
Identifying Potential Type Confusion in Authenticated Messages

Catherine Meadows
Code 5543

Naval Research Laboratory
Washington, DC 20375

meadows@itd.nrl.navy.mil

Abstract

A type confusion attackis one in which a principal ac-
cepts data of one type as data of another. Although it has
been shown by Heather et al. that there are simple for-
matting conventions that will guarantee that protocols
are free from simple type confusions in which fields of
one type are substituted for fields of another, it is not
clear how well they defend against more complex at-
tacks, or against attacks arising from interaction with
protocols that are formatted according to different con-
ventions. In this paper we show how type confusion
attacks can arise in realistic situations even when the
types are explicitly defined in at least some of the mes-
sages, using examples from our recent analysis of the
Group Domain of Interpretation Protocol. We then de-
velop a formal model of types that can capture potential
ambiguity of type notation, and outline a procedure for
determining whether or not the types of two messages
can be confused. We also discuss some open issues.

1 Introduction

Type confusion attacks arise when it is possible to con-
fuse a message containing data of one type with a mes-
sage containing data of another. The most simple type
confusion attacks are ones in which fields of one type
are confused with fields of another type, such as is de-
scribed in [7], but it is also possible to imagine attacks
in which fields of one type are confused with a con-
catenation of fields of another type, as is described by
Snekkenes in [8], or even attacks in which pieces of
fields of one type are confused with pieces of fields of
other types.

Simple type confusion attacks, in which a field of one
type is confused with a field of another type, are easy
to prevent by including type labels (tags) for all data
and authenticating labels as well as data. This has been

shown by Heather et al. [4], in which it is proved that,
assuming a Dolev-Yao-type model of a cryptographic
protocol and intruder, it is possible to prevent such sim-
ple type confusion attacks by the use of this technique.
However, it is not been shown that this technique will
work for more complex type confusion attacks, in which
tags may be confused with data, and terms or pieces
of terms of one type may be confused with concatena-
tions of terms of several other types.1 More importantly,
though, although a tagging technique may work within
a single protocol in which the technique is followed for
all authenticated messages, it does not prevent type con-
fusion of a protocol that uses the technique with a pro-
tocol that does not use the technique, but that does use
the same authentication keys. Since it is not uncommon
for master keys (especially public keys) to be used with
more than one protocol, it may be necessary to develop
other means for determining whether or not type confu-
sion is possible. In this paper we explore these issues
further, and describe a procedure for detecting the pos-
sibility of the more complex varieties of type confusion.

The remainder of this paper is organized as follows.
In order to motivate our work, in Section Two, we give a
brief account of a complex type confusion flaw that was
recently found during an analysis of the Group Domain
of Authentication Protocol, a secure multicast protocol
being developed by the Internet Engineering Task Force.
In Section Three we give a formal model for the use of
types in protocols that takes into account possible type
ambiguity. In Section Four we describe various tech-
niques for constructing the artifacts that will be used in
our procedure. In Section Five we give a procedure for
determining whether it is possible to confuse the type of
two messages. In Section Six we illustrate our proce-
dure by showing how it could be applied to a simplified
version of GDOI. In Section Seven we conclude the pa-

1We believe that it could, however, if the type tags were augmented
with tags giving the length of the tagged field, as is done in many
implementations of cryptographic protocols.

per and give suggestions for further research.

2 The GDOI Attack

In this section we describe a type flaw attack that was
found on an early version of the GDOI protocol.

The Group Domain of Interpretation protocol (GDOI)
[2], is a group key distribution protocol that is undergo-
ing the IETF standardization process. It is built on top
of the ISAKMP [6] and IKE [3] protocols for key man-
agement, which imposes some constraints on the way in
which it is formatted. GDOI consists of two parts. In
the first part, called the Groupkey Pull Protocol, a prin-
cipal joins the group and gets a group key-encryption-
key from the Group Controller/Key Distributor (GCKS)
in a handshake protocol protected by a pairwise key that
was originally exchanged using IKE. In the second part,
called the Groupkey Push Message, the GCKS sends
out new traffic encryption keys protected by the GCKS’s
digital signature and the key encryption key.

Both pieces of the protocol can make use of digital
signatures. The Groupkey Pull Protocol offers the op-
tion of including a Proof-of-Possession field, in which
either or both parties can prove possession of a public
key by signing the concatenation of a nonce NA gener-
ated by the group member and a nonce NB generated
by the GCKS. This can be used to show linkage with a
certificate containing the public key, and hence the pos-
session of any identity or privileges stored in that certifi-
cate.

As for the Groupkey Push Message, it is first signed
by the GCKS’s private key, and then encrypted with the
key encryption key. The signed information includes a
header HDR, (which is sent in the clear), and contains,
besides the header, the following information:

1. a sequence number SEQ (to guard against replay
attacks);

2. a security association SA;

3. a Key Download payload KD, and;

4. an optional certificate, CERT.

According to the conventions of ISAKMP, HDR must
begin with a random or pseudo-random number. In pair-
wise protocols, this is jointly generated by both parties,
but in GDOI, since the message must go from one to
many, this is not practical. Thus, the number is gener-
ated by the GCKS. Similarly, it is likely that the Key
Download message will end in a random number: a key.
Thus, it is reasonable to assume that the signed part of a

Groupkey Push Message both begins and ends in a ran-
dom number.

We found two type confusion attacks. In both, we as-
sume that the same private key is used by the GCKS to
sign POPs and Groupkey Push Messages. In the first
of these, we assume a dishonest group member who
wants to pass off a signed POP from the GCKS as a
Groupkey Push Message. To do this, we assume that she
creates a fake plaintext Groupkey Push Message GPM,
which is missing only the last (random) part of the Key
Download Payload. She then initiates an instance of the
Groupkey Pull Protocol with the GCKS, but in place of
her nonce, she sends GPM. The GCKS responds by ap-
pending its nonce NB and signing it, to create a signed
(GPM,NB). If NB is of the right size, this will look like
a signed Groupkey Push Message. The group member
can then encrypt it with the key encryption key (which
she will know, being a group member) and send it out to
the entire group.

The second attack requires a few more assumptions.
We assume that there is a group member A who can also
act as a GCKS, and that the pairwise key between A and
another GCKS, B, is stolen, but that B’s private key is
still secure. Suppose that A, acting as a group mem-
ber, initiates a Groupkey Pull Protocol with B. Since
their pairwise key is stolen, it is possible for an intruder
I to insert a fake nonce for B’s nonce NB. The nonce
he inserts is a fake Groupkey Push Message GPM’ that
it is complete except for a prefix of the header consist-
ing of all or part of the random number beginning the
header. A then signs (NA,GPM’), which, if NA is of the
right length, will look like the signed part of a Group-
key Push Message. The intruder can then find out the
key encryption key from the completed Groupkey Pull
Protocol and use it to encrypt the resulting (NA,GPM’)
to create a convincing fake Groupkey Push Message.

Fortunately, the fix was simple. Although GDOI was
constrained by the formatting required by ISAKMP, this
was not the case for the information that was signed
within GDOI. Thus, the protocol was modified so that,
whenever a message was signed within GDOI, informa-
tion was prepended saying what the purpose was (e.g.
a member’s POP, or a Groupkey Push Message). This
eliminated the type confusion attacks.

There are several things to note here. The first is that
existing protocol analysis tools are not very good at find-
ing these types of attacks. Most assume that some sort
of strong typing is already implemented. Even when
this is not the case, the ability to handle the various
combinations that arise is somewhat limited. For ex-
ample, we found the second, less feasible, attack auto-
matically with the NRL Protocol Analyzer, but the tool

could not have found the first attack, since the ability
to model it requires the ability to model the associativ-
ity of concatenation, which the NRL Protocol Analyzer
lacks. Moreover, type confusion attacks do not require a
perfect matching between fields of different types. For
example, in order for the second attack to succeed, it
is not necessary for NA to be the same size as the ran-
dom number beginning the header, only that it be no
longer than that number. Again, this is something that is
not within the capacity of most crypto protocol analysis
tools. Finally, most crypto protocol analysis tools are
not equipped for probabilistic analysis, so they would
not be able to find cases in which, although type con-
fusion would not be possible every time, it would occur
with a high enough probability to be a concern.

The other thing to note is that, as we said before, even
though it is possible to construct techniques that can be
used to guarantee that protocols will not interact inse-
curely with other protocols that are formatted using the
same technique, it does not mean that they will not inter-
act insecurely with protocols that were formatted using
different techniques, especially if, in the case of GDOI’s
use of ISAKMP, the protocol wound up being used dif-
ferently than it was originally intended (for one-to-many
instead of pairwise communication). Indeed, this is the
result one would expect given previous results on proto-
col interaction [5, 1]. Since it is to be expected that dif-
ferent protocols will often use the same keys, it seems
prudent to investigate to what extent an authenticated
message from one protocol could be confused with an
authenticated message from another, and to what extent
this could be exploited by a hostile intruder. The rest of
this paper will be devoted to the discussion of a proce-
dure for doing so.

3 The Model

In this section we will describe the model that underlies
our procedure. It is motivated by the fact that differ-
ent principals may have different capacities for checking
types of messages and fields in messages. Some infor-
mation, like the length of the field, may be checkable by
anybody. Other information, like whether or not a field
is a random number generated by a principal, or a se-
cret key belonging to a principal, will only be checkable
by the principal who generated the random number in
the first case, and by the possessor(s) of the secret key
in the second place. In order to do this, we need to de-
velop a theory of types that take differing capacities for
checking types into account.

We assume an environment consisting of principals

who possess information and can check properties of
data based on that information. Some information is
public and is shared by all principals. Other informa-
tion may belong to only one or a few principals.

Definition 3.1 A field is a sequence of bits. We let�
denote the empty field. Ifx andy are two fields, we let
xjjy denote the concatenation ofx andy. If �x and�y are
two lists of fields, then we letappend(�x; �y) denote the
list obtained by appending�y to �x.

Definition 3.2 A type is a set of fields, which may or
may not have a probability distribution attached. IfP
is a principal, then atype local to Pis a type such that
membership in that type is checkable by P. Apublic type
is one whose membership is checkable by all principals.
If G is a group of principals, then atype private to Gis
a type such that membership in that type is checkable by
the members ofG and only the members ofG.

Examples of a public type would be all strings of
length 256, the string “key,” or well-formed IP ad-
dresses. Examples of private types would be a random
nonce generated by a principal (private to that principal)
a principal’s private signature key (private to that princi-
pal), and a secret key shared by Alice and Bob (private
to Alice and Bob, and perhaps the server that generated
the key, if one exists). Note that a private type is not nec-
essarily secret; all that is required is that only members
of the group to whom the type is private have a guaran-
teed means of checking whether or not a field belongs to
that type. As in the case of the random number gener-
ated by a principal, other principals may have been told
that a field belongs to the type, but they do not have a
reliable means of verifying this.

The decision as to whether or not a type is private or
public may also depend upon the protocol in which it
is used and the properties that are being proved about
the protocol. For example, to verify the security of a
protocol that uses public keys to distribute master keys,
we may want to assume that a principal’s public key is
a public type, while if the purpose of the protocol is to
validate a principal’s public key, we may want to assume
that the type is private to that principal and some certi-
fication authority. If the purpose of the protocol is to
distribute the public key to the principal, we may want
to assume that the type is private to the certification au-
thority alone.

Our use of public and local types is motivated as fol-
lows. Suppose that an intruder wants to fool Bob into
accepting an authenticated messageM from a principal
Alice as an authenticated messageN from Alice. Since
M is generated by Alice, it will consist of types local to

her. Thus, for example, ifM is supposed to contain a
field generated by Alice it will be a field generated by
her, but if it is supposed to contain a field generated by
another party, Alice may only be able to check the pub-
lically available information such as the formatting of
that field before deciding to include it in the message.
Likewise, if Bob is verifying a message purporting to be
N , he will only be able to check for the types local to
himself. Thus, our goal is to be able to check whether
or not a message built from types local to Alice can be
confused with another message built from types local to
Bob, and from there, to determine if an intruder is able
to take advantage of this to fool Bob into producing a
message that can masquerade as one from Alice.

We do not attempt to give a complete model of an in-
truder in this paper, but we do need to have at at least
some idea of what types mean from the point of view
of the intruder to help us in computing the probability
of an intruder’s producing type confusion attacks. In
particular, we want to determine the probability that the
intruder can produce (or force the protocol to produce)
a field of one type that also belongs to another type. Es-
sentially, there are two questions of interest to an in-
truder: given a type, can it control what field of that type
is sent in a message, and given a type, will any arbitrary
member of that type be accepted by a principal, or will
a member be accepted only with a certain probability.

Definition 3.3 We say that a type isunder the control of
the intruderif there is no probability distribution associ-
ated with it. We say that a type isprobabilisticif there a
a probability distribution associated with it. We say that
a probabilistic type local to a principalA is under the
control ofA if the probability ofA accepting a field as
a member ofX is given by the probability distribution
associated withX .

The idea behind probabilistic types and types under
control of the intruder is that the intruder can choose
what member of a type can be used in a message if it
is under its control, but for probabilistic types the field
used will be chosen according to the probability distri-
bution associated with the type. On the other hand, if
a type is not under the control of a principalA, thenA
will accept any member of that type, while if the type
is under the control ofA, she will only accept an ele-
ment as being a member of that type according to the
probability associated with that type.

An example of a type under the control of an in-
truder would be a nonce generated by the intruder, per-
haps while impersonating someone else. An example
of a probabilistic type that is not under the control ofA
would be a nonce generated by another principalB and

sent toA in a message. An example of a probabilistic
type that is also under the control ofAwould be a nonce
generated byA and sent byA in a message, or received
byA in some later message.

Definition 3.4 LetX andY be two types. We say that
X u Y holds if an intruder can force a protocol to pro-
duce an elementx ofX that is also an element ofY .

Of course, we are actually interested in the probabil-
ity thatXuY holds. Although the means for calculating
P (X uY) may vary, we note that the following holds if
there are no other constraints onX andY :

1. If X andY are both under the control of the in-
truder, thenP (X u Y) is 1 if X \ Y 6= � and is
zero otherwise;

2. If X is under the control of the intruder, andY is a
type under the control ofA, and the intruder knows
the value of the member ofY before choosing the
member ofX , thenP (Y uX) = P (x̂ 2 X \ Y),
wherex̂ is the random variable associated withX ;

3. If X a type under the control ofA, andY is a
type local toB but not under the control ofB, then
P (X u Y) = P (x̂ 2 X \ Y);

4. If X is under the control ofA andY is under the
control of some other (non-intruder)B, thenP (Y u
X) = P (x̂ = ŷ) wherex̂ is the random variable
associated withX , and ŷ is the random variable
associated withY .

Now that we have a notion of type for fields, we ex-
tend it to a notion of type for messages.

Definition 3.5 A messageis a concatenation of one or
more fields.

Definition 3.6 Amessage typeis a functionR from lists
of fields to types, such that:

1. The empty list is inDom(R);

2. hx1; :::; xki 2 Dom(R) if and only if
hx1; :::; xk�1i 2 Dom(R) and xk 2
R(hx1; :::; xk�1i);

3. If hx1; :::; xki 2 Dom(R), and xk = �, then
R(hx1; :::; xki) = f�g, and ;

4. For any infinite sequenceS = h:::; xi; :::i such that
all prefixes ofS are inDom(R), there exists ann
such that, for alli > n, xi = �.

The second part of the definition shows how, once the
first k � 1 fields of a message are known, thenR can
be used to predict the type of thek’th field. The third
and fourth parts describe the use of the empty list� in
indicating message termination. The third part says that,
if the message terminates, then it can’t start up again.
The fourth part says that all messages must be finite.
Note, however, that it does not require that messages
be of bounded length. Thus, for example, it would be
possible to specify, say, a message type that consists of
an unbounded list of keys.

The idea behind this definition is that the type of the
n’th field of a message may depend on information that
has gone before, but exactly where this information goes
may depend upon the exact encoding system used. For
example, in the tagging system in [4], the type is given
by a tag that precedes the field. In many implementa-
tions, the tag will consist of two terms, one giving the
general type (e.g. “nonce”), and the other giving the
length of the field. Other implementations may use this
same two-part tag, but it may not appear right before
the field; for example in ISAKMP, and hence in GDOI,
the tag refers, not to the field immediately following it,
but the field immediately after that. However, no matter
how tagging is implemented, we believe that it is safe
to assume that any information about the type of a field
will come somewhere before the field, since otherwise
it might require knowledge about the field that only the
tag can supply (such as where the field ends) in order to
find the tag.

Definition 3.7 Thesupportof a message typeR is the
set of all messages of the formx1jj:::jjxn such that
hx1; :::; xni 2 Dom(R).

For an example of a message type, we consider a mes-
sage of the form
\nonce00; N1; NONCE1; \nonce

00; N2; NONCE2

whereNONCE1 is a random number of lengthN1

generated by the creator of the message,N1 is a 16-bit
integer, andNONCE2 is a random number of length
N2, where bothNONCE2 andN2 are generated by
the intended receiver, andN2 is another 16-bit integer.
From the point of view of the generator of the message,
the message type is as follows:

1. R(hi) = \nonce00.

2. R(h\nonce00i) = fX jlength(X) = 16g. Since
N1 is generated by the sender, it is a type under the
control of the sender consisting of the set of 16-bit
integers, with a certain probability attached.

3. R(h\nonce00; N1i) = fX jlength(X) = N1g.
Again, this is a private type consisting of the set
of fields of lengthN1. In this case, we can choose
the probability distribution to be the uniform one.

4. R(h\nonce00; N1; NONCE1i) = f\nonce00g.

5. R(h\nonce00; N1; NONCE1; \nonce
00i) =

fX jlength(X) = 16g. Since the sender did not
actually generateN2, all he can do is check that
it is of the proper length, 16. Thus, this type is
not under the control of the sender. IfN2 was not
authenticated, then it is under the control of the
intruder.

6. R(h\nonce00; N1; NONCE1; \nonce
00; N2i) =

fY jlength(Y) = N2g. Again, this value is not
under the control of the sender, all the principal
can do is check that what purports to be a nonce
is indeed of the appropriate length.

7. R(h\nonce00; N1; NONCE1; \nonce
00; N2;

NONCE1; i) = f�g . This last tells us that the
message ends here.

From the point of view of the receiver of the message,
the message type will be somewhat different. The last
two fields,N2 andNONCE2 will be types under the
control of the receiver, whileN1 andNONCE1 will
be types not under its control, and perhaps under the
control of the intruder, whose only checkable property
is their length. This motivates the following definition:

Definition 3.8 A message type local to a principalP is
a message typeR whose range is made up of types local
to P .

We are now in a position to define type confusion.

Definition 3.9 LetR andS be two message types. We
say that a pair of sequenceshx1; :::; xni 2 Dom(R)
andhy1; :::; yni 2 Dom(S) is a type confusion between
R andS if:

1. � 2 R(hx1; :::; xni);

2. � 2 S(hy1; :::; ymi), and;

3. x1jj:::jjxn = y1jj:::jjym.

The first two conditions say that the sequences de-
scribe complete messages. That last conditions says that
the messages, considered as bit-strings, are identical.

Definition 3.10 LetR andS be two message types. We
say thatR u S holds if an intruder is able to force a
protocol to produce an�x in Dom(R) such that there
exists�y inDom(S) such that(�x; �y) is a type confusion..

Again, what we are interested in is computing, or at
least estimating,P (RuS). This will be done in Section
5.

4 Constructing and Rearranging
Message Types

In order to perform our comparison procedure, we will
need the ability to build up and tear down message
types, and create new message types out of old. In this
section we describe the various ways that we can do this.

We begin by defining functions that are restrictions of
message types (in particular to prefixes and postfixes of
tuples).

Definition 4.1 An n-postfix message typeis a function
R from tuples of lengthn or greater to types such that:

1. For all k > 0, hx1; :::; xn+ki 2 Dom(R) if and
only if xn+k 2 R(hx1; :::; xn+k�1i);

2. If hx1; :::; xn+ki 2 Dom(R), andxn+k = �, then
R(hx1; :::; xn+k+1i) = f�g, and ;

3. For any infinite sequenceS = h:::; xi; :::i such
that all prefixes ofS of lengthn and greater are
in Dom(R), there exists anm such that, for all
i > m, xi = �.

We note that the restriction of a message typeR to
sequences of length n or greater is an n-postfix mes-
sage type, and that a message type is a 0-postfix message
type.

Definition 4.2 An n-prefix message type is a functionR
from tuples of length less thann to types such that:

1. R is defined over the empty list;

2. For all k < n, hx1; :::; xki 2 Dom(R) if and only
if xk 2 R(hx1; :::; xk�1i), and;

3. If k < n � 1, and hx1; :::; xki 2 Dom(R), and
xk = �, thenR(hx1; :::; xk+1i) = f�g.

We note that the restriction of a message type to se-
quences of length less thann is ann-prefix message
type.

Definition 4.3 We say that a message type or n-prefix
message typeR is t-boundedif R(x) = � for all tuples
x of length t or greater.

In particular, a message type that is both t-bounded
and t-postfix will be a trivial message type.

Definition 4.4 LetR be an n-postfix message type. Let
X be a set of m-tuples in the pre-image ofR, where m
� n. ThenRbX is defined to be the restriction of R to
the set of allhx1; :::; xm; :::; xri in Dom(R) such that
hx1; :::; xmi 2 X .

Definition 4.5 LetR be an n-prefix message type. Let
X be a set of n-1 tuples. ThenRdX is defined to
be the restriction ofR to the set of all tuples�x such
that �x 2 X , or �x = hx1; :::xii such that there exists
hyi+1; :::; yn�1i such thathx1; :::xi; yi+1; :::; yn�1i 2
X .

Definition 4.6 Let R be an n-postfix message type.
Then Split(R) is the function whose domain is the
set of allhx1; :::; xn; y1; y2; xn+2; :::; xmi of length n+1
or greater such thathx1; :::; xn; y1jjy2; xn+2; :::; xmi 2
Dom(R) and such that

a. For the tuples of length i > n +1,
Split(R)(hx1; :::; xn; y1; y2; xn+2; :::; Xmi) =
R(hx1; :::; xn; y1jjy2; xn+2; :::; xmi), and;

b. For tuples of length n +1 ,
Split(R)(hy1; :::; yn+1i) = fz j
hy1; :::; yn+1jjzi 2 Dom(R).

Definition 4.7 LetR be an n-prefix message type. Let
F be a function from a set of n-tuples to types such that
there is at least one tuplehxi+1:::; xni in the domain of
F such thathxi+1:::; xn�1i is in the domain ofR. Then
R]F , the extension ofR by F , is the function whose
domain is

a. For i < n, the set of allhx1::::; xii such that
hx1::::; xii 2 Dom(R), and such that there exists
hxi+1:::; xni such thathx1::::; xi; xi+1:::; xni 2
Dom(F);

b For i = n, the set of all hx1::::; xn�1; xni
such that hx1::::; xn�1i 2 Dom(R) and
hx1::::; xn�1; xni 2 Dom(F);

and whose restriction to tuples of length less than n is
R, and whose restriction to n-tuples isF .

Proposition 4.1 If R is an n-postfix message type, then
RbX is an m-postfix message type for any set of m-
tuplesX , and Split(R) is an (n+1)-postfix message

type. IfR is t-bounded, then so isRbX , whileSplit(R)
is (t+1)-bounded. Moreover, if S is an n-prefix message
type, then so isSdY for any set of n-1 tuplesY , and
S]F is an (n+1)-prefix message type for any functionF
from n-tuples to types such at for at least one element
hxi+1:::; xni in the domain ofF , hxi+1:::; xn�1i is in
the domain ofS.

We close with one final definition.

Definition 4.8 Let F be a function from k-tuples of
fields to types. We definePre(F) to be the function
from k-tuples of fields to types defined byPre(F)(x)
is the set of all prefixes of all elements ofF (x).

5 The Zipper: A Procedure for
Comparing Message Types

We now can define our procedure for determining
whether or not type confusion is possible between two
message typesR andS, that is, whether it is possible
for a verifier to mistake a message of typeR generated
by some principal for a message of typeS generated by
that same principal , whereR is a message type local
to the generator, andS is a message type local to the
verifier. But, in order for this to occur, the probability
of R u S must be nontrivial. For example, consider a
case in whichR is a type local to and under the control
of Alice consisting of a random variable 64 bits long,
andS consists of another random 64-bit variable local
to and under the control of Bob. It is possible thatRuS
holds, but the probability that this is so is only1=264. On
the other hand, ifR is under the control of the intruder,
then the probability that their support is non-empty is
one. Thus, we need to choose a threshold probability,
such that we consider a type confusion whose probabil-
ity falls below the threshold to be of negligible conse-
quence.

Once we have chosen a threshold probability, our
strategy will be to construct a “zipper”between the two
message types to determine their common support. We
will begin by finding the first type ofR and the first type
of S, and look for their intersection. Once we have done
this, for each element in the common support, we will
look for the intersection of the next two possible types
of R andS, respectively, and so on. Our search will
be complicated, however, by the fact that the matchup
may not be between types, but between pieces of types.
Thus, for example, elements of the first type ofR may
be identical to the prefixes of elements of the first type
of S, while the remainders of these elements may be

identical to elements of the second type ofR, and so
forth. So we will need to take into account three cases:
the first, where two types have a nonempty intersection,
the second, where a type fromR (or a set of remainders
of types fromR) has a nonempty intersection with a
set of prefixes from the second type ofS, and the third,
where a type fromS (or a set of remainders of types
from S) has a nonempty intersection with a set of pre-
fixes from the second type ofR. All of these will im-
pose a constraint on the relative lengths of the elements
of the types fromS andR, which need to be taken into
account, since some conditions on lengths may be more
likely to be satisfied than others.

Our plan is to construct our zipper by use of a tree in
which each node has up to three possible child nodes,
corresponding to the three possibilities given above. Let
R andS be two message types, and letp be a number
between 1 and 0, such that we are attempting to deter-
mine whether the probability of constructing a type con-
fusion betweenR andS is greater thanp. We define a
tertiary tree of sept-tuples as follows. The first entry of
each sept-tuple is a setU of tripleshx; �y; �zi, wherex is
a bit-string and�y = hy1; :::; yni and �z = hz1; :::; zmi
such thaty1jj:::jjyn = z1jj:::jjzm = x. We will call
U the supportof the node. The second and third en-
tries aren andm postfix message types, respectively.
The fourth and fifth are message types or prefix mes-
sage types. The sixth is a probabilityq. The seventh is
a set of constraints on lengths of types. The root of the
tree is of the formh�;R;S; hi; hi; 1; Di, whereD is the
set of length constraints introduced byR andS.

Given a node,hU;H; I;J ;K; q; Ci, we construct up
to three child nodes as follows:

1. The first node corresponds to the case in which a
term from H can be confused with a term from
I. Let T be the set of allhx; �y; �zi 2 U such that
P (H(�y) \ I(�z) 6= �) � q > p. Then, ifT is non-
empty, we construct a child node as follows:

a. The first element of the new tuple is the set
T 0 of all hx0; �y0; �z0i such that there exists
hx; �y; �zi 2 T such thatx0 = xjjy1, where
y1 2 Hn(�y), �y0 = append(�y; hy1i), and
�z0 = append(�z; hy1i);
Note that, by definitiony1 is an element of
I(�z) as well asH(�y).

b. The second element is the (n+1)-postfix
message typeHbWR, where WR =
f�y0jhx0; �y0; �z0i 2 T 0g;

c. The third element is the (m+1)-
postfix message typeIbWS , where

WS = f�z0jhx0; �y0; �z0i 2 T 0g;

d. The fourth element is(J]Hn)dVR, where
VR = f�yjhx; �y; �zi 2 Tg;

e. The fifth element is(K]Im)dVS , whereVS =
f�zjhx; �y; �zi 2 Tg;

f. The sixth element ismax(fP (Hn(�y) \
Im(�z) 6= � j 9xs:t:(x; �y; �z) 2 T)g) � q, and;

g. The seventh element isC [fc1g, wherec1 is
the constraintlength(Hn) = length(In).

We call this first node thenode generated by the
constraintlength(Hn) = length(Im).

2. The second node corresponds to the case in which
a type fromH can be confused wit prefix of a type
from I.

LetT be the set of allhx; �y; �zi such thatP (Hn(�y)u
Pre(Im)(�z)) � q > p. Then, ifT is non-empty, we
construct a child node as follows:

a. The first element of the new tuple is the set
T 0 of all hx0; �y0; �z0i such that there exists
hx; �y; �zi 2 T such thatx0 = xjjy1, where
y1 2 Hn(�y), �y0 = append(�y:hy1i), and
�z0 = append(�z; hy1i);
Note that, in this casey1 is an element of
Pre(Im)(�z)) as well.

b. The second element is the (n+1)-postfix
message typeHbWR, where WR =
f�y0jhx0; �y0; �z0i 2 T 0g;

c. The third element is the m-postfix mes-
sage typeSplit(I)bWS , where WS =
f�z0jhx0; �y0; �z0i 2 T 0g;

d. The fourth element is(J]Hn)dVR, where
VR = f�yjhx; �y; �zi 2 Tg;

e. The fifth element is (K]P re(Im))dVS ,
whereVS = f�zjhx; �y; �zi 2 Tg;

f. The sixth element of the tuple is
max(fP (Hn(�y) u Pre(Im)(�z) j
9xs:t:(x; �y; �z) 2 T))g) � q, and;

g. The seventh element isC [fc1g, wherec1 is
the constraintlength(Hn) < length(Im).

We call this node thenode generated by the con-
straint length(Hn) < length(Im).

3. The third node corresponds to the case in which a
prefix of a type fromH can be confused with a type
from I.

Let T be the set of allhx; �y; �zi in Usuch that
P (Pre(Hn)(�y) u I(�z)) � q > p. Then, if T is
nonempty, we construct a child node as follows:

a. The first element of the new tuple is the set
T 0 of all hx0; �y0; �z0i such that there exists
hx; �y; �zi 2 T such thatx0 = xjjy1, where
y1 2 Pre(Hn)(�y), �y0 = append(�y; hy1i),
and�z0 = append(�z; hy1i;
Note that, in this casey1 is an elementIm(�z)
as well.

b. The second element is the n-postfix mes-
sage typeSplit(H)bWR, where WR =
f�y0jhx0; �y0; �z0i 2 T 0g ;

c. The third element is the (m+1)-postfix
message typeIbWS , where WS =
f�z0jhx0; �y0; �z0i 2 T 0g;

d. The fourth element is(J]P re(Hn)))dVR,
whereVR = f�yjhx; �y; �zi 2 Tg;

e. The fifth element is(K]Im)dVS , whereVS =
f�zjhx; �y; �zi 2 Tg;

f. The sixth element ismax(fP (Pre(Hn)(�y)u
Im(�z)) j 9xs:t:(x; �y; �z) 2 T)g) � q, and;

g. The seventh element isC [fc1g, wherec1 is
the constraintlength(Hn) > length(Im).

We call this node thenode generated by the con-
straint length(Hn) > length(Im).

The idea behind the nodes in the tree is as follows.
The first entry in the sept-tuple corresponds to the part
of the zipper that we have found so far. The second and
third corresponds to the portions ofR andS that are
still to be compared. The fourth and fifth correspond to
the portions ofR andS that we have compared so far.
The sixth entry gives an upper bound on the probabil-
ity that this portion of the zipper can be constructed by
an attacker. The seventh entry gives the constraints on
lengths of fields that are satisfied by this portion of the
zipper.

Definition 5.1 We say that a zippersucceedsif it con-
tains a nodehU; hi; hi;J ;K; q; Ci.

Theorem 5.1 The zipper terminates for bounded mes-
sage types, and, whether or not it terminates, it succeeds
if there are any type confusions of probability greater
than p. For bounded message types, the complexity is
exponential in the number of message fields.

6 An Example: An Analysis of
GDOI

In this section we give a partial analysis of the signed
messages of a simplified version of the GDOI protocol.

There are actually three such messages. They are: the
POP signed by the group member, the POP signed by
the GCKS, and the Groupkey Push Message signed by
the GCKS. We will show how the POP signed by the
GCKS can be confused with the Groupkey Push Mes-
sage.

The POP is of the formNONCEA; NONCEB
whereNONCEA is a random number generated by
a group member, andNONCEB is a random number
generated by the GCKS. The lengths ofNONCEA and
NONCEB are not constrained by the protocol. Since
we are interested in the types local to the GCKS, we
haveNONCEA the type consisting of all numbers, and
NONCEB the type local to the GCKS consisting of the
the single nonce generated by the GCKS.

We can thus define the POP as a message type local
to the GCKS as follows:

1. R(hi) = NONCEA whereNONCEA is the
type under the control of the intruder consisting of
all numbers, and;

2. R(hy1i) = NONCEB whereNONCEB is a
type under control of the GCKS.

We next give a simplified (for the purpose of expo-
sition) Groupkey Push Message. We describe a version
that consists only of the Header and the Key Download
Payload:
NONCEH ; kd;MESSAGE LENGTH; sig;

KDLENGTH;KDHEADER;KEY S
The NONCEH at the beginning of the header is

of fixed length (16 bytes). The one-byte kd field
gives the type of the first payload, while the 4-byte
MESSAGE LENGTH gives the length of the mes-
sage in bytes. The one-byte sig field gives the type
of the next payload (in this case the signature, which
is not part of the signed message), while the 2-byte
KDLENGTH gives the length of the key download
payload. We divide the key download data into two
parts, a header which gives information about the keys,
and the key data, which is random and controlled by the
GCKS. (This last is greatly simplified from the actual
GDOI specification).

We can thus define the Groupkey Push Message as the
following message type local to the intended receiver:

1. S(hi) = NONCEH whereNONCEH is the
type consisting of all 16-byte numbers;

2. S(hx1i) = fkdg;

3. S(hx1; x2i) = MESSAGE LENGTH , where
MESSAGE LENGTH is the type consisting of
all 4-byte numbers;

4. S(hx1; x2; x3i) = fsigg;

5. S(hx1; x2; x3; x4i) = KDLENGTH , where
KDLENGTH is the type consisting of all 2-byte
numbers;

6. S(hx1; x2; x3; x4; x5i) = KDHEADER, where
the typeKDHEADER consists of all possi-
ble KD headers whose length is less thanx3 �
length(x1jjx2jjx3jjx4jjx5) and the value ofx5.

7. S(hx1; x2; x3; x4; x5; x6i) = KEY S, where
KEY S is the set of all numbers whose length is
less thanx3 � length(x1jjx2jjx3jjx4jjx5jjx6) and
equal tox5 � length(x6). Note that the second
constraint makes the first redundant.

All of the above types are local to the receiver, but
under the control of the sender.

We begin by creating the first three child nodes.
All three cases length(y1) = length(x1), length(y1) <
length(x1), and length(y1) > length(x1), are non-trivial,
sincex1 2 NONCEH is an arbitrary 16-byte number,
and y1 2 NONCEA is a completely arbitrary num-
ber. Hence the probability ofNONCEAuNONCEB
is one in all cases. But let’s look at the children of
these nodes. For the node corresponding to length(y1)
= length(x1), we need to comparex2 andy2. The term
x2 is the payload identifier corresponding to “kd”. It
is one byte long. The termy2 is the random nonce
NONCEB generated by the GCKS. Sincey2 is the
last field in the POP, there is only one possibility;
that is, length(x2) < length(y2). But this would re-
quire a member ofPre(NONCEB) to be equal to
“kd”. SinceNONCEB is local to the GCKS and un-
der its control, the chance of this is1=28. If this is
not too small to worry about, we construct the child
of this node. Again, there will be only one, and it
will correspond to length(x3) < length(y2) - length(x2).
In this case,x3 is the apparently arbitrary number
MESSAGE LENGTH . But there is a nontriv-
ial relationship betweenMESSAGE LENGTH and
NONCEB , in thatMESSAGE LENGTH must de-
scribe a length equal toM +N , whereM is the length
of the part ofNONCEB remaining after the point at
which MESSAGE LENGTH appears in it, andN
describes the length of the signature payload. Since both
of these lengths are outside of the intruder’s control, the
probability that the first part ofNONCEB will have
exactly this value is1=216. We are now up to a proba-
bility of 1=224.

When we go to the next child node, again the only
possibility is length(x4) < length(y2) - length(x3) -

length(x2), and the comparison in this case is with the
1-byte representation of “sig”. The probability of type
confusion now becomes1=232. If this is still a concern,
we can continue in this fashion, comparing pieces of
NONCEB with the components of the Groupkey Push
Message until the risk has been reduced to an accept-
able level. A similar line of reasoning works for the
case length(y1) < length(x1).

We now look at the case length(y1)> length(x1), and
show how it can be used to construct the attack we men-
tioned at the beginning of this paper. We concentrate
on the child node generated by the constraint length(y1)
- length(x1) > length(x2). Sincey1 2 NONCEA
is an arbitrary number, the probability thatx2 can be
taken for a piece ofy1, given the length constraint, is
one. We continue in this fashion, until we come to the
node generated by the constraint length(x7)<length(y1)
-
P5

i=1
xi. The remaining field of the Groupkey Pull

Message,x7 2 KEY S is an arbitrary number, so the
chance that the remaining field of the POP,y2 together
with what remains ofy1, can be mistaken forx7, is one,
since the concatenation of the remains ofy1 with y2, by
definition, will be a member of the abitrary setKEY S.

7 Conclusion and Discussion

We have developed a procedure for determining whether
or not type confusions are possible in signed messages
in a cryptographic protocol. Our approach has certain
advantages over previous applications of formal meth-
ods to type confusion; we can take into account the pos-
sibility that an attacker could cause pieces of message
fields to be confused with each other, as well as entire
fields. It also takes into account the probability of an at-
tack succeeding. Thus, for example, it would catch mes-
sage type attacks in which typing tags, although present,
are so short that it is possible to generate them randomly
with a non-trivial probability.

Our greater generality comes at a cost, however. Our
procedure is not guaranteed to terminate for unbounded
message types, and even for bounded types it is expo-
nential in the number of message fields. Thus, it would
have not have terminated for the actual, unsimplified,
GDOI protocol, which allows an arbitrary number of
keys in the Key Download payload, although it still
would have found the type confusion attacks that we de-
scribed at the beginning of this paper.

Also, we have left open the problem of how the
probabilities are actually computed, although in many
cases, such as that of determining whether or not
a random number can be mistaken for a format-

ted field, this is fairly straightforward. In other
cases, as in the comparison betweenNONCEB and
MESSAGE LENGTH from above, things may be
more tricky. This is because, even though the type of
a field is a function of the fields that come before it
in a message, the values of the fields that come after it
may also act as a constraint, as the length of the part of
the message appearing afterMESSAGE LENGTH
does on the value ofMESSAGE LENGTH .

Other subtleties may arise from the fact that other
information that may or may not be available to
the intruder may affect the probability of type con-
fusion. For example, in the comparison between
MESSAGE LENGTH and NONCEB , the in-
truder has to generateNONCEA before it sees
NONCEB . If it could generateNONCEA after it
sawNONCEB , this would give it some more con-
trol over the placement ofMESSAGE LENGTH
with respectt to NONCEB . This would in-
crease the likelyhood that it would be able to force
MESSAGE LENGTH to have the appropriate
value.

But, although we will need to deal with special cases
like these, we believe that, in practice, the number of dif-
ferent types of such special cases will be small, and thus
we believe that it should be possible to narrow the prob-
lem down so that a more efficient and easily automat-
able approach becomes possible. In particular, a study
of the most popular approaches to formatting crypto-
graphic protocols should yield some insights here.

8 Acknowledgements

We are greatful to MSec and SMuG Working Groups,
and in particular to the authors for the GDOI protocol,
for many helpful discussions on this topic. This work
was supported by ONR.

References

[1] J. Alves-Foss. Provably insecure mutual authentica-
tion protocols: The two party symmetric encryption
case. InProc. 22nd National Information Systems
Security Conference., Arlington, VA, 1999.

[2] Mark Baugher, Thomas Hardjono, Hugh Harney,
and Brian Weis. The Group Domain of In-
terpretation. Internet Draft draft-ietf-msec-gdoi-
04.txt, Internet Engineering Task Force, February
26 2002. available at http://www.ietf.org/internet-
drafts/draft-ietf-msec-gdoi-04.txt.

[3] D. Harkins and D. Carrel. The Internet Key
Exchange (IKE). RFC 2409, Internet Engineer-
ing Task FOrce, November 1998. available at
http://ietf.org/rfc/rfc2409.txt.

[4] James Heather, Gavin Lowe, and Steve Schneider.
How to prevent type flaw attacks on security proto-
cols. InProceedings of 13th IEEE Computer Secu-
rity Foundations Workshop, pages 255–268. IEEE
Computer Society Press, June 2000. A revised ver-
sion is to appear in theJournal of Computer Secu-
rity.

[5] John Kelsey and Bruce Schneier. Chosen interac-
tions and the chosen protocol attack. InSecurity
Protocols, 5th International Workshop April 1997
Proceedings, pages 91–104. Springer-Verlag, 1998.

[6] D. Maughan, M. Schertler, M. Schneider, and
J. Turner. Internet Security Association and Key
Management Protocol (ISAKMP). Request for
Comments 2408, Network Working Group, Novem-
ber 1998. Available at http://ietf.org/rfc/rfc2408.txt.

[7] Catherine Meadows. Analyzing the Needham-
Schroeder public key protocol: A comparison of
two approaches. InProceedings of ESORICS ’96.
Springer-Verlag, 1996.

[8] Einar Snekkenes. Roles in cryptographic protocols.
In Proceedings of the 1992 IEEE Computer Security
Symposium on Research in Security and Privacy,
pages 105–119. IEEE Computer Society Press, May
4-6 1992.

