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ABSTRACT
This paper describes a compositional proof strategy for verifying
properties of requirements specifications. The proof strategy, which
may be applied using either a model checker or a theorem prover,
uses known state invariants to prove state and transition invari-
ants. Two proof rules are presented: a standard incremental proof
rule analogous to Manna and Pnueli’s incremental proof rule and
a compositional proof rule. The advantage of applying the com-
positional rule is that it decomposes a large verification problem
into smaller problems which often can be solved more efficiently
than the larger problem. The steps needed to implement the com-
positional rule are described, and the results of applying the proof
strategy to two examples, a simple cruise control system and a real-
world Navy system, are presented. In the Navy example, composi-
tional verification using either theorem proving or model checking
was three times faster than verification based on the standard incre-
mental (noncompositional) rule. In addition to the two above rules
for proving invariants, a new compositional proof rule is presented
for circular assume-guarantee proofs of invariants. While in prin-
ciple the strategy and rules described for proving invariants may be
applied to any state-based specification with parallel composition
of components, the specifications in the paper are expressed in the
SCR (Software Cost Reduction) tabular notation, the auxiliary in-
variants used in the proofs are automatically generated invariants,
and the verification is supported by the SCR tools.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: languages, methodologies,
tools; D.2.4 [Software/Program Verification]: formal methods,
model checking

General Terms
Documentation, Security, Verification

Keywords
requirements specification, formal methods, compositional verifi-
cation, invariants, software tools, model checking, theorem proving

1. INTRODUCTION
A challenging problem in applying formal techniques in soft-

ware development is how to demonstrate that the large require-
ments specifications associated with most practical systems satisfy
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critical properties. On the one hand, the users of model checking
technology [12] must overcome the “state explosion problem,” i.e.,
how to exhaustively search, either explicitly or implicitly, the large
state spaces of practical system specifications. On the other hand,
while theorem provers, such as PVS [36], can handle large, even in-
finite state spaces, they lack automation for formulating and prov-
ing the inductive invariants often necessary to complete a proof.
Typically, applying a theorem prover requires user ingenuity to for-
mulate the needed invariants, theorem proving skills, and detailed
knowledge of a particular prover.

This paper makes two contributions to verifying system and soft-
ware requirements specifications. The first contribution is a compo-
sitional proof method for verifying invariant properties of require-
ments specifications. This method decomposes a large verification
problem into smaller problems which often can be solved more ef-
ficiently than the larger problem. Based on a mathematically sound
foundation, the method may be applied to state machine models
with parallel composition, e.g., LUSTRE [14],RSML�e [10],
Reactive Modules [3], and SCR (Software Cost Reduction) [15].
In addition, the method may in large part be automated. Inspired
by a general compositional proof rule of McMillan [30], the sec-
ond contribution is a compositional proof rule for circular assume-
guarantee proofs of two special classes of invariants. These two
classes of invariants—state and transition invariants—are defined
in Section 2.2.

This paper shows how our compositional proof strategy may be
applied using the SCR method and tools [19, 18, 17] in conjunction
with either a model checker or a theorem prover. In the examples in
the paper, the required system behavior is specified in the SCR tab-
ular notation and the system properties in a restricted form of first-
order logic. The examples use state invariants automatically gen-
erated from an SCR specification. The invariants were constructed
by applying the algorithms described in [21, 22]. The verification
tools used in our experiments include a theorem prover called Salsa
[8], which applies a decision procedure combining a BDD algo-
rithm and a linear integer constraint solver, the symbolic model
checker SMV [28], and the explicit state model checker SPIN [20].
Salsa has been customized to prove properties of SCR requirements
specifications. To use SMV (and SPIN), SCR specifications were
translated into the SMV language (and Promela), using the meth-
ods described in [7].

To provide a basis for illustrating our proof strategy, Section 2 in-
troduces a simple cruise control system, an SCR specification of the
system, a set of state invariants automatically generated from the
SCR specification, and a set of properties we wish to prove about
the specification. Section 3 describes two classes of proof rules
that use invariants in verification, two versions of the standard in-
cremental proof rule introduced by Manna and Pnueli in 1995 [27]



and two compositional proof rules whose goal is to improve the
efficiency of verification. It also illustrates the application of these
proof rules to the cruise control example. Section 4 presents a more
general circular assume-guarantee rule and shows that the compo-
sitional rule is a special case, while Section 5 describes the results
of using Salsa, SMV, and SPIN to apply the proof rules to the ver-
ificiation of a practical Navy system. Finally, Section 6 discusses
related work, and Section 7 presents some conclusions and future
plans.

2. BACKGROUND: A SIMPLE EXAMPLE

2.1 Specifying Cruise Control in SCR
To illustrate our proof strategy, we consider a simplified automo-

bile cruise control system derived from [23]. This Cruise Control
System (CCS) monitors several quantities in its environment, e.g.,
the position of the cruise control lever and the automobile’s speed,
and uses this information to control a throttle. If the ignition is on,
the engine running, and the brake off, the driver enters cruise con-
trol mode by moving the lever to theconst position. In cruise con-
trol mode, the automobile’s speed determines whether the throttle
accelerates or decelerates the automobile or maintains the current
speed. The driver overrides cruise control by engaging the brake,
resumes cruise control by moving the lever toresume, and exits
cruise control by moving the lever tooff.

Figure 1: Specifying Cruise Control in SCR

Figure 1 shows how SCR state variables can be used to spec-
ify the CCS requirements. The monitored (or input) variables,
mIgnOn, mEngRunning, mSpeed, mBrake, andmLever, represent
the state of the automobile’s ignition and engine, the automobile’s
speed, and the positions of the cruise control lever and the brake.
The distinguished monitored variabletime indicates time passage.
The controlled (or output) variablecThrottle represents the state
of the throttle. The CCS specification contains two auxiliary vari-
ables, a mode classmcCruise and a termtDesiredSpeed, which
capture state history and make the specification more concise. We
refer to the auxiliary and controlled variables in an SCR specifica-
tion as thedependent variables. In SCR, the value of each depen-
dent variable is defined by a function in a tabular format. See Ap-
pendix A for an overview of the SCR requirements model, a review
of the SCR tabular notation and table types, and three examples of
SCR tables. Each of the three tables describes a function. These
functions define the values of the three dependent variables in the
SCR specification of CCS, namely,tDesiredSpeed, mcCruise,
andcThrottle.

For technical reasons, DUR, the time duration operator of SCR,
was abstracted from the CCS specification before verification was
applied. (See Appendix A for an example of the DUR operator.)
An important point is that our compositional strategy applies even
when earlier abstractions have already been performed on the spec-
ification. For example,slicing of the SCR specification [17, 7]
(which removes variables that do not affect the validity of the can-
didate invariant) is automatically performed by Salsa before verifi-
cation is applied.

2.2 Invariants of the CCS Specification
We define a system� as a state machine� = (S;�; �), where

S is the set of states,� : S ! boolean is the initial state predicate,
and� : S � S ! boolean is the next-state predicate. Associated
with � is a setRF = fr1; r2; : : : ; rng of state variables (i.e.,
monitored and dependent variables) and a functionTY which maps
each state variable to its set of legal values. Astates in S is a
function that maps each variable inRF to its value; i.e., for all
r 2 RF; s(r) 2 TY (r). In SCR specifications, two classes of
properties are of interest, one-state properties, predicates defined
on a single state, and two-state properties, predicates defined on
state pairs. Given a system�, we define astate invariantas a
one-state property that holds in every reachable state of� and a
transition invariantas a two-state property that holds in adjacent
pairs of reachable states in�.

We have designed two algorithms [21, 22] for constructing state
invariants from the tables defining the dependent variables in an
SCR specification. Suppose dependent variabler has values in a fi-
nite setfv1; v2; :::; vng. If r’s value is defined by a mode transition
table or an event table, two types of tables in SCR specifications,
then for eachvi the algorithms generate invariants of the form

(r = vi) ) Ci; (1)

whereCi is a predicate over the variables in� on whichr depends.
Invariant generation from SCR tables is based on the following in-
tuitive result: In an SCR specification,(r = vi)) Ci is an invari-
ant if 1)Ci is always true whenr’s value changes tovi, and 2) an
event falsifyingCi unconditionally causesr to have a value other
thanvi. Since stronger invariants may be computed with knowl-
edge of previously computed invariants, the full algorithms repeat
the computations of the invariants until a fixpoint is reached.

The current implementation of the SCR invariant generator ap-
plies our algorithms to both mode transition tables and event ta-
bles. Figure 2 lists four state invariants, I1-I4, of the SCR speci-
fication of CCS that our invariant generator constructed from the
mode transition table for the mode classmcCruise (see Table 2 in
Appendix A). State invariants constructed from a mode transition
table are calledmode invariants.

2.3 Properties of the CCS
The Assertion Dictionary in Figure 3 lists eight properties we

want to prove about the CCS specification: A6, a two-state prop-
erty, and seven one-state properties. The assertions are expressed in
the same notation as that used in the SCR tables with the addition
of “=>” for impliesand “<=>” for iff. In Assertion A6, the expres-
sion “@T(mEngRunning)” denotes an event indicating a change in
the value of the booleanmEngRunning from false in the old state
to true in the new state. Also in A6, the expressioncThrottle0

represents the value ofcThrottle in the new state.

3. PROVING INVARIANTS: TWO RULES
This section describes four proof rules: two standard incremental

proof rules and two compositional proof rules. These rules use
known state invariants to prove new state and transition invariants.
The section also enumerates the steps of our compositional proof
method and illustrates the application of the proof rules by using
them to verify properties of the CCS.

3.1 A Standard Proof Strategy
In many cases, properties such as those listed in Figure 3 cannot

be proven directly from the specification. To complete the proof
of such properties, one or more auxiliary invariants are usually



Name Generated Invariant Description

I1 mcCruise = Off ) NOT mIgnOn In Off mode, the ignition is off.

I2 mcCruise = Inactive ) mIgnOn In Inactive mode, the ignition is on.

I3 mcCruise = Cruise ) mIgnOn In Cruise mode, the ignition is on,
AND mEngRunning AND NOT mBrake the engine is running, the brake is
AND mLever 6= off off, and the lever is not off.

I4 mcCruise = Override In Override mode, the ignition is on
) mIgnOn AND mEngRunning and the engine is running

Figure 2: Automatically generated invariants for CCS
.

Figure 3: CCS assertions.

needed. A variant of a well-known strategy for using an invari-
ant p to prove that propertyq is invariant is a proof rule, which
we call the Basic Incremental Proof (BIP) Rule. Given a system
� = (S;�; �), the setInv(�) of state and transition invariants of
�, and two one-state properties,p andq, defined over the variables
of �, the Basic Incremental Proof Rule is defined by:

p 2 Inv(�), (p ^�)) q, (q ^ p ^ p0 ^ �)) q0

q 2 Inv(�)

In the right-most premise of the BIP rule, an unprimed property,
e.g.,q, denotes the property in the old state, and a primed prop-
erty, e.g.,q0, denotes the property in the new state. The BIP proof
rule above is slightly better than the incremental rule that Manna
and Pnueli derive from their proof rule SV-PSV [27] because one
can prove more with this rule than with their rule. A similar rule
for proving that a two-state propertŷq is invariant, the Modified
Incremental Proof (MIP) Rule, is defined by:

p 2 Inv(�), (p ^ p0 ^ �)) q̂

q̂ 2 Inv(�)

Supposep is a state invariant of�. To proveq is invariant, we can
use a verifier to determine whether the two right-most premises of
the BIP Rule hold. To prove two-state properties are invariant, we
proceed in a similar manner but determine if the right-most premise
of the MIP Rule holds.

If we definep as the conjunction of the mode invariants I1–I4
andq as any one of the five one-state properties in Figure 3, namely
A1, A3, A4, A7, and A8, application of BIP is sufficient to prove
that each of these five properties is a state invariant. (Properties A2
and A5 have been excluded from the one-state properties in Fig-
ure 3 to be proven, since we have shown elsewhere using model

checking that these properties are false [16].) Similarly, ifq̂ is de-
fined as the two-state property A6, then MIP proves that A6 is a
transition invariant. In general, the automatically generated invari-
ants may not be sufficient to complete the verification. However,
the use of automatically generated invariants means that the user is
normally required to supply only some, rather than all, auxiliary in-
variants needed to complete a proof. The STeP prover [26] supports
a similar proof strategy, using automatically generated invariants to
supplement those that the user must develop by hand.

3.2 A More Efficient Compositional Strategy
The major limitation of the above proof strategy is that the proof

relies on the entire system specification. Another strategy which
may be more efficient decomposes the system� into two smaller
systems�1 and�2 and performs verification on the smaller sys-
tems rather than the larger one. By smaller, we mean that the num-
ber of initial state definitions and function definitions is smaller in
each of�1 and�2 than in�. (Recall that the function definitions
describe the values of the dependent variables.) Like the standard
strategy, this strategy depends on auxiliary invariants to complete
the proof. Given a system� = (S;�; �), supposep is a state in-
variant of�, q is a one-state property we wish to prove invariant,
�1 = (S;�1; �1) and�2 = (S;�2; �2) are two “compatible”
systems derived from�, and�1jj�2 is the parallel composition of
�1 and�2, whereparallel compositionis defined as conjunction,
i.e.,�1jj�2 = (S;�1 ^�2; �1 ^ �2). We consider two systems to
becompatibleif they have the same set of variables and the same
type set associated with each variable. For compatible systems, the
following proof rule, called the Basic Compositional Proof (BCP)
Rule, is sound:



p 2 Inv(�1); (p ^ �2)) q; (q ^ p ^ p0 ^ �2)) q0

q 2 Inv(�1jj�2)
(2)

A similar sound compositional rule for proving a two-state property
q̂ is invariant is the Modified Compositional Proof (MCP) Rule:

p 2 Inv(�1), (p ^ p0 ^ �2)) q̂

q̂ 2 Inv(�1jj�2)

3.3 A Compositional Verification Method
Described below is a compositional method for constructing two

compatible systems�1 and�2 from � and for applying the com-
positional proof rule. This method consists of six steps:

1. Given the specification of a system�, construct a set of state
invariants for� using algorithms such as [21, 22]. Alterna-
tively, provea set of state invariants of the form shown in (1).

2. Given� and state invariantp of � derived from dependent
variabler, partition the setD of dependent variables in�
into two sets:D1 = frg andD2 = D nD1.

3. Construct�1 fromD1 and� as follows:

(a) Delete from� the initial state definitions of variables
in D2, and assign the result to�1.

(b) Delete from� the functions defining the values of vari-
ables inD2, and assign the result to�1.

4. Similarly, construct�2 fromD2 and� as follows:

(a) Delete from� the initial state definition of variabler
in D1, and assign the result to�2.

(b) Delete from� the function defining the values of vari-
abler in D1, and assign the result to�2.

5. Verify thatp is an invariant of�1.

6. Use a verifier to check whether the two right-most premises
of the BCP rule hold, i.e., that(p ^ �2) implies q and that
(q ^ p^ p0 ^ �2) impliesq0. If so,q is a state invariant of�.

Based on the definition of parallel composition and the construc-
tion of �1 and�2 described above, it follows that�1jj�2 = �.
Note that although steps 3 and 4 are of the form used in SCR spec-
ifications, they could be generalized and then customized for other
state machine models. Note also that, in step 5, verifying thatp

is an invariant of�1 may be problematic in general but will often
hold for the automatically generated invariants that our algorithms
generate. See Section 4.1 for further details.

An intuitive way to understand how the compositional rules work
is that each rule replaces a dependent variable in the specification
with an abstraction, the set of state invariants derived from that
variable. For example, prior to using the BCP rule to prove prop-
erties of the CCS specification, one could replace the definition of
the values of the mode classmcCruise (a function defined by the
mode transition table in Table 2 of Appendix A) with the mode in-
variants in Figure 2. Analysis of this more abstract system should
be more efficient, and is often sufficient, for verifying properties of
the original system.

To apply this technique to the CCS specification, recall that in-
variants I1-I4 were all derived from the mode transition table in Ta-
ble 2 of Appendix A. This table defines the mode classmcCruise

as a function of the values of the monitored variables. Based on
this information, we form the setD of dependent variables,D =

fmcCruise; tDesiredSpeed; cThrottleg, and partitionD into
two sets,D1 andD2, whereD1 = fmcCruiseg contains the vari-
able from which the invariants I1–I4 were constructed, andD2 =
ftDesiredSpeed; cThrottleg contains the remaining dependent
variables. We define system�1 as equal to� but with the ini-
tial values and function definitions (given by the SCR tables) of
tDesiredSpeed andcThrottle deleted. Similarly, we define�2

as equal to� with the initial state definition and the function defin-
ing the value ofmcCruise deleted. Deleting the initial state defi-
nition and the function definition of a dependent variabler means
thatr may nondeterministically take on any type-correct value.

To evaluate the five one-state properties of interest in Figure 3,
namely A1, A3, A4, A7, and A8, we defineq as one of the five
properties andp as the conjunction of the mode invariants I1–I4 in
Figure 2. Then, using a verifier, we must prove for eachq that the
two right-most premises of the BCP proof rule hold. If the proof
succeeds, the compositional proof rule tells us that propertyq is a
state invariant of�1jj�2 = �. Using Salsa, we applied both the
standard strategy and the compositional strategy to verify each of
the five properties. The standard proof strategy using the BIP Rule
required a total of 0.55 seconds to verify all five properties, whereas
the compositional strategy using the BCP Rule required a total of
0.47 seconds. Although the compositional proof strategy is more
efficient, the speed-up is minor since the CCS example is too small
to do justice to this approach.

In the case of the two-state property A6, using Salsa to apply
the compositional strategy MCP fails to prove this known transi-
tion invariant. This example illustrates an inherent weakness of
the compositional proof rules MCP and BCP: in some cases, a
property that could be proved incrementally using a noncomposi-
tional proof rule, such as the MIP or BIP Rule, with an invariant
p cannot be proved using a compositional strategy with the same
invariantp. In the case of A6, applying the compositional proof
rule MCP replaced a detailed part of the specification (the function
defining the values of the mode classmcCruise) with an invariant
(the conjunction of the invariants in Figure 2), but this produces an
“over-approximation” of the original specification—i.e., the more
abstract specification allows additional behaviors that invalidate the
invariant property to be proved. In such cases, the remedy is often
to strengthen the invariantp or to use another dependent variable
(in the case of CCS, a dependent variable other thanmcCruise) as
the basis for constructing the subsystems�1 and�2.

4. MORE GENERAL PROOF STRATEGIES
This section describes some basic reachability properties that

hold when applying parallel composition to systems and then shows,
for the special case of SCR systems, that our automated method for
constructing state invariants usually produces invariants satisfying
the left-most premise of the BCP and MCP rules. Next, the section
introduces a circular assume-guarantee rule which applies in cases
where the desired propertiesp andq require that the proof ofp for
subsystem�1 depends onq and that the proof ofq for subsystem
�2 depends onp. A Compositional Model Checking Proof (CMP)
Rule is presented as a special case of this assume-guarantee rule.
The BCP rule is then easily derived from the CMP Rule.

4.1 Reachability and Invariants
The proof rules in Section 3 and the more general rules intro-

duced in this section hold for any two subsystems (not necessarily
SCR systems),�i = (S;�i; �i), i = 1; 2, in which composition is
defined as conjunction, i.e.,�1jj�2 = (S;�1^�2; �1^�2). Thus
these proof rules apply to systems specified by LUSTRE, Reactive
Modules, and other state-based languages similar to SCR.



From the above definition of the composition of two subsystems
�1 and�2, it follows that the reachable states of�1jj�2 are those
that are reachable in both�1 and�2. Consequently, invariants of
each of the subsystems are also invariants of the composition, i.e.,
Inv(�i) � Inv(�1jj�2) for i = 1; 2.

For the special case of SCR systems, it is straightforward to show
that the decomposition of a system as described in Section 3.3 satis-
fies these properties. Hence, the decomposition satisfies�1jj�2 =
�. Moreover, for SCR specifications, it is often easy to show that
the left-most premise of the BCP and MCP Rules holds, i.e., that
p is an invariant of�1. This is the case, for example, when, given
a system�, a dependent variabler, p is generated as an invariant
from the definition ofr, andr only depends on the monitored vari-
ables (as for the CCS) or additionally depends on non-monitored
variables whose constraining definitions and assumptions are not
used during invariant generation (as for the CD system, see Sec-
tion 5).

4.2 Assume-Guarantee Rules
Our assume-guarantee rule is inspired by McMillan’s rule for

circular compositional reasoning [30]. McMillan’s rule is used
for proving the invariance of�1 ^ �2, where�1 and�2 are any
LTL (Linear Time Temporal Logic) properties. Given a system
� = (S;�; �), suppose�1 = (S;�1; �1) and�2 = (S;�2; �2)
are two compatible systems derived from�, e.g., they are con-
structed using the method in Section 3.3, and�1jj�2 is the parallel
composition of�1 and�2. For the special case where�1 and�2
are one-state properties, let�1 = p and�2 = q. Then, McMillan’s
rule can be expressed as follows:

�1 j= p . q;�2 j= q . p

p ^ q 2 Inv(�1jj�2)
(3)

In (3), . is an LTL operator, and the expressionp . q means
that, for all stepsn � 0, assumingp holds from 0 up throughn�1
implies thatq holds from 0 up throughn, wheren represents the
number of steps so far in a system history. Intuitively, this means
that “p fails beforeq”.

However, our proof strategies only rely on state invariants1 so
“assuming” a formula up through stepn � 1 can soundly be re-
placed by the conjunction of the assumed one-state property, say
x, with both� and � in � = (S;�; �). This produces a new
system�0 = (S; x ^ �; x ^ �). Applying this replacement to
both premises of the McMillan rule (and including the additional
premise thatp^ q hold initially in �1jj�2) produces the following
preliminary assume-guarantee rule:

�1 ^�2 ) p ^ q;

p 2 Inv(S; q ^�1; q ^ �1); q 2 Inv(S; p ^�2; p ^ �2)

p ^ q 2 Inv(�1jj�2)
(4)

The proof rule in (4) can be improved in two ways:

� We include the auxiliary state invariants,a 2 Inv(�1) and
b 2 Inv(�2). By including these auxiliary invariants, we
can establish the relative completeness2 of the proof rule,
If the proof rule is relatively complete, then failure of the
proof rule means that the propertyp ^ q is not an invari-
ant of�1jj�2. This generalization does not make the verifi-
cation task easier—it just ensures that as necessary one can

1Transition invariants can be handled similarly, but the rules for
transition invariants are not formally developed in this paper.
2Relative completeness means completeness under the assumption
that all theorems of number theory, etc., hold in the system.

theoretically obtain completeness by developing stronger and
stronger auxiliary invariants to aid in the proof.

� We assume invariantp holds inboth the old and new states,
whereasq is assumed in the old state only. Thus, the circu-
larity only needs to be broken in one place rather than in two.
McMillan’s rule for proving general invariant properties can
also be improved in this manner.

The two above improvements result in a Better Assume-Guarantee
(BAG) Rule:

a 2 Inv(�1); b 2 Inv(�2);�1 ^�2 ) p ^ q;

p 2 Inv(S; a ^ b ^ q ^ �1; a ^ b ^ a
0 ^ b0 ^ q ^ �1) (5)

q 2 Inv(S; a ^ b ^ p ^ �2; a ^ b ^ a
0 ^ b0 ^ p ^ p0 ^ �2) (6)

p ^ q 2 Inv(�1jj�2)

Note that, in (6),p is assumed inboth the old and new states,
whereas in (5),q is assumed in the old state only.

Reducing the BAG rule to the special case whereb = TRUE and
p = TRUE and then renaminga to p, we obtain the Compositional
Model Checking Proof (CMP) Rule:

p 2 Inv(�1), q 2 Inv(S; p ^ �2; p ^ p
0 ^ �2)

q 2 Inv(�1jj�2)

Finally, replacing the second premise of the CMP Rule using the
Manna/Pnueli Basic Rule [27]

�) x; x ^ �) x0

x 2 Inv(S;�; �)
(7)

produces the BCP Rule (see (2) in Section 4):

p 2 Inv(�1), (p ^�2)) q, (q ^ p ^ p0 ^ �2)) q0

q 2 Inv(�1jj�2)

The more general form of the second premise of the CMP Rule
expressed as an invariant is directly suitable for model checking.3

However, the CMP Rule is not directly amenable to theorem prov-
ing first-order formulae, so we transform CMP using Manna and
Pnueli’s Basic Rule to obtain first-order formulae in the resulting
BCP Rule.

We have also developed a more extensive proof rule from which
these and many other rules (including rules for transition invariants)
may be derived. See Appendix B for details on the soundness and
relative completeness of these proof rules.

5. VERIFYING A PRACTICAL SYSTEM
The CD (Cryptographic Device) is a practical system designed

to provide cryptographic processing for a U.S. Navy radio receiver.
To evaluate the correctness of the CD prose specification, we devel-
oped an SCR specification of CD and formulated several security
properties that the specification must satisfy [24]. The SCR specifi-
cation of CD is moderately complex, consisting of 39 variables (17
monitored variables, one mode class, two terms, and 19 controlled
variables). Figure 4 lists three security properties, two one-state
properties and one two-state property, that should hold in the SCR
specification of CD. Figure 5 lists three mode invariants our invari-
ant generator constructed from the SCR specification of CD.

As in the case of the CCS, the mode class in the CD specifica-
tion is used to partition the setD of dependent variables into two
3Actually any technique that establishes state invariants could be
used, but we only consider model checking in this paper.



Name Property Description
B1 cKeyBank1Key1 6= 0 _ cKeyBank1Key2 6= 0 For i = 1; 2; j = 1; 2; no key can be

) cAlgStoreSegment1 6= 0 AND stored in locationi of keybankj before
cKeyBank2Key1 6= 0 _ cKeyBank2Key2 6= 0 an algorithm has been loaded into the
) cAlgStoreSegment2 6= 0 first location of alg. storage segmenti

B2 @T(mBackupPower = undervoltage) If backup power has an undervoltage
WHEN mPrimaryPower = unavailable when primary power is unavailable
) mcOperation0 = Alarm CD enters either Alarm or Off mode
OR mcOperation0 = Off

B3 mBackupPower = overvoltage If backup power is overvoltage
) mcOperation = Initialization then CD is in Initialization,
OR mcOperation = Standby Standby, Alarm, or Off mode.
OR mcOperation = Alarm
OR mcOperation = Off

Figure 4: Required CD security properties
.

Name Generated Invariant Description
J1 mcOperation = Off) In Off mode, backup power is unavailable.

mBackupPower 6= available

J2 mcOperation = Standby) In Standby mode, backup power is available and not under voltage,
mBackupPower 6= unavailable AND the device has not been tampered with, the Zeroize switch is off,
mBackupPower 6= undervoltage AND Healthyfull is true, or primary power is unavailable.
(NOT mTamper AND mZeroizeSw 6= on
AND mHealthyFull OR
mPrimaryPower 6= available)

J3 mcOperation = Config OR In Config., Idle or TrafficProc mode, Healthy Background is true,
mcOperation = Idle OR backup power is not over voltage, and primary power is
mcOperation = TrafficProc ) available.
mHealthyBackground AND
mBackupPower 6= overvoltage AND
mPrimaryPower = available

Figure 5: Automatically generated invariants for CD
.

sets,D1 andD2, whereD1 = fmcOperationg contains the mode
classmcOperation andD2 = D nD1 contains the remaining de-
pendent variables. Then, the systems�1 and�2 are constructed
as described in steps 2 and 3 in Section 3.2. We definep as the
conjunction of the three state invariants in Figure 5 andq as one of
the three properties in Figure 4.

5.1 Theorem Proving: Salsa
Using Salsa, we applied both the standard proof strategy (us-

ing the BIP and MIP Rules) and the compositional strategy (using
the BCP and MCP Rules) to verify that the CD specification sat-
isfies each of the three properties in Figure 4 [34]. To verify the
three properties, the standard strategy using the BIP Rule for B1
and B3 and the MIP Rule for the two-state property B2 required
a total of 73.8 seconds, whereas our compositional strategy using
BCP for B1 and B3 and MCP for B2 required a total of 24.4 sec-
onds. Thus, the compositional proof strategy was approximately
three times faster than the non-compositional strategy.

5.2 Symbolic Model Checking: SMV
We also applied the CMP Rule using SMV [28] and compared

the result to SMV model checking without composition. (Unlike
theorem proving, model checking without composition does not
require the auxiliary invariantp.) Due to the inefficient encoding
of integers in SMV, it was necessary to reduce the size of one sys-
tem parameter from 1000 to 20. (Without this change, SMV failed
to finish when left to run overnight.) It is easy to show that this
data abstraction is sound with respect to the properties in Figure 4.
Moreover, verification using SMV was highly sensitive not only
to the variable ordering used in constructing the BDDs but also

to the order in which the SCR function definitions appear in the
SMV specification. The time required to model check the three
CD properties without composition using different BDD orderings
and different definition orderings varied from 432.6 seconds to 23.8
seconds. Using these corresponding orderings for model checking
with the CMP Rule required 0.38 seconds to 0.36 seconds, so even
for the fastest ordering without composition, the compositional ap-
proach was significantly faster [34]. We expect similar speed-ups in
verifications of other SCR specifications of practical systems using
either model checking or theorem proving.

5.3 Explicit State Model Checking: SPIN
For comparison, we also applied compositional verification us-

ing SPIN, an explicit state model checker. Unlike SMV, which rep-
resents the states of the system symbolically, SPIN explicitly gener-
ates the actual states of the system. Intuitively, one can expect com-
positional verification using BCP to be slower with SPIN because
the number of concrete states increases when concrete definitions
are replaced by more abstract sets of invariants in the system�2.
Indeed, compositional verification of the Cruise Control System
using Spin, while giving sound results, generated more reachable
states and was thus slower than symbolic model checking. Hence,
our compositional proof strategy is not appropriate for explicit state
model checking and therefore we did not try to verify the CD prop-
erties using a compositional approach with SPIN [34]. On the other
hand, efficiency in verification was achieved with both SMV and
Salsa. This is because the performance of these two verification
tools is affected not by the number of concrete states but rather
by the size of the formulas encoding the state transition system.
Since the invariants generated for a variable have a simpler logical



expression than the corresponding tabular definition, it is to be ex-
pected that verification using these invariants will usually be more
efficient.

6. RELATED WORK
In model checking LUSTRE programs, whose specifications are

similar to specifications of SCR systems, Halbwachs et al. [14] in-
troduced the Compositional Model Checking Proof Rule. Some of
the earliest work on the more general case of “circular” assume-
guarantee reasoning appeared in [9] in the context of safety prop-
erties of networks of processes. There have been essentially two
approaches to “breaking the circularity” when a proof of' for
�1 depends on , and the proof of for �2 depends on'. For
safety properties it suffices to show that both subsystems have non-
blocking behavior, that is, assuming within �1 allows that sub-
system to proceed to some next state, and similarly assuming'
within �2 allows that subsystem to proceed. Abadi and Lamport
for the case of interleaved processes [1] and Alur and Henzinger
for the case of the synchronous Reactive Modules [3, 2] ensure this
behavior by placing restrictions on the types of properties that may
be proved. Another approach, which also works for liveness prop-
erties, is to define proof rules that explicitly break the circularity.
Such approaches include the imposition of a well-founded order on
the properties and auxiliaries [33, 30] or rules involving the LTL
temporal logic operator. [30, 31]. The importance of relative
completeness, which we have incorporated in our rules with auxil-
iaries, is described in [31].

In a related project at the Naval Research Laboratory, composi-
tional verification is also being addressed in the Secure Operations
Language (SOL) and its toolset. SOL is a prototype language for
the specification and analysis of Multi-Agent Systems [6].

7. CONCLUSIONS AND FUTURE WORK
Our preliminary results show that the compositional approach

may be easily integrated with the current SCR toolset and method
to make verification of state and transition invariants more efficient.
The CMU SMV model checker and the Salsa theorem prover may
each be applied unchanged to prove properties via both the Ba-
sic Compositional Proof Rule in (2) and the more general assume-
guarantee rule (i.e., the BAG Rule). Preliminary experiments have
shown that this is also true for the TAME interface to the PVS the-
orem prover [4], provided that TAME performs an extra simplifi-
cation that has not yet been needed in other applications. The best
way to incorporate this extra simplification into the TAME invari-
ant proof strategy remains to be determined but so far significantly
better average proof times for state invariants have been achieved
using TAME with the BCP Rule. We also plan to apply our com-
positional strategy using newer symbolic model checkers, such as
NuSMV [11] and Cadence SMV [29].

It would be a simple task to implement the decompositions and
coordination of subproofs for Salsa as a text processor of Salsa
input specifications, although it would be more convenient to in-
corporate compositional theorem proving within the tool to avoid
the recompilation of the textual form multiple times for the vari-
ous subsystems. In fact, Cadence SMV includes a scripting lan-
guage for coordinating the various analyses required in performing
assume-guarantee proofs [29].

There still remains the problem of how best to decompose the
system when doing compositional verification. In the two systems
examined in this paper it was natural to do the simple decompo-
sition D1 = fmg andD2 = D n D1, wherem is an SCR de-
pendent variable andp the automatically generated invariants for

that variable. In general, when there are multiple sets of invariants
describing abstractions of the various variables, how should one
decompose the system? We would like to automate this process as
much as possible in keeping with our philosophy that verification
capabilities of a toolset should be directly accessible to non-experts.

We have developed an assume-guarantee rule that places no di-
rect restrictions on the properties but may require the user to derive
necessary auxiliary properties. Although the need for this circular
rule has not been encountered so far for SCR specifications (and
indeed at the requirements phase, circularity seems to be less of a
problem than during other phases of system development), we an-
ticipate the need for circular reasoning in future requirements spec-
ifications. It would be interesting to compare our proof strategy to
that of Reactive Modules to understand which is more effective in
practice.

Our compositional verification strategy applies even after other
abstractions have been performed (most notably those abstractions
which are both sound and complete). For example, Salsa automati-
cally employs “slicing” before verification. Additional abstractions
were also performed in preparing the Cruise Control specification
and in making SMV verification of the CD system feasible. How-
ever, proofs may fail in the compositional approach due to over-
approximation, so the difficulty in strengthening the invariant may
outweigh the advantages of a faster verification.

The approach to verification provided by Salsa and SMV (and
supplemented by automated generation of invariants as well as our
new approach incorporating compositionality) contrasts with the
“predicate abstraction with refinement” approach [13, 35]. In pred-
icate abstraction, one constructs abstract versions of subsystems,
often with the goal of reducing the model’s state space to a tractable
size so that model checking is practical. Lakhnech et al. [25] show
that, from a theoretical point of view, each approach seems equally
difficult, i.e., it is just as difficult to find strong enough auxiliary
invariants to prove a property as it is to design an appropriate pred-
icate abstraction. Also, iterations of strengthening invariants after
failure of the compositional approach due to “over-approximation”
is analogous to failure in the predicate abstraction approach where
you must repeat the process using a refinement of the current predi-
cate abstraction (e.g., based upon the counterexample returned from
the failed model checking step). We plan to further investigate how
these methods could complement each other or be combined in ver-
ifying requirements specifications expressed in SCR.
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APPENDICES

A. SCR OVERVIEW
This appendix briefly reviews the state machine model that un-

derlies the SCR requirements model and gives examples of the ta-
bles used to define the values of the dependent variables in SCR
specifications. Example tables are presented defining the values of
the three dependent variables in the CCS specification introduced
in Section 2.



A.1 SCR Requirements Model
An SCR requirements specification describes both the system

environment, which is nondeterministic, and the required system
behavior, which is usually deterministic [19]. The environment
contains quantities that the system monitors, represented asmoni-
tored variables, and quantities that the system controls, represented
ascontrolled variables. The environment nondeterministically pro-
duces a sequence of monitored events, where amonitored eventsig-
nals a change in the value of some monitored variable. The system,
represented in the model as a state machine, begins execution in
some initial state and then responds to each monitored event in turn
by changing state. In SCR as in Esterel [5], the system behavior is
assumed to besynchronous: the system completely processes one
set of inputs before processing the next set. In SCR (in contrast to
Esterel which allows more than one input to change per transition),
theOne Input Assumptionallows at most one monitored variable to
change from one state to the next.

Our state machine model, a special case of Parnas’ Four Vari-
able Model (FVM), [32] uses two relations of the FVM, NAT and
REQ, to define the required system behavior. NAT, which describes
the natural constraints on the system behavior, such as constraints
imposed by physical laws and the system environment, defines the
possible values of the monitored and controlled variables. REQ de-
fines additional constraints on the system as relations the system
must maintain between the monitored and controlled variables. To
specify REQ concisely, our SCR model contains two types of aux-
iliary variables:mode classes, whose values are calledmodes, and
terms. Each mode is an equivalence class of system states useful
in specifying the required system behavior. Aterm is a state vari-
able whose value depends on monitored variables, mode classes, or
other terms.

The SCR model represents a system as a state machine� =
(S; S0; E

m; T ), whereS is the set of states,S0 � S is the initial
state set,Em is the set of monitored events, andT is the trans-
form describing the allowed state transitions [19]. In our model,
the transformT is a function that maps a monitored evente 2 Em

and the current states 2 S to the next states0 2 S. Further, astate
is a function that maps eachstate variable, i.e., each monitored or
controlled variable, mode class, or term, to a type-correct value; a
condition is a predicate defined on a system state, and aneventis
a predicate requiring that two system states differ in the value of at
least one state variable.

When the value of a state variable (or a condition) changes, we
say that an event “occurs”. The notation “@T(c) WHEN d” de-
notes aconditioned event, which is defined by

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditionsc andd are evaluated in the current
state and the primed conditionc0 is evaluated in the next state.

As stated in Section 2, we consider a system as a state machine
� = (S;�; �), whereS is the set of states,� : S ! boolean is
the initial state predicate, and� : S � S ! boolean is the next-
state predicate. To define the state machine corresponding to an
SCR machine represented as a 4-tuple(S; S0; E

m; T ), we define
(1) the initial-state predicate� on a states 2 S such that�(s) is
true iff s 2 S0 and (2) the next-state predicate� on pairs of states
s; s0 2 S such that�(s; s0) is true iff there exists an evente 2 Em,
enabled ins, such thatT (e; s) = s0. Thus the predicate� is simply
a concise and abstract way of expressing the transformT without
reference to events.

A.2 The SCR Tables
The transformT is the composition of smaller functions called

table functions, which are derived from the condition tables, event
tables, and mode transition tables in SCR requirements specifica-
tions. These tables define the values of thedependent variables—
the controlled variables, mode classes, and terms. ForT to be well-
defined, no circular dependencies are allowed in the definitions of
the dependent variables. The variables are partially ordered based
on the dependencies among the next state values.

Each table defining a term or controlled variable is either a con-
dition or an event table. Acondition tableassociates a mode and
a condition in the next state with a variable value in the next state,
whereas anevent tableassociates a mode and a conditioned event
with a variable value in the next state. Each table defining a mode
class is amode transition table, which associates a source mode
and an event with a destination mode. Our formal model requires
the information in each table to satisfy certain properties. These
properties guarantee that each table describes a total function [19].

To illustrate the SCR tabular notation, three example tables are
presented. These tables define the values of the three dependent
variables in the Cruise Control System specification—mcCruise,
tDesiredSpeed, andcThrottle.

Table 1 is an event table defining the termtDesiredSpeed as
a function of the current mode and the monitored variables. The
second row states that if the system is inInactive and the driver
changes the lever toconst with the ignition on, the engine run-
ning, and the brake off, the new value oftDesiredSpeed equals
the mSpeed, the speed of the automobile. The first row contains
theDUR operator, introduced in [37] to describe time-dependent be-
havior. In the first row, the expression “DUR(mLever = const) >
kStartIncr” is true iff the length of time that the lever has been in
theconst position exceeds the constantkStartIncr. The event
described by “@F(DUR(mLever = const) > kStartIncr)” oc-
curs when the lever is changed to some position other thanconst

after having been inconst for more thankStartIncr millisec-
onds. The first row states that when the system is inCruise and
this conditioned event occurs, the new value oftDesiredSpeed is
the actual speed. The presence ofNEVER in the third row indicates
that no event can change the value oftDesiredSpeed when the
system is in eitherOff or Override.

Table 1: Event table defining the termtDesiredSpeed

Table 2 is a mode transition table defining the new value of the
mode classmcCruise as a function of the current mode and the
monitored variables. For example, the first row of the table states
that if the current mode isOff and the driver turns the ignition on,
the new mode isInactive, while the third row states that if the
system is inInactive and the driver puts the lever inconst with
the ignition on, the engine running, and the brake off, the system
entersCruise mode.

Table 3 is a condition table defining the value of controlled vari-
ablecThrottle as a function of the modes, the monitored vari-



Table 2: Mode transition table defining the mode classmcCruise

Table 3: Condition table defining the controlled variablecThrottle

ables, and the termtDesiredSpeed. The first row states that
in Cruise mode the system should accelerate the automobile if
the desired speed minus some constant tolerancekTolerance ex-
ceeds the actual speed or if the time the lever is inconst exceeds
kStartIncr, and gives similar conditions for when the system
should decelerate the automobile or maintain the current speed.
The second row states that in modes other thanCruise, the throttle
is off.

B. SOUNDNESS AND COMPLETENESS
If we apply the Manna/Pnueli Basic Rule to both (5) and (6) of

the Better Assume-Guarantee Rule (BAG) presented in Section 4,
we obtain the Theorem Proving Assume-Guarantee (TAG) Rule:

a 2 Inv(�1); b 2 Inv(�2);�1 ^�2 ) p ^ q;

p ^ (b ^ a0 ^ b0 ^ q ^ �1)) p
0 (8)

q ^ (a ^ b ^ a0 ^ b0 ^ p ^ p0 ^ �2)) q
0 (9)

(p ^ q) 2 Inv(�1jj�2)

Because (8) is stronger than (5) and (9) is stronger than (6), the
soundness of both rules (as well as the two rules where just one of
(5) and (6) is replaced via the Manna/Pnueli Basic Rule) follows
from the soundness of the BAG Rule. As a special case, the sound-
ness of the BCP Rule follows from the soundness of the CMP Rule.
Similarly, the completeness of both rules (as well as the two rules,
where just one of (5) and (6) is replaced via the Manna/Pnueli Basic

Rule) follows from the completeness of the TAG Rule.4

To establish the soundness of the BAG rule, we require a lemma
stating that any reachable states of �1jj�2 is also a reachable state
of both system(S; a ^ b ^ q ^ �1; a ^ b ^ a

0 ^ b0 ^ q ^ �1) and
system(S; a^ b^ p^�2; a^ b^ a

0 ^ b0 ^ p^ p0 ^ �2). The proof
of this lemma is a straightforward induction on the number of steps
from an initial state to reachs. (We omit the proof.)

The relative completeness of the TAG Rule is established by
choosinga = R1 and b = R2, whereRi is the characteristic
predicate of the set of reachable states in�i, i = 1; 2. In prov-
ing completeness, we are given the conclusion of the TCP Rule:
p ^ q 2 Inv(�1jj�2). This may be expressed equivalently as
R1 ^ R2 ) p ^ q. We must prove that�1 ^ �2 ) p ^ q holds
and that (8) and (9) hold. Because the initial states in each system
are a subset of the reachable states, i.e.,�i )Ri, it is always true
that�1 ^�2 ) p^ q. After the substitutions indicated above, (8)
and (9) become the respective (10) and (11):

p ^ (R1 ^R2 ^R
0

1 ^R
0

2 ^ q ^ �1)) p
0 (10)

q ^ (R1 ^R2 ^ R
0

1 ^R
0

2 ^ p ^ p
0 ^ �2)) q0 (11)

Thus, both (10) and (11) follow immediately from the primed ver-
sion of our given fact, i.e.,R0

1 ^ R
0

2 ) p0 ^ q0.

4The BCP and CMP Rules are not complete but can easily be made
complete by using additional auxiliary invariants.


