:

Since (see e.g. [3, section 4.2.2., equation (42)])

nX
k=0

0
B@ n

k

1
CA 1

k + 1
=

1

n+ 1
(2n+1 � 1) ;

it is evident that S(n) < 2� 2�n and we are done.

4. The limiting value of S(n) as n!1
From equation (2.2) we may write

S(n) = � 1

2n

nX
k=0

0
B@ n

k

1
CA ln

 
1� n� k

n + 1

!
:

Letting k 7! n� k and using equation (2.4) in this result then yields

S(n) = � 1

2n

nX
k=0

0
B@ n

k

1
CA ln

 
1� k

n + 1

!
: (4:1)
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Since for 0 � z < 1

ln(1� z) = �
1X
p=1

zp

p
(4:2)

setting z = k=(n+ 1) we have from equations (4.1) and (4.2)

S(n) =
1

2n

nX
k=0

0
B@ n

k

1
CA 1X

p=1

1

p

 
k

n + 1

!p

:

Formally interchanging the order of summation then gives

S(n) =
1

2n

1X
p=1

1

p

1

(n+ 1)p

nX
k=1

0
B@ n

k

1
CA kp ; (4:3)

where for integers p > 0

nX
k=1

0
B@ n

k

1
CA kp = 2n�p

0
B@ n

p

1
CA p! + 2n

p�1X
k=1

0
B@ n

k

1
CA��1

2

�k kX
`=0

(�1)`
0
B@ k

`

1
CA `p ; (4:4)

and it is understood that the latter second term vanishes when p = 1. Equation (4.4) is

derived ab initio by Schwatt (cf. [4, p. 84, equation (34)]) where here a misprint is now

corrected.

Since

0
B@ n

p

1
CA = n!=p!(n� p)! we have from equations (4.3) and (4.4)

S(n) =
1X
p=1

(1=2)p

p

Mp(n)

(n + 1)p
+
1X
p=1

1

p

Qp�1(n)

(n+ 1)p
; (4:5)

where we have de�ned

Mp(n) �
n!

(n� p)!
(4:6)

and

Qp�1(n) �
p�1X
k=1

0
B@ n

k

1
CA
�
�1
2

�k kX
`=0

(�1)`
0
B@ k

`

1
CA `p : (4:7)

Observing that the �rst and second p-summations in equation (4.5) will terminate respec-

tively when p > n and p � 1 > n, this result can only be valid as a divergent asymptotic

expansion for S(n) about n =1.
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However, it is easily seen from equation (4.6) that

Mp(n) = n(n� 1) : : : (n� (p� 1))

and so Mp(n) is a monic polynomial in n of degree p. Thus for each p > 0 it is evident that

Mp(n)

(n + 1)p
= 1 +O

�
1

n

�
(n!1) : (4:8a)

Moreover, from equation (4.7) it is also easily seen that Qp�1(n) is a polynomial in n of

degree p� 1. Let cp�1 be the coe�cient of np�1 in Qp�1(n). Then also from equation (4.7)

we have

cp�1 =
(�1=2)p�1
(p� 1)!

p�1X
`=0

(�1)`
0
B@ p� 1

`

1
CA `p :

Schwatt [4, p. 101, equation (196)] has shown for p � 1 that

p�1X
`=0

(�1)`
0
B@ p� 1

`

1
CA `p = (�1)p�11

2
(p� 1)p!

so that

cp�1 =
�
1

2

�p

p(p� 1) :

Thus we have
Qp�1(n)

(n+ 1)p
=
�
1

2

�p

p(p� 1)O
�
1

n

�
(n!1) (4:8b)

and by using equations (4.8) we have from equation (4.5) the asymptotic result

S(n) =
�
1 +O

�
1

n

�� 1X
p=1

(1=2)p

p
+O

�
1

n

� 1X
p=1

�
1

2

�p

(p� 1) (n!1) : (4:9)

Recalling equation (4.2) the �rst sum in equation (4.9) equals ln 2 and it is easily shown

that the second sum reduces to unity so that we can now write equation (4.9) as

S(n) =
�
1 +O

�
1

n

��
ln 2 +O

�
1

n

�
(n!1) :

Finally, since we have already shown in section 3 that lim
n!1

S(n) exists as a positive number

� < 2, it is evident from the latter result that � = ln 2.
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We end by recording two interesting corollaries that are obtained immediately from equa-

tions (2.10), namely

lim
n!1

Z 1

0

�
xn �

�
1 + x

2

�n� dx

lnx
= ln 2

and

lim
n!1

Z 1

0
e�(n+1)x

��
1 + ex

2

�n

� 1
�
dx

x
= ln 2 :

5. Conclusions

We have discussed how an important application in anonymity and covert channels leads

to the problem of deducing properties of the di�erence of sums containing products of bino-

mial coe�cients and their logarithms. Intuitively, the capacity of the covert channel should

decrease monotonically to zero as the number of transmitters increases, and the analysis

provided herein proves this.

References

1. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley,

Reading, 1989.

2. I.S. Moskowitz, R.E. Newman, D.P. Crepeau, A.R. Miller, Covert channels and anony-

mizing networks, Proceedings 2003 Workshop on Privacy in the Electronic Society, pp.

79-88, ACM Press, 2003.

3. A.P. Prudnikov, Yu. A. Brychkov, O.I. Marichev, Integral and Series, Vol. 1, Gordon

and Breach, New York, 1986.

4. I.J. Schwatt, An Introduction to the Operations with Series, 2nd edition, Chelsea, New

York, 1924.

12


