In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

An Infrastructure for Secure Interoperability of Agents

(Position Statement)
Ramesh Bharadwagj, Judith Froscher, Amit Khashnobish, James Tracy
Center for High Assurance Computer Systems
Naval Research Laboratory
Washington DC 20375
{ ramesh, froscher, amith, tracy} @itd.nrl.navy.mil

Introduction

Bui l ding distributed applications is
difficult. Therefore, it is hardly
surprising that in spite of all the
hoopl a surroundi ng the Internet and
distributed conputing, truly
distributed applications are few and
far between. The problem seens to be
with the tools available to

devel opers of distributed
applications. For exanple, the nost
wi dely used mechani sm for distributed
conputation is the renote procedure
call (RPC), the first inplenmentation
of which dates back to the early
"80s. Typically, a renote procedure
call is executed on a server on
behal f of a client (the so-called
“client-server” model). It is hardly

surprising therefore that most

distributed applications today are

exclusively based on the client-

server architecture. A lot can be

(and has been) accomplished with this
architecture, as exemplified by the

World Wide Web and HTTP, a protocol

that implements RPC. However, the
client-server model has a number of

limitations. There are problems of

fault tolerance, load balancing,

survivability, dynamic

reconfiguration, rollover recovery,

and distribution of control.

Attempts in the past to break through

this bottleneck have had only limited

success.

More recently, there has been an
emerging body of work in the area
broadly known as Peer-to-Peer (P2P)
distributed application frameworks.
Many major organizations, both in
industry and academia, have been
jumping on the P2P bandwagon.
However, as with other emerging

technologies, these companies and
organizations are paying scant
attention to security (an exception
seems to be the JXTA consortium being
put together by Sun Microsystems).

In our opinion, rather than trying to
make these systems secure as an
afterthought, it would be much better

if organizations think of security

from the ground-up.

Why Software Agents?

It is widely acknowledged that
intelligent software agents are
central to the development of the
capabilities required to write

robust, re-configurable, and
survivable distributed applications.
This is because agents are an
efficient, effective, and survivable
means of information distribution and
access. Agents are efficient because
only relevant information needs to be
passed along. Agents are effective
because they allow local control over
updates and the dissemination of
data. Agents are more survivable
because their control is distributed.
This new technology, which includes
both autonomous and mobile agents,
addresses many of the challenges
posed by distribution of applications
and is capable of achieving the
desired quality of service, most
notably over unreliable, low-
bandwidth communication links.
However, agent technology carries
with it associated security
vulnerabilities. Distributed
computing in general carries with it
risks such as denial of service,
Trojan horses, information leaks, and
malicious code. Agent technology, by
introducing autonomy and code
mobility, may exacerbate some of
these problems. In particular, a

In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

mal i ci ous agent coul d do serious
damage to an unprotected host, and
mal i ci ous hosts coul d damage agents
or corrupt their data. Such threats
becone very real in a distributed
conputing environnent, in which a
mal i ci ous intruder nmay be actively
trying to di srupt conmunications.

The goal of the Secure Agents

M ddl eware (SAM project is to

provi de the required degree of trust
in addition to neeting a set of

achi evabl e security requirenents.
Such an infrastructure is central to
t he successful depl oynment and
transfer of agent technology to

i ndustry because security is a
necessary prerequisite for

di stributed conputing. To nmake agent -
based systens economically viable, it
is inperative that their devel opnment,
upgrade, integration, testing,
certification, and delivery be rapid
and cost-effective. However, immense
and profound chal | enges of software
trustworthiness remain. Commercially
avai | abl e nmet hods and tools for
sof t war e devel opnment are not
sufficient to neet the chall enges
posed by the distribution of
processing functions, real-tine and
non-real -tine integration, nulti-

| evel security, and issues
characteristic of COTS products, such
as nalicious code, viruses, worns,
and Trojan horses.

Technical Approach

The Secure Agents M ddl eware (SAM
and its associ ated Agent Creation
Environment (ACE) are explicitly
designed to solve the security

probl ens descri bed above and ot her
rel ated problens of agent creation
and depl oynment. Although security is
our primary concern, we also address
probl enms of efficiency, robustness,
and usability. To support usability,
ACE provi des agent tenplates and
other visual aids to ease the agent
creation process.

The following are highlights of the
functionality provided by SAM ACE:

e SAM provi des rol e-based access
control and managenent in
addition to trust nanagemnent.

e SAM i ncl udes functions for
i ntrusion detection and
t ol erance.

e SAMis designed for
survivability and supports
Mul ti-Level Secure (M.S) access
and aut henti cati on.

* ACE uses SADL (Secure Agent
Descri ption Language), a
flexi ble and powerful notation
in which to express the rules
(i.e., the logic) of agents.

e The notation SADL and its
associ ated user-friendly agent
creation tenplates include a
notation for specifying
security and safety properties.

We plan to devel op an open source
conpliance checker (CC) which will
prove conpliance of agents with
policies and goals. By ensuring that
security properties are satisfied and
that an agent behaves as specified,
we address the issue of agent
integrity. The architecture of SAM
i nproves efficiency because the fl ow
of information between hosts is
optim zed. This is because our
representation of information is
finer grained than current
architectures based on distributed
obj ects, where information
granularity is at the object |evel.
We gain efficiency and better utilize
bandwi dth by a controlled exchange of
i nformation between networked hosts.
Al so, because our agents are
conposabl e and nodul ar, ACE can
eval uate energent behavi or of agent
comunities, which is generally not
possi ble in the absence of a
conponent aggregation franmework.

This capability enables early
detection and prevention of an

organi zed, cooperative attack on a

di stributed conputing environnent in
whi ch each agent perforns sone action
that falls beneath the threshold of
nost anal ysis techni ques, but effects
serious damage as a distributed
attack. Currently these types of

vul nerabilities have defied anal ysis.

In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,

July 2002.
Host Agent
ents
0 0 0 075
n
C
Agent r Host
Interpreter y\ O O O O Agents
p E
t n
(Encrypt] — 15 Agent
% Interpreter
t
Host \]
Encrypt E
[n
c
r
Agent y
Interpreter p
t
Agents © O O O —
Figure 1
Figure 1 shows the architecture of I i ghtwei ght protocol, its overhead is

SAM Agents are distributed over

one or nore Hosts, each of which runs
one or nore Agent Interpreters (Als),
that execute agents in conpliance
with a set of Security Policies.
Agents are created using special-

pur pose tenplates in ACE (not shown),
and are translated into SADL. Agents
may be created on any host. Agent

I nterpreters comuni cate anong

t hemsel ves using a |ightweight
protocol such as XM/ SCAP, over
secure channels, with strong
encryption using a public key
infrastructure (PKI). SOAP is
particul arly appealing because it can
support both HTTP as well as SMIP
protocols for transporting XM. data
and netadata. Al so, because SOAP is a

not as high as the overhead of other

i nter-object protocols such as CORBA
I1OP. Hosts will initially run a COTS
operating system such as Solaris or
Wndows XP, but will eventually
transition to a trusted operating
system such as secure Linux (a
product of NSA) or secure Solaris, or
alternately use NAlI's DTE (Domai n
Type Enforcenent). We will also

i nvestigate the use of other secure
COTS conponents such as the secure
Java Virtual Machine and ot her secure
interpreters, as well as secure
protocols for using the public key
infrastructure to distribute keys
anong interpreters and for

aut henti cation of agents.

In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

Requirements for Secure Mobile
Agents

Security is a fundamental concern of

SAM By building security fromthe

ground-up into SAM we gain

efficiency by identifying and dealing

with potential bottl enecks early,

i.e., at the design stage. SAM

provi des an efficient architecture

and ensures security by elimnating

unnecessary and/or insecure

conmuni cati on anong agents and

interpreters. Qur classification of

requi renents for secure nobil e agents

is from “Security for Mobile Agents:

Issues and Requirements," by William

N. Farmer, Joshua D. Guttman, and

Vipin Swarup, of The MITRE

Corporation, Bedford, MA.

The NRL SAM project addresses the

following security requirements:

e The author and sender of an
agent must be authenticated.
In SAM, code distribution is distinct from
agent mobility. Consequently, the issue of
code tampering by possibly compromised
hosts is addressed. This is in contrast to
other mobile-agent based systems, such
as Dartmouth’s D’Agents, which do not
make this distinction. In D’Agents, both
the code as well as the data move
together between hosts. Moreover, this
movement is over an unsecure channel
and without certificates or signatures.
Therefore, a compromised host has the
ability to tamper with the agent without
being detected.
e The correctness of an agent's

code must be checked.

* Interpreters must ensure that
agent privacy is maintained
during transmission.

e Authentication and
authorization: Interpreters
must protect themselves against
malicious agents by first
authenticating the agent and
checking that its proposed
activities are authorized.

* Agents must be created in a
language that supports the
development of safe programs.
We use SADL, a language that can
ensure agent safety. All analyzed and
verified SADL programs are guaranteed
to have no unbounded loops, violations of
array index bounds, etc. This will make
attacks such as Denial of Service (DOS)
and malicious code propagation much
harder in the SAM environment.
e A sender must have control over
an agent's flexibility; e.g.,
restrict or increase an agent's
authorization in particular
situations.
* Aninterpreter must ensure that
an agent is in a safe state.
Because a migrating agent can become
malicious, each agent must be equipped
with an appropriate state appraisal
function to be used each time an
interpreter starts an agent. This will
ensure that an agent will perform as
required and has not been tampered with
in a malicious way. Agent creators will be
provided with appropriate static analysis
tools that will ensure that the state
appraisal function satisfies key safety and
security properties.
e A sender must have control over
which interpreters have the
authority to execute an agent.
Currently, protecting agents from
malicious hosts is an area of ongoing
research. Therefore, in our initial
implementation, we shall assume a
degree of trust among the hosts.
This is reasonable in a large
organization such as the Department
of Defense where it may be assumed
that other policing methods and
techniques for intrusion detection
and tolerance will identify and sift
out casual intruders and
eavesdroppers. We plan to address
the more general problem of agent
protection in our future research.

In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,
July 2002.

SAM Architecture

Figure 2 shows the architecture of
SAM One of the unique features of
this architecture is that we harness
the power and flexibility afforded by
agent technol ogy to our advantage,
thereby aneliorating the associated
security and safety vulnerabilities.
We acconplish this by introducing a
speci al class of agents called
security agents to police other

cl asses of agents (called secure
agents) such as application agents
devel oped to support a distributed
SIGA NT system Security agents
protect a system against Information
Operations (10 attacks by

i npl enenting key security features

such as encryption, authorization,
policy enforcenent, virus checking,
survivability, and intrusion
detection. Since security agents have
nore privileges than other agents, we
need hi gher assurance during

devel opnent and depl oynent to ensure
the safe and secure behavior of
security agents. As outlined
previously, we achieve this with a

t hree- pronged approach: (1) W
specify agents in SADL - alanguage

for high assurance. (2) We use the

compliance checker to establish

formally the compliance of agent

behavior with the local security

policies. (3) We implement a security

architecture for monitoring and

coordinating agents’ activities.

Application

SECURITY
MANAGEMENT

SURVIVABILITY

SECURITY AGENTS SERVICE AGENTS
AGENT INTERPRETER

Security Bldg. Blocks
* cryptographic products
* key management
* authentication
* virus checkers
e downgraders & upgraders

Transport Bldg. Blocks

*CORBA/IIOP
« XML/SOAP
« TCP/IP

Figure 2

In Proc. Sxth World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida,

July 2002.
In the initial phase of th@ s project * Secure, safe mobility of agent
we shall assune the follow ng: code.
Al agent interpreters will run
agents correctly
e Hosts will run all agents to .
conpl et i on J Operational Payoff
« Hosts will transfer agents as The goal of the NRL secure agents
request ed project is to develop enabling
« Anagent's code and data cannot technology that will provide the

necessary security infrastructure to
deploy and protect time and mission-
critical applications on a

distributed computing platform. Our
intention is to create a robust and
survi vabl e information grid that will
be capable of resisting threats and
surviving attacks. One of the

criteria on which this technology

will be judged is that critical
information is conveyed to principals
in a manner that is secure, safe,

. timely, and reliable. No malicious
Project Goals agencies or other threats should be

In this project, we address the Qb'e to compromise the in'gegrity or
following technical issues: timeliness of delivery of this

be kept private and will be
readable by all agent
interpreters
e Agents do not carry secret keys
* Agent-to-agent communication
cannot be kept private from
agent interpreters.

We will address these important
technical issues in later phases of
the project.

: . information.
« Ensuring consistency of agent
behavior
e Design and implementation of SADL:

- Making SADL specifications Acknowledgements
composable, consistent, safe, This project was funded by the Office
and secure. of Naval Research. The authors wish

- Proving application properties to thank Connie Heitmeyer, Cathy
of SADL specifications. Meadows,and John McLean for many

» Responsibilities of Security useful discussions pertaining to the

Agents: NRL Secure Agents project, and Eric

- Authorization agents Tressler for his very useful comments

- Crypto assist agents on previous drafts of this

- Policy enforcement agents manuscript. The authors also thank

- Secure agents monitoring Connie Heitmeyer for using her

- Raising exceptions PowerPoint skills in composing the

- Establishing trust in these architectural drawing of Figure 2.

privileged agents
« Application-specific security
agents:
- Intrusion detection
- Application monitoring
- Survivability (adaptability)
- Infrastructure monitoring
» Development of a “common 1/O
Picture” for secure agents:
- Making sure security agents
enforce a consistent security

policy

