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ABSTRACT
Privacy is an important issue in data mining and
knowledge discovery. In this paper, we propose to use
the randomized response techniques to conduct the
data mining computation. Specifically, we present a
method to build naive Bayesian classifiers from the
disguised data. We conduct experiments to compare
the accuracy of our classifier with the one built from
the original undisguised data. Our results show that
although the data are disguised, our method can still
achieve fairly high accuracy.
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1 Introduction

Data mining has emerged as a means for identifying
patterns and trends from a large amount of data [7].
To conduct data mining computations, we need to col-
lect data first. Without privacy concerns, data can be
directly collected. However, because of privacy con-
cerns, some people might decide to selectively divulge
information, or give false information, or simply refuse
to disclose any information at all. A survey was con-
ducted in 1999 [3] to understand Internet users’ atti-
tudes towards privacy. The result shows 17% of re-
spondents are privacy fundamentalists, who are ex-
tremely concerned about any use of their data and
generally unwilling to provide their data, even when
privacy protection measures were in place. However,
56% of respondents are a pragmatic majority, who are
also concerned about data use, but are less concerned
than the fundamentalists; their concerns are often sig-
nificantly reduced by the presence of privacy protec-
tion measures. The remaining 27% are marginally con-
cerned and are generally willing to provide data under
almost any condition, although they often expressed a
mild general concern about privacy. According to this
survey, providing privacy protection measures is a key
to the success of data collection. How can we improve
the chance to collect more truthful data that are useful

for data mining while preserving users’ privacy? How
can users contribute their personal information with-
out compromising their privacy?

One way to achieve privacy is to use anonymous
techniques [1], which allow users to disclose their per-
sonal information without disclosing their identities.
The biggest problem of using anonymous techniques
is that there is no guarantee on the quality of the data
set. A malicious user (e.g., a competing company)
could send a great deal of random information to the
database and render the database useless, or a com-
pany could send a lot of made-up information to the
database with the goal of making their products the
most favorable ones. These potential attacks could all
render the database useless. If the communication is
really anonymous, it is difficult for the database owner
to control the quality of the data. To guarantee the
quality, it is important for the database owner to verify
the identities of the data contributors.

Another way to achieve privacy is to let each user
disguise or randomize their data, such that the data
collector cannot derive the truthful information about
an user’s private information. The challenge is how
to conduct data mining from the disguised data? To
address this challenge, we first propose the following
computing model: The model consists of a data collec-
tion step and a computation step. In the data collec-
tion step, each user utilizes certain techniques to dis-
guise his/her data, then sends the disguised data to the
central warehouse; the central warehouse should not
be able to find out any user’s actual data with prob-
abilities better than a pre-defined threshold. In the
computation step, the central warehouse constructs a
database using the disguised data, and conducts data
mining computations on this database. The goal of
the central warehouse is to derive useful information
(or knowledge) out of this disguised database. In this
paper, we particularly focus on a specific data min-
ing computation, the naive Bayesian (e.g., NB) based
classification [8]. The basic idea of NB classification
is to construct a NB network, which is a very sim-
ple Bayesian network with an assumption that every
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variable (feature) of the data is independent given the
class label, to conduct the classification.

We propose to use the Randomized Response tech-
niques to solve the privacy-preserving data mining
problem. The basic idea of randomized response is
to scramble the data in such a way that the central
warehouse cannot tell with probabilities better than
a pre-defined threshold whether the data from a cus-
tomer contain truthful information or false informa-
tion. Although information from each individual user
is scrambled, if the number of users is significantly
large, the aggregate information of these users can be
estimated with decent accuracy. Such property is use-
ful for naive Bayesian based classification since it is
based on aggregate values of a data set, rather than
individual data items.

The contributions of this paper are as follows:
(1) We have modified the naive Bayesian classification
algorithm [8] to make it work with data modified by
randomized response techniques, and implemented the
modified algorithm. (2) We then conducted a series of
experiments to measure the accuracy of our modified
naive Bayesian algorithm on randomized data. Our
results show that if we choose the appropriate random-
ization parameters, the accuracy we have achieved is
very close to the accuracy achieved using the original
naive Bayesian classification on the original data.

The rest of the paper is organized as follows: we
discuss related work in Section 2. In Section 3, we de-
scribe how to utilize multivariate randomized response
technique to build naive Bayesian classifier on random-
ized data. In Section 4, we describe our experimental
results. We give our conclusion in Section 5.

2 Related Work

Agrawal and Srikant proposed a scheme for privacy-
preserving data mining using random perturbation [2].
In their scheme, a random number is added to the
value of a sensitive attribute. For example, if xi is the
value of a sensitive attribute, xi + r, rather than xi,
will appear in the database, where r is a random value
drawn from some distribution. The paper shows that
if the random number is generated with some known
distribution (e.g., uniform or Gaussian distribution),
it is possible to recover the distribution of the values
of that sensitive attribute. Assuming independence of
the attributes, the paper then shows that a decision
tree classifier can be built with the knowledge of dis-
tribution of each attribute.

Rizvi and Haritsa presented a scheme called
MASK to mine associations with secrecy constraints
in [10]. Evfimievski et al. proposed an approach
to conduct privacy preserving association rule min-
ing based on randomization techniques [6]. Du and
Zhan [5] utilized randomized response technique for
decision tree classification.

There are currently two approaches to achieve
privacy-preserving data mining: one is the perturba-
tion approach which we had discussed in the above.
The other approach is to use Secure Multi-party Com-
putation (SMC) techniques [14]. Several SMC-based
privacy-preserving data mining schemes have been
proposed [15, 4, 9, 12]. These studies mainly focused
on two-party distributed computing, and each party
usually contributes a set of records. Although some of
the solutions can be extended to solve our problem (n
party problem), the performance is not desirable when
n becomes large.

3 Building Naive Bayesian Classifiers
Using Multivariate Randomized Re-
sponse Techniques

Randomized Response techniques were first introduced
by Warner [13] in 1965 as a technique to solve the
following survey problem: to estimate the percentage
of people in a population that has attribute A, queries
are sent to a group of people. Since the attribute A
is related to some confidential aspects of human life,
respondents may decide not to reply at all or to reply
with incorrect answers.

To enhance the level of cooperation, instead of
asking each respondent whether he/she has attribute
A, the interviewer asks each respondent two related
questions, the answers to which are opposite to each
other [13]. For example, the questions could be like the
following. If the statement is correct, the respondent
answers “yes”; otherwise he/she answers “no”.

1. I have the sensitive attribute A.

2. I do not have the sensitive attribute A.

Respondents use a randomizing device to decide
which question to answer, without letting the inter-
viewer know which question is answered. The ran-
domizing device is designed in such a way that the
probability of choosing the first question is θ, and the
probability of choosing the second question is 1−θ. Al-
though the interviewer learns the responses (e.g., “yes”
or “no”), he/she does not know which question was
answered by the respondents. Thus the respondents’
privacy is preserved. Since the interviewer’s interest is
to get the answer to the first question, and the answer
to the second question is exactly the opposite to the
answer for the first one, if the respondent chooses to
answer the first question, we say that he/she is telling
the truth; if the respondent chooses to answer the sec-
ond question, we say that he/she is telling a lie.

To estimate the percentage of people who has the
attribute A, we have

P∗(A = yes) = P (A = yes) · θ + P (A = no) · (1 − θ)

P
∗
(A = no) = P (A = no) · θ + P (A = yes) · (1 − θ),



where P ∗(A = yes) (resp. P ∗(A = no)) is the
proportion of the “yes” (resp. “no”) responses ob-
tained from the survey data, and P (A = yes) (resp.
P (A = no)) is the estimated proportion of the “yes”
(resp. “no”) responses to the sensitive questions. Get-
ting P (A = yes) and P (A = no) is the goal of the
survey. By solving the above equations, we can get
P (A = yes) and P (A = no) if θ 6= 1

2 .
The randomized response technique discussed

above considers only one attribute. However, in data
mining, data sets usually consist of multiple attributes;
finding the relationship among these attributes is one
of the major goals for data mining. Therefore, we need
the randomized response techniques that can han-
dle multiple attributes while supporting various data
mining computations. Work has been proposed to
deal with surveys that contain multiple questions [11].
However, their solutions can only handle very low di-
mensional situation (e.g., dimension = 2), and cannot
be extended to solve data mining problems, in which
the number of dimensions is usually high. We have de-
veloped a multivariate randomized response technique
(MRR) to deal with multiple attributes.

3.1 Notations

In this work, we assume data are binary, but the tech-
niques can be extended to categorical data. Suppose
there are N attributes (A1, . . ., AN ) in a data set.
Let E represent any logical expression based on those
attributes (e.g., E = (A1 = 1) ∧ (A2 = 0)); let E
denote the logical expression that reverses the 1’s in
E to 0’s and 0’s to 1’s; we call E the opposite of
E. For example, for the E in the previous example,
E = (A1 = 0) ∧ (A2 = 1).

Let P ∗(E) be the proportion of the records in the
whole disguised data set that satisfy E = true. Let
P (E) be the proportion of the records in the whole
undisguised data set that satisfy E = true (the undis-
guised data set contains the true data, but it does not
exist). P ∗(E) can be observed from the disguised data,
but P (E), the actual proportion that we are interested
in, cannot be observed from the disguised data because
the undisguised data set is not available to anybody;
we have to estimate P (E). The goal of MRR is to find
a way to estimate P (E) from P ∗(E).

In our multivariate scheme, we also divide each
expression E to multiple sub-expressions. For exam-
ple, in a two-group scheme, we write E = E1E2, where
Ei contains only the attributes in the group i.

3.2 One-Group Scheme

In the one-group scheme, all the attributes are put in
the same group, and all the attributes are either re-
versed together or keeping the same values. In other
words, when sending the private data to the central

database, users either tell the truth about all their an-
swers to the sensitive questions or tell the lie about all
their answers. The probability for the first event is θ,
and the probability for the second event is 1−θ. For ex-
ample, assume an user’s truthful values for attributes
A1, A2, and A3 are 110. The user generates a random
number from 0 to 1; if the number is less than θ, he/she
sends 110 to the data collector (i.e., telling the truth);
if the number is bigger than θ, he/she sends 001 to
the data collector (i.e., telling lies about all the ques-
tions). Because the data collector does not know the
random number generated by users, the data collec-
tor cannot know whether data provider tells the truth
or a lie. To simplify our presentation, we use P (11)
to represent P (A1 = 1 ∧ A2 = 1), P (00) to represent
P (A1 = 0∧A2 = 0) (“∧” is the logical and operator.).

Because the contributions to P ∗(11) and P ∗(00)
partially come from P (11), and partially come from
P (00), we can derive the following equations:

P∗(11) = P (11) · θ + P (00) · (1 − θ)
P∗(00) = P (00) · θ + P (11) · (1 − θ)

(1)

By solving the above equations, we can get P (11),

the information needed to build a naive Bayesian clas-
sifier. The general model for the one-group scheme is
described in the following:

P∗(E) = P (E) · θ + P (E) · (1 − θ)

P∗(E) = P (E) · θ + P (E) · (1 − θ)
(2)

Using the matrix form, let M1 denote the coefficiency
matrix of the above equations, and let p = θ and q =
(1 − θ), then

(
P∗(E)

P∗(E)

)
= M1

(
P (E)

P (E)

)
, (3)

where
M1 =

[
p q
q p

]

3.3 Two-Group Scheme

In the one-group scheme, if the interviewer somehow
knows whether the respondents tell a truth or a lie for
one attribute, he/she can immediately obtain all the
true values of a respondent’s response for all other at-
tributes. To improve the privacy level of data, data
providers divide all the attributes into two groups (all
the data providers should group the attributes in the
same ways, e.g., one user lets attribute A1 and A2 to
be in the group 1, then other users also let attribute
A1 and A2 to be in the group 1). They then apply the
randomized response techniques for each group inde-
pendently. For example, the users can tell the truth
for one group while telling the lie for the other group.
With this scheme, even if the interviewers know infor-
mation about one group, they will not be able to derive
the information for the other group because they are
disguised independently.



To show how to estimate P (E1E2), we look at
all the contributions to P ∗(E1E2). Parts that con-
tribute to P ∗(E1E2) include not only the probability
of the event that users tell the truth about all the an-
swers for both groups (i.e., P (E1E2)), but also prob-
abilities of all other events (i.e., P (E1E2), P (E1E2),
and P (E1E2)). In terms of θ, P (E1E2), P (E1E2),
P (E1E2) and P (E1E2) are respectively, θ2, θ(1 − θ),
(1 − θ)θ and (1 − θ)2. We then have the following
equation:

P∗(E1E2)=P (E1E2) · θ2+P (E1E2) · θ(1 − θ)+

P (E1E2) · θ(1 − θ)+P (E1E2) · (1 − θ)2

There are four unknown variables in the above equa-
tion (P (E1E2), P (E1E2), P (E1E2), P (E1E2)). To
solve the above equation, we need three more equa-
tions. We can derive them using the similar method.
The final equations are described in the following:




P∗(E1E2)

P∗(E1E2)

P∗(E1E2)

P∗(E1E2)


 = M2 ·




P (E1E2)

P (E1E2)

P (E1E2)

P (E1E2)


 , (4)

where M2 is the coefficiency matrix, and let p = θ
and q = 1 − θ, then,

M2 =




p2 pq pq q2

pq p2 q2 pq
pq q2 p2 pq
q2 pq pq p2


 (5)

Since two-group scheme is sufficient for naive Bayesian
classification computations, we will not show the esti-
mation model for the cases where the group number is
greater than two.

3.4 Building Naive Bayesian Classifiers

Classification is one of the forms of data analysis that
can be used to extract models describing important
data classes or to predict future data. It has been stud-
ied extensively by the community in machine learning,
expert system, and statistics as a possible solution to
the knowledge discovery problem. Classification is a
two-step process. First, a model is built given the in-
put of training data set which is composed of data
tuples described by attributes. Each tuple is assumed
to belong to a predefined class described by one of the
attributes, called the class label attribute. Second,
the predictive accuracy of the model (or classifier) is
estimated. A test set of class-labeled samples is usu-
ally applied to the model. For each test sample, the
known class label is compared with predictive result of
the model.

The naive Bayesian classifier is one of the most
successful algorithms on many classification domains.
Despite of its simplicity, it is shown to be competitive
with other complex approaches especially in text cat-
egorization and content based filtering. Under a con-
ditional independence assumption, i.e., P (Ai, Aj |C)
= P (Ai|C)P (Aj |C), for 1 ≤ i 6= j ≤ n, the naive
Bayesian classifier classifies a new data x into the
class with the largest posterior probability as shown

in Eq. 6, where Ai and Aj represent the attributes
or variable, C is the class variable, n is the number
of the attributes. Further, this posterior classification
rule can be transformed into joint probability classifi-
cation rule, since P (A1, A2, · · · , An) for a given data
is a constant with regards to C. Finally, combining
the independence assumption, the classification rule is
changed into a decomposable form.

c = argmaxCi
P (Ci|A1, A2, · · · , An)

= argmaxCi

P (Ci)∗P(A1,A2,···,An|Ci)
P(A1,A2,···,An)

= argmaxCi
P (Ci) ∗ P (A1, A2, · · · , An|Ci)

= argmaxCi
P (Ci)Π

n
j=1P (Aj |Ci)

= argmaxCi
P (Ci)Π

n
j=1

P (Aj,Ci)
P(Ci)

(6)

To build the NB classifier, we need to compute
P (Ci) and P (Aj , Ci). Without loss of generality, we
assume the database only contains binary values, and
we will show how to compute these terms based on
disguised training datasets.

Let E be a logical expression based on attributes.
Let P (E) be the proportion of the records in the undis-
guised data set (the true but non-existing data set)
that satisfy E = true. Because of the disguise, P (E)
cannot be observed directly from the disguised data,
and it has to be estimated. Let P ∗(E) be the propor-
tion of the records in the disguised data set that satisfy
E = true. P ∗(E) can be computed directly from the
disguised data.

To compute P (Ci), we can utilize one-group
model (Eq. 2) with E = Ci and E = Ci, and P ∗(E)
and P ∗(E) can be computed directly from the (whole)
disguised data set. Therefore, by solving the above
equations (when θ 6= 1

2 ), we can get P (E) which is
P (Ci) in this case.

To compute P (Aj , Ci), we need to know whether
Aj and Ci belong to the same group. If they come
from the same group, we can still use estimation model
(Eq. 2) with E = (Aj ∧ Ci) and E = (Aj ∧ Ci).
However, if Aj and Ci belong to different groups, we
need to utilize the estimation model for the two-group
scheme (Eq. 4) with E1 = Aj , E1 = Aj , E2 = Ci and
E2 = Ci. Once we obtain P (Aj , Ci) and P (Ci), a NB
classifier can be constructed.

3.5 Testing

Conducting the testing is straightforward when data
are not disguised, but it is a non-trivial task when the
testing data set is disguised. Imagine, when we choose
a record from the testing data set, compute a predicted
class label using the naive Bayesian classifier, and find
out that the predicated label does not match with the
record’s actual label, can we say this record fails the
testing? If the record is a true one, we can make that
conclusion, but if the record is a false one (due to the
randomization), we cannot. How can we compute the
accuracy score of the NB classifier?



We also use the randomized response techniques
to compute the accuracy score. For simplicity, we only
describe how to conduct testing using the two-group
scheme (since one-group is a special case for two-group
scheme). We use an example to illustrate how we com-
pute the accuracy score. Assume the number of at-
tributes is 2, and the probability θ = 0.8. To test a
record (A1 = 1, A2 = 0) (denoted by 10), with A1 be-
longing to group 1 and A2 belonging to group 2, we
feed 10, 11, 00, 01 to the classifier. We know one of the
class-label prediction result is true, but don’t exactly
know which one. However, with enough testing data,
we can estimate the total accuracy score, even though
we do not know which test case produces the correct
prediction result.

Using the (disguised) testing data set S = S1S2,
we construct other data sets S1S2, S1S2, S1S2, by re-
versing the corresponding values in S1 and S2 (change
0 to 1 and 1 to 0). Note that each record in Si (for
i ∈ [1, 2]) is the opposite of the corresponding record
in Si. We say that Si is the opposite of the data set
Si. Similarly, we define Ui as the original undisguised
testing data set, and Ui as the opposite of Ui.

Let P ∗(cc) be the proportion of correct predic-
tions from testing data set S1S2, P ∗(cc) be the propor-
tion of correct predictions from testing data set S1S2,
· · ·, P ∗(cc) be the proportion of correct predictions
from testing data set S1S2. Similarly, let P (cc) be
the proportion of correct predictions from the original
undisguised data set U1U2, P (cc) be the proportion
of correct predictions from U1U2, · · ·, P (cc) be the
proportion of correct predictions from U1U2. P (cc) is
what we want to estimate.

Because P ∗(cc), P ∗(cc), · · · and P ∗(cc) consist
of contributions from P (cc), P (cc), · · · and P (cc), we
have the following formula:




P∗(cc)
P∗(cc)
P∗(cc)
P∗(cc)


 = M2 ·




P (cc)
P (cc)
P (cc)
P (cc)


 (7)

where M2 is defined in Eq.(4). P ∗(cc), P ∗(cc), P ∗(cc)
and P ∗(cc) can be obtained from testing data set S1S2,
S1S2, S1S2 and S1S2. By solving the above formula,
we can get P (cc), the accuracy score of testing.

4 Experimental Results

To evaluate the effectiveness of our multivariate ran-
domized response techniques on naive Bayesian clas-
sifier, we compare the classification accuracy of our
multivariate scheme with the original accuracy, which
is defined as the accuracy of the classifier induced from
the original data.

4.1 Data Setup

We conduct experiments on two real life data sets.
We obtain the data sets from the UCI Machine Learn-

ing Repository(ftp://ftp.ics.uci.edu/pub/machine-
learning-databases). The first dataset is called Adult.
It contains 48842 instances with 14 attributes (6
continuous and 8 nominal) and a label describing the
salary level. Prediction task is to determine whether
a person’s income exceeds 50k/year based on census
data. We used first 10,000 instances in our experi-
ment. The second data set is called Breast-Cancer. It
has 699 instances with 10 attributes. Prediction task
is to decide whether a person is benign or malignant.

We modified the naive Bayesian classification al-
gorithm to handle the randomized data based on our
proposed methods. We run this modified algorithm
on the randomized data and obtain a classifier. We
also apply the naive Bayesian classification algorithm
to the original data set and obtain the other classi-
fier. We then applied the same testing data to both
classifiers. Our goal is to compare the classification ac-
curacy of these two classifier. Obviously we want the
accuracy of the classifier built based on our method to
be close to the accuracy of the classifier built from the
original algorithm.

4.2 Experimental Steps

Our experiments consist of the following steps:

Preprocessing: Since we assume that the data set
contains only binary data, we first transformed the
original non-binary data to the binary. We split the
value of each attribute from the median point of the
range of the attribute. After preprocessing, we divided
the data sets into a training data set D and a testing
data set B. Note that B will be used for comparing
our results with the benchmark results.

Benchmark: We use D and the original NB classi-
fication algorithm to build a classifier TD; we use the
data set B to test the classifier, and get an accuracy
score. We call this score the original accuracy (or the
benchmark score).

θ Selection: For θ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.51,
0.55 0.6, 0.7, 0.8, 0.9, and 1.0, we conduct the following
4 steps:

1. Randomization: We create a disguised data set
G. For each record in the training data set D, we
generate a random number r from 0 to 1 using
uniform distribution. If r ≤ θ, we copy the record
to G without any change; if r > θ, we copy the
opposite of the record to G - each attribute value
of the record that we put into G is exactly the
opposite of the value in the original record. We
perform this randomization step for all the records
in the training data set D and generate the new
data set G.
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2. Classifier Construction: We use the data set G
and our modified NB classification algorithm to
build a naive Bayesian classifier TG.

3. Testing: We use the data set B to test TG, and
we get an accuracy score S.

4. Repetition: We repeat steps 1-3 for 100 times,
and get S1, . . . , S100. We then compute the mean
and the variance of these 100 accuracy scores.

4.3 The Result Analysis

4.3.1 The Analysis of Mean

Fig. 1(a) and 2(a) shows the mean values of the ac-
curacy scores for Adult and Breast-Cancer data sets
respectively. We can see from the figures that when
θ = 1 and θ = 0, the results are exactly the same as
the results when the original classification algorithm is
applied. This is because when θ = 1, the randomized
data sets are exactly the same as the original data set

D; when θ = 0, the randomized data sets are exactly
the opposite of the original data set D. In both cases,
our algorithm produces the accurate results (compar-
ing to the original algorithm), but privacy is not pre-
served in either case because an adversary can know
the real values of all the records provided that he/she
knows the θ value. When θ moves from 1 and 0 towards
0.5, the mean of accuracy has the trend of decreasing.
When θ is around 0.5, the mean deviates a lot from
the original accuracy score.

4.3.2 The Analysis of Variance

Fig. 1(b) and 2(b) shows the variances of the accuracy
scores for Adult and Breast-Cancer data sets respec-
tively. When θ moves from 1 and 0 towards 0.5, the de-
gree of randomness in the disguised data is increased,
the variance of the estimation used in our method be-
comes large. When the randomization level θ is differ-
ent, the variance will be different. When θ is near 0.5,
the randomization level is much higher and true infor-



mation about the original data set is better disguised,
in other words, more information is lost; therefore the
variance is much larger than the case when θ is not
around 0.5. This is actually what we have predicted.
We use a simple example to illustrate why this hap-
pens. Assume we have just one attribute, with 90% of
1’s and 10% of 0’s. If we choose θ = 0.5, according to
our randomization scheme, the disguised data set will
contain 90%∗0.5+10%∗0.5 = 50% of 1’s and another
50% of 0’s. If we change the distribution to 10% of 1’s
and 90% of 0’s, we get the same results. This means
when θ = 0.5, information about the data distribution
is lost. That is why when θ closes to 0.5 the accuracy
becomes very low (Note that 0.5 is a very low accuracy,
because if one just randomly guesses the class label, 1
out 2 guesses will be correct if we have just two class
labels. Therefore even the random guess can achieve
accuracy of 0.5.), and the variance becomes very large.

4.3.3 Summary

Our results on the two real life data sets indicate that
the multivariate randomized response techniques can
be utilized for privacy-preserving naive Bayesian clas-
sification. When θ is 0 or 1, which provides all the
true information, the accuracy of the classifier is the
highest and the privacy level of the data is the lowest.
When θ is away from 0 (or 1) and approaches to 0.5,
the accuracy of the classifier decreases and the privacy
level of the data increases. The accuracy is depen-
dent on the recoverability of the original data from the
randomized data. The empirical results confirm that
recoverability and privacy are complementary goals,
and that research presented here allows a quantitative
evaluation of the trade-offs between the two, e.g., if
the recoverability of the original data is 20%, privacy
will be at most 80%.

When θ = 0.5, the related model cannot be ap-
plied, and other techniques such as randomized re-
sponse techniques using the Unrelated-Question model
may be employed. Note that In our experiment, we
didn’t randomize the class label and therefore only
one-group scheme is implemented.

5 Concluding Remarks

In this paper, we have presented a method to build
naive Bayesian classifiers using multivariate random-
ized response technique. The experimental results
show that when we select the randomization parameter
θ from [0.6, 1] and [0, 0.4], we can get fairly accurate
classifiers comparing to the classifiers built from the
undisguised data. In our future work, We will apply
our techniques to solve other data mining problems
(i.e., association rule mining) and extend our solution
to deal with the cases where data type is not binary.
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