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Retrospective
1
  

In the late 1970’s and early 1980’s, the military 

conducted an experiment (the Military Message 

Experiment, or MME) to investigate replacing existing 

message systems in use at CINCPAC that were based on 
the AUTODIN system, with local distribution of copies 

via a pneumatic tube system, with a new system based on 

the ARPANET and e-mail that provided a simulated 

multilevel secure (MLS) interface.  At the same time, 

research was underway to develop multilevel secure 

operating systems.  Experiences with both the MME and 
with prototype MLS systems led to research conducted at 

the Naval Research Laboratory to specify and prototype a 

family of military message systems (MMS) based on 

software engineering principles and on specifying the 

desired security behavior at the application level, rather 
than at the operating system level. The resulting security 

model was published as an NRL technical report and 

subsequently in ACM Transactions on Computer Systems 

in August, 1984.   

The approach to developing informal security models 

presented here remains quite relevant. Efforts to develop 
assurance arguments for today’s systems can in many 

cases be related to the approach taken in this work [25]. 

This paper was the first in an archival journal to 

present a security model based on application 

requirements as opposed to operating system structure.  It 

argues that this is the appropriate orientation for a security 
model that is to be understood by users, and it presents a 

framework for developing and expressing security models 

informally, using natural language, and then formalizing 

the result.  The informal model is accessible to users, 

while the formal model provides the precision needed for 

designing a system and determining whether an 
implementation enforces the model.   

The example presented, developed in the context of 

military message systems, includes a number of concepts 

that are appropriate for other applications as well.  Among 
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draws on an introduction written when the paper was anthologized in 
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these are the concepts of roles—job-related sets of 

permissions—and of multilevel object—an object (here 

termed a container) that has a security level of its own and 

also encloses other objects that retain their own security 
levels.   

Each user had an allowed set of roles, and the access 

controls on objects in the system could include roles as 

well as userIDs.  A user could occupy one or more roles at 

a time, and some roles could be occupied only by a single 

user at a given time.  These constraints were based on the 
observed needs of operational message systems to support 

one person acting for another as shifts and watches 

change, and for a single point of control (though not 

necessarily a single individual) for operations like 

message release. 
The approach to multilevel objects exploits an analogy 

with the physical world of safes, file folders, and 

documents to provide a model that application users can 

understand, and in which they can apply their intuition 

about familiar objects.  Subsequent work has debated 

whether multilevel objects need to be reflected in the 
abstractions provided by operating systems, but their 

appeal to users seems beyond question. In fact, much of 

the work reported in this paper can fit quite naturally into 

the framework provided by object-oriented databases. 

An informal model has four parts:  definitions of terms 

used in the model, a brief prose description of system 
operation from the security viewpoint, a set of 

assumptions, and a set of assertions. Assumptions are 

statements that must be true if system security is to be 

preserved, but that cannot be maintained by the computer 

system itself.  For example, users entering message text 

must be relied on to classify the input properly.  
Assertions are statements that must be true for system 

security to be preserved and that the computer system can 

enforce.   

It is the assertions of the model that are re-stated 

formally. In contrast with the structure of most other 
security models, security assertions apply without 

exception to all system users and entities.  The formal 

statement of the model's assertions is notable for being 

based on both information flow and access control and for 

being the first state-machine formalization to contain 

transition restrictions as well as state restrictions.   



Prior to its publication, a draft version of the security 

model formed the basis for a study of database security 

problems conducted under the auspices of the National 
Academy of Sciences in the early 1980’s to investigate 

problems in multilevel secure document handling 

systems.  In this context, the message system example 

was considered as a restricted version of a database 

management system.  

Many other technical reports and papers were 
produced by the SMMS research project, covering 

software design, implementation, and operation of 

prototype systems based on this model.  Some of these are 

included in the bibliography at the end of this paper [27-

38].  None of the prototypes made the transition to an 

operational system, but the ideas in this paper did 
influence the design of some classified operational 

systems.  The security modeling approach was 

subsequently applied to several operational systems as 

documented in [26]. 

The paper as presented below is substantially the same 

as published in ACM Transactions on Computer Systems, 
except for the correction of a few minor errors in the 

original publication. 

Abstract
2
 

Military systems that process classified information 

must operate in a secure manner; that is, they must 

adequately protect information against unauthorized 
disclosure, modification, and withholding. A goal of 

current research in computer security is to facilitate the 

construction of multilevel secure systems, systems that 

protect information of different classifications from users 

with different clearances. Security models are used to 

define the concept of security embodied by a computer 
system. A single model, called the Bell and LaPadula 

model, has dominated recent efforts to build secure 

systems but has deficiencies. We are developing a new 

approach to defining security models based on the idea 

that a security model should be derived from a specific 

application. To evaluate our approach, we have 
formulated a security model for a family of military 

message systems. This paper introduces the message 

system application, describes the problems of using the 

Bell-LaPadula model in real applications, and presents 

our security model both informally and formally. 
Significant aspects of the security model are its definition 

of multilevel objects and its inclusion of application-

dependent security assertions. Prototypes based on this 

model are being developed. 

Categories and Subject Descriptors: C.2.0 [Computer-

Communication Networks]: General--Security and 
protection; D.4.6 [Operating Systems]: Security and 

Protection--access controls; information flow controls; 
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verification; F.3.1 [Logics and Meaning of Programs]: 

Specifying and Verifying and Reasoning about Programs-

-assertions; invariants; specification techniques; H.4.3 
[Information Systems Applications]: Communications 

Applications--electronic mail 

General Terms: Security, Verification 

Additional Key Words and Phrases: Storage channels, 

message systems, confinement 

1 Introduction 

A system is secure if it adequately protects information 
that it processes against unauthorized disclosure, 

unauthorized modification, and unauthorized withholding 

(also called denial of service). We say "adequately" 

because no practical system can achieve these goals 

without qualification; security is inherently relative. A 

secure system is multilevel secure if it protects 
information of different classifications from users with 

different clearances; thus some users are not cleared for 

all of the information that the system processes. Security 

models have been developed both to describe the 

protection that a computer actually provides and to define 
the security rules it is required to enforce [14]. In our 

view, a security model should enable users to understand 

how to operate the system effectively, implementors to 

understand what security controls to build, and certifiers 

to determine whether the system's security controls are 

consistent with the relevant policies and directives and 
whether these controls are implemented correctly [13]. 

In recent years, the Bell and LaPadula model [4, 8], 

has dominated efforts to build secure systems. The 

publication of this model advanced the technology of 

computer security by providing a mathematical basis for 

examining the security provided by a given system. 
Moreover, the model was a major component of one of 

the first disciplined approaches to building secure 

systems. The model describes a secure computer system 

abstractly, without regard to the system's application. Its 

approach is to define a set of system constraints whose 

enforcement will prevent any application program 
executed on the system from compromising system 

security. The model includes subjects, which represent 

active entities in a system (such as active processes), and 

objects, which represent passive entities (such as files and 

inactive processes). Both subjects and objects have 
security levels, and the constraints on the system take the 

form of axioms that control the kinds of access subjects 

may have to objects. 

One of the axioms, called the *-property ("star-

property"), prohibits a subject from simultaneously 

having read access to one object at a given security level 
and write access to another object at a lower security 

level. Its purpose is to prevent subjects from moving data 

of a given security level to an object marked with a lower 



security level. Originally, the model applied this 

constraint to all subjects, since a subject might execute 

any arbitrary application program, and arbitrary programs 
executed without this constraint could indeed cause 

security violations. 

A system that strictly enforces the axioms of the 

original Bell-LaPadula model is often impractical: in real 

systems, users may need to invoke operations that, 

although they do not violate our intuitive concept of 
security, would require subjects to violate the *-property. 

For example, a user may need to extract an 

UNCLASSIFIED paragraph from a CONFIDENTIAL 

document and use it in an UNCLASSIFIED document. A 

system that strictly enforces the *-property would prohibit 

this operation. 
Consequently, a class of trusted subjects has been 

included in the model. These subjects are trusted not to 

violate security even though they may violate the *-

property. Systems based on this less restrictive model 

usually contain mechanisms that permit some operations 

the *-property prohibits, for example, the trusted 
processes in KS OS [17] and SIGMA [1]. The presence of 

such mechanisms makes it difficult to determine the 

actual security policy enforced by the system and 

complicates the user interface. 

To avoid these problems, we propose a different 
approach. Instead of starting with an application-

independent abstraction for a secure computer system and 

trying to make an application fit on top of it, we start with 

the application and derive the constraints that the system 

must enforce from both the functional and security 

requirements of the application. In this way, it is possible 
to construct a set of assertions that is enforced uniformly 

on all the system software. To evaluate our approach, we 

have formulated a security model for a family of military 

message systems. Defining an application-based security 

model is part of a larger effort whose goals are (1) to 

develop a disciplined approach to the production of secure 
systems and (2) to produce fully worked-out examples of 

a requirements document and a software design for such 

systems. In this paper, we introduce the message system 

application, discuss the Bell-LaPadula trusted process 

approach to building secure systems, and present a 
security model for military message systems both 

informally and formally. 

2 Requirements of Military Message 

Systems 

In recent years, automation has been applied 

increasingly to the handling of military messages [10]. 

While the primary purpose of military message systems is 

to process formal messages (i.e., official messages 
exchanged by military organizations), such systems may 

also handle informal messages (i.e., unofficial messages 

exchanged by individuals). Formal messages are 

transmitted over military networks, such as AUTODIN; 

their format and use is governed by military standards. 
Examples of informal messages are those currently 

supported by several message systems (e.g., HERMES 

[19]) available on the ARPA network. 

2.1 Functional Requirements 

Message system operations may be organized into 

three categories: operations on incoming messages, 

operations on outgoing messages, and message storage 

and retrieval. Operations in the first category permit a 

user to display and print messages he has received. 
Second-category operations support the creation, editing, 

and transmission of outgoing messages. Message storage 

and retrieval operations allow users to organize messages 

into message files and to retrieve messages via single keys 

(e.g., message id) or combinations of keys (e.g., subject 

and originator). Typically, military systems that process 
formal messages provide the same operations as systems 

that process informal messages plus several additional 

operations, such as distribution determination, action and 

information assignment, and release [10]. 

2.2 Security Requirements 

Each formal military message is composed of several 

fields, including To, From, Info, Date-Time-Group, 

Subject, Text, Security, and Precedence. A classification, 

such as UNCLASSIFIED or SECRET, is assigned to each 
field and to some subfields, for example, the paragraphs 

of the Text field; further, the overall message has a 

classification that is at least as high as that of any field or 

subfield. Thus, the Subject field of a message may be 

classified at a lower level than the message as a whole, 

and two paragraphs of the Text field may have different 
classifications. 

In some data processing applications, users process 

information at a single security level for long periods of 

time. In contrast, message system users often need to 

handle data of several classifications during a single 

computer session. For example, a user may wish to 
compose an unclassified message based in part on a 

previous classified message he has received. To 

accomplish this, he must simultaneously display the 

classified information and compose the unclassified 

message. As a further example, the user may wish to scan 
newly arrived messages and print only those that are 

unclassifed. To do so, he must display data of several 

different classifications and then print a hard copy only of 

the unclassifed data. 

Military message systems are required to enforce 

certain security rules. For example, they must insure that 
users cannot view messages for which they are not 



cleared. Unfortunately, most automated systems cannot be 

trusted to enforce such rules. The result is that many 

military message systems operate in "system-high" mode: 
each user is cleared to the level of the most highly 

classified information on the system. A consequence of 

system-high operation is that all data leaving the 

computer system must be classified at the system-high 

level until a human reviewer assigns the proper 

classification. 
A goal of our research is to design message systems 

that are multilevel secure. Unlike systems that operate at 

system-high, multilevel secure systems do not require all 

users to be cleared to the level of the highest information 

processed. Moreover, information leaving such a system 

can be assigned its actual security level rather than the 
level of the most highly classified information in the 

system. Unlike a system that operates at system-high, a 

multilevel system can preserve the different 

classifications of information that it processes. 

3 Experience with the Bell-Lapadula 

Model and Trusted Processes 

While its complete formal statement is lengthy and 
complex, the Bell-LaPadula model may be briefly 

summarized by the following two axioms: 

(a) the simple security rule, which states that a subject 

cannot read information for which it is not cleared ("no 

read up"), and 

(b) the *-property, which states that a subject cannot 
move information from an object with a higher security 

classification to an object with a lower classification ("no 

write down"). 

These axioms are to be enforced by restricting the 

access rights that subjects, for example, users and 

processes, have to objects, for example, files and devices. 
A less frequently described part of the Bell-LaPadula 

model is its concept of trusted subjects, that is, subjects 

that are allowed "to operate without the extra 

encumbrance of the *-property" because they are trusted 

"never [to] mix information of different security levels" 

[3]. More precisely, a trusted subject can have 
simultaneous read access to objects of classification x and 

write access to objects of classification y, even if the 

classification of y is less than the classification of x. The 

formal statement of the Bell-LaPadula model places no 

constraints on the trusted subject's violations of the *-
property. 

A number of projects have used the Bell-LaPadula 

model to describe their security requirements. In these 

projects, strict enforcement of the Bell-LaPadula axioms 

without trusted subjects has proved to be overly 

restrictive. Hence, trusted processes have been introduced 
as an implementation of the concept of trusted subjects. 

Below, we summarize experience with the Bell-LaPadula 

model and trusted processes in four projects: the Military 

Message Experiment (MME), the Air Force Data Services 

Center (AFDSC) Multics, the Kernelized Secure Oper-
ating System (KSOS), and the Guard message filter. 

3.1 MME 

The MME's goal was to evaluate the utility of an 

interactive message system in an operational military 
environment [23]. During the MME, more than 100 

military officers and staff personnel used SIGMA, the 

message system developed for the experiment, to process 

their messages [21, 22]. Although SIGMA was built on 

the nonsecure TENEX operating system, its user interface 
was designed as though it were running on a security 

kernel (i.e., a minimal, tamperproof mechanism that 

assures that all accesses subjects have to objects conform 

to a specified security model). SIGMA's user interface 

was designed so that it would not change if SIGMA were 

rebuilt to operate with a security kernel. During the 
planning phase of the MME, it was decided that SIGMA 

would enforce the Bell-LaPadula model [1]. This decision 

led to a number of difficulties, three of which are 

described below. The first problem arose from the initial 

decision, later changed, to adopt the model without 

trusted subjects; the other two problems apply to Bell-
LaPadula with or without trusted subjects. 

Prohibition of write-downs. The *-property of Bell-

LaPadula disallows write-downs; yet, in certain cases, 

message system users need to lower the classification of 

information. For example, a user may create a message at 

TOP SECRET, and, after he has entered the message text, 
decide that the message classification should be SECRET. 

A system that strictly enforces the *-property would 

prohibit a user from reducing the message classification. 

The user would be required to create a new message at 

SECRET and re-enter the text. 
Absence of multilevel objects. Bell-LaPadula 

recognizes only single-level objects; some message 

system data objects (e.g., messages and message files) are 

inherently multilevel. A computer system that treats a 

multilevel object as single-level can cause some 

information to be treated as more highly classified than it 
really is. For example, when a user of such a system 

extracts an UNCLASSIFIED paragraph from a SECRET 

message, the system labels the paragraph SECRET even 

though the paragraph is actually UNCLASSIFIED. 

No structure for application-dependent security rules. 

Military message systems must enforce some security 
rules that are absent in other applications. An example is a 

rule that allows only users with release authority to invoke 



the release operation3. Such application-dependent rules 

are not covered by Bell-LaPadula, and, hence, must be 

defined outside of it. 
To address the first problem (and, to some extent, the 

third), the SIGMA developers designed a trusted process 

that is not constrained by the *-property and is, therefore, 

permitted to perform write-downs. For example, a 

SIGMA user could search a file containing both 

UNCLASSIFIED and SECRET messages and then 
display an UNCLASSIFIED message whose citation was 

returned by the search; such an operation required the 

intervention of the trusted process since the message 

citation was transmitted from the SECRET process that 

did the search to the UNCLASSIFIED process that 

handled the message display. Unlike the Bell-LaPadula 
model, which puts no explicit constraints on write-downs 

performed by the trusted subjects, SIGMA's trusted 

process narrowly limited the cases in which write-downs 

were permitted. Ames [1] provides further details on the 

role of the trusted process in SIGMA. 

SiGMA's use of a trusted process was helpful in that it 
relaxed the rigid constraints of Bell-LaPadula, thus 

permitting users to perform required operations. However, 

adding the trusted process also caused a serious problem: 

it made the security policy that SIGMA enforced difficult 

to understand. Interviews held during the MME revealed 
that few SIGMA users clearly understood the security 

policy that was being enforced. It was an assumption of 

SIGMA's design that user confirmation of security-

relevant operations would prevent security violations. 

However, because users issued confirmations without 

comprehending why these confirmations were needed, 
this assumption was unwarranted. 

3.2 AFDSC Multics 

In the mid-1970s, Multics was modified to include the 
Access Isolation Mechanism (AIM). This version of 

Multics, which has been used at the ADFSC for several 

years, supports the assignment of security levels to 

processes and segments and enforces the Bell-LaPadula 

model. Multics-AIM also contains trusted functions, 

invoked via a special operating system gate, to enforce 
access control on objects smaller than a segment, to allow 

security officers to downgrade files in response to user 

requests, and to provide other "privileged" operations. 

Although Multics-AIM is generally considered a 

success, experience with it at the AFDSC illustrates some 

difficulties that arise from strict enforcement of the Bell-
LaPadula axioms and from the use of trusted functions. 

For example, if a user operating at the TOP SECRET 
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level wishes to send an UNCLASSIFIED message to 

another user operating at the SECRET level, Multics-AIM 

requires that the message be treated as though it were 
TOP SECRET. The recipient is not notified of its arrival 

until he logs in as a TOP SECRET user. 

Problems also occur when a user operating at a low 

security level tries to send mail to a user at a higher level. 

Mailbox segments in Multics-AIM are special: they have 

both a minimum and maximum access level. The 
minimum is defined by the level of the directory that 

contains the mailbox segment. Thus, a user operating at 

UNCLASSIFIED is prohibited from sending a message to 

a mailbox located in a SECRET directory. In this case, the 

mail could not be sent unless the sender were to log out 

and log back in at the SECRET level. Because this 
situation arises frequently, system administrators are 

allowed to invoke a trusted function that permits them to 

send mail without logging out and logging back in again. 

3.3 KSOS 

KSOS [17] was to be a security-kernel based system 

with a UNIX-compatible program interface on a DEC 

PDP-11. The KSOS security kernel was designed to 

strictly enforce the axioms of the Bell-LaPadula model on 

user-provided programs. To handle those situations where 
strict enforcement is incompatible with functional 

requirements, the kernel recognizes certain "privileges" 

that allow some processes to circumvent parts of this 

enforcement. These privileges include the ability to 

violate the *-property to change the security or integrity 

level [5] of objects, and to invoke certain security kernel 
functions. KSOS developers defined a special category of 

software, called Non-Kernel Security Related (NKSR), 

that supports such privileges. For example, the "Secure 

Server" of the KSOS NKSR allows a user to reduce the 

security level of files he owns and to print a file classified 
at a lower security level without raising the security level 

of the printed output to the level of this process. Both of 

these operations would be prohibited by strict 

enforcement of the Bell-LaPadula axioms. 

3.4 Guard 

The Guard message filter [24] is a computer system 

that supports the monitoring and sanitization of queries 

and responses between two database systems operating at 

different security levels. When a user of the less sensitive 
system requests data from the more sensitive system, a 

human operator of the Guard must review the response to 

ensure that it contains only data that the user is authorized 

to see. The operator performs this review via a visual 

display terminal. 

One version of the Guard is being built on a security 
kernel that enforces the axioms of the Bell-LaPadula 



model. However, strict enforcement of the *-property is 

not possible since a major requirement of the Guard 

system is to allow the operator to violate it, that is, to 
allow information from the more sensitive system to be 

sanitized and "downgraded" (or simply downgraded), so 

that it can be passed to systems that store less sensitive 

information. An important component of this version's 

design is the trusted process that performs this 

downgrading. 

3.5 Lessons Learned 

Experience has shown that, on one hand, the axioms of 

the Bell-LaPadula model are overly restrictive: they 
disallow operations that users require in practical 

applications. On the other hand, trusted subjects, which 

are the mechanism provided to overcome some of these 

restrictions, are not restricted enough. The formal model 

provides no constraints on how trusted subjects violate the 

*-property. Consequently, developers have had to develop 
ad hoc specifications for the desired behavior of trusted 

processes in each individual system. While such an 

approach relaxes the rigid enforcement of the *-property, 

it introduces two additional problems: 

(1) Use of the axioms in conjunction with trusted 

processes makes it difficult to determine the exact nature 
of the security rules that a system enforces. In the MME 

and the other three projects described, the security rules 

enforced by the system as a whole are not the same as the 

axioms of the model. The actual security rules enforced 

by each system include both the axioms of the Bell-

LaPadula model and the exceptions allowed by the trusted 
processes. 

(2) Because the actual policies in practical systems 

deviate from the Bell-LaPadula axioms, any inductive 

proof that such a system maintains a secure state, based 

on strict enforcement of the axioms of the model, is a 
proof about only part of the system and cannot apply to 

the entire system. Moreover, trusted subjects do not 

address directly4 the two other problem areas of the Bell-

LaPadula model discussed above, that is, its failure to 

support multilevel objects and its lack of a structure for 

including application-dependent security rules. 
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4 Military Message System (MMS) 

Security Model 

Our goal is to define a single, integrated security 

model that captures the security policy that a military 

message system must enforce, without mentioning the 
techniques or mechanisms used to implement the system 

or to enforce the policy. The security model defined 

below is intended to allow users to understand security in 

the context of message systems, to guide the design of 

military message systems, and to allow certifiers to 

evaluate such systems. The model presented here is 
informal; it is the basis for the formal model presented in 

the following section. 

In this section we define some terms, use them to 

describe how a user views the system's operation, and 

state assumptions and assertions, based on the terms and 

the user's view of operation, that are intended to be 
sufficient to assure the security of the system. The 

security model comprises the definitions, user's view of 

operation, the assumptions, and the assertions. It is a 

revision of earlier work [13, 16]. 

This model does not address auditing, although secure 
message systems clearly require auditing mechanisms. 

The existence of an audit trail may deter potential 

penetrators, but auditing is primarily a technique for 

providing accountability and for detecting security 

violations after the fact. The security model focuses on 

assertions that, if correctly enforced, will prevent security 
violations. Consequently, assertions and assumptions 

about auditing do not appear; in a more detailed system 

specification, auditing requirements would be explicit. 

 The model itself places no constraints on the 

techniques used to implement a military message system 

or to verify that a particular system correctly enforces the 
assertions of the model. An implementation based on a 

complete formal specification and proof of correctness 

would be as admissible as one based on a security kernel 

and trusted processes, or even one employing standard 

software engineering techniques for design, testing, and 

validation. By separating the statement of the security 
model from the concerns of implementation and 

verification, we can allow for advances in these areas 

without depending on them. 

4.1 Definitions 

The definitions below correspond in most cases to 

those in general use and are given here simply to establish 

an explicit basis for the model. We distinguish between 

objects, which are single-level, and containers, which are 

multilevel. We also introduce the concept of user roles, 
which define job-related sets of privileges.  



Classification5:  a designation attached to information 

that reflects the damage that could be caused by 

unauthorized disclosure of that information. A 
classification includes a sensitivity level 

(UNCLASSIFIED, CONFIDENTIAL, SECRET, or TOP 

SECRET) and a set of zero or more compartments 

(CRYPTO, NUCLEAR, etc.). The set of classifications, 

together with the relation defining the allowed 

information flows between levels, form a lattice [7]. Most 
dissemination controls, such as NATO, NOFORN, and 

NOCONTRACTOR, can be handled as additional 

compartment names. 

Clearance:  the degree of trust associated with a 

person. This is established on the basis of background 

investigations and the tasks performed by the person. It is 
expressed in the same way as classifications are, as a 

sensitivity level and a {possibly null) compartment set. In 

a secure MMS, each user will have a clearance, and 

operations performed by the MMS for that user may 

check the user's clearance and the classifications of 

objects to be operated on. Some other characteristics of a 
user, such as his nationality and employer, may also be 

treated as part of this clearance so that dissemination 

controls are handled properly. 

UserID:  a character string used to denote a user of the 

system. To use the MMS, a person must present a userID 
to the system, and the system must authenticate that the 

user is the person corresponding to that userID. This 

procedure is called logging in. Since clearances are 

recorded on the basis of one per userID, each user should 

have a unique userID. 

User:  a person who is authorized to use the MMS. 
Role:  the job a user is performing, such as 

downgrader, releaser, distributor, and so on. A user is 

always associated with at least one role at any instant, and 

the user can change roles during a session. To act in a 

given role, the user must be authorized for it. Some roles 

may be assumed by only one user at a time {e.g., 
distributor). With each role comes the ability to perform 

certain operations. 

Object:  a single-level unit of information. An object is 

the smallest unit of information in the system that has a 

classification. An object thus contains no other objects; it 
is not multilevel. There are many kinds of objects; an 

example is the date-time-group of a message. 

Container:  A multilevel information structure. A 

container has a classification and may contain objects 

(each with its own classification) and/or other containers. 

In most MMS family members, message files and 
messages are containers. Some fields of a message (such 

                                                           
5 This definition corresponds to that used by other 

authors for security level. In this paper, security level and 

classification are synonyms. 
 

as the Text field) may be containers as well. The 

distinction between an object and a container is based on 

type, not current contents: within a family member, if an 
entity of type message file is a container, then all message 

files in that family member are containers, even if some of 

them are empty or contain only objects and/or containers 

classified at the same level as the message file itself. 

Devices such as disks, printers, tape drives, network 

interfaces, and users' terminals will be containers, rather 
than objects, in most MMS members. 

Entity:  either a container or an object. 

Container Clearance Required (CCR):  an attribute of 

some containers. For some containers, it is important to 

require a minimum clearance, so that if a user does not 

have at least this clearance, he cannot view any of the 
entities within the container. Such containers are marked 

with the attribute Container Clearance Required (CCR). 

For example, a user with only a CONFIDENTIAL 

clearance could be prohibited from viewing just the 

CONFIDENTIAL paragraphs of a message classified 

TOP SECRET by marking the message (which is a 
container) "CCR." On the other hand, given a message 

file containing both TOP SECRET and CONFIDENTIAL 

messages, it may be acceptable to allow the user in 

question to view the CONFIDENTIAL ones, even though 

the container (message file) as a whole is classified TOP 
SECRET. In this case, the file would not be marked 

"CCR." 

ID:  identifier. An ID names an entity without referring 

to other entities. For example, the name of a message file 

is an ID for that file. Some, but not necessarily all, entities 

can be named by identifiers. Entities may also be named 
by indirect references (see below). 

Direct reference: a reference to an entity is direct if it 

is the entity's ID. 

Indirect reference:  a reference to an entity is indirect 

if it is a sequence of two or more entity names (of which 

only the first may be an ID). An example is "the current 
message's Text field's third paragraph." 

Operation:  a function that can be applied to an entity. 

It may simply allow that entity to be viewed (e.g., display 

a message), or it may modify the entity (update a 

message), or both (create a message). Some operations 
may involve more than one entity (copy a message from 

one message file to another). 

Access Set:  a set of triples (userID or role, operation, 

operand index) that is associated with an entity. The 

operations that may be specified for a particular entity 

depend on the type of that entity. If a given operation 
requires more than one operand, the operand index 

specifies the position in which a reference to this entity 

may appear as an operand. For messages, operations 

include DISPLAY, UPDATE, DELETE, and so on. The 

existence of a particular triple in the access set implies 

that the user corresponding to the specified userID or role 



is authorized to invoke the specified operation on the 

entity with which the set is associated. 

Message:  a particular type implemented by an MMS. 
In most MMS family members, a message will be a 

container, though messages may be objects in some 

receive-only systems. A message will include To, From, 

Date-Time-Group, Subject, Releaser, and Text fields, and 

additional fields as well. A draft message also includes a 

Drafter field. 

4.2 User's View of MMS Operation 

We present the following as a model of the use of a 

secure MMS. Terms defined above are printed in 
uppercase. 

People can gain access to the system only by logging 

in. To log in, a person presents a USERID and the system 

performs authentication, using passwords, fingerprint 

recognition, or any appropriate technique. Following a 

successful authentication, the USER invokes 
OPERATIONS to perform the functions of the message 

system. The OPERATIONS a USER may invoke depend 

on his USERID and the ROLES for which he is 

authorized; by applying OPERATIONS, the USER may 

view or modify OBJECTS or CONTAINERS. The system 

enforces the security assertions listed below (that is, it 
prevents the user from performing OPERATIONS that 

would contradict these assertions). 

4.3 Security Assumptions 

It will always be possible for a valid user to 

compromise information to which he has legitimate 

access. To make the dependence of system security on 

user behavior explicit, we list the following assumptions. 

These assumptions are really security assertions that can 

only be enforced by the users of the system. 
A1. The System Security Officer (SSO) assigns 

clearances, device classifications, and role sets 

properly. 

A2.  The user enters the correct classification when 

composing, editing, or re-classifying information. 

A3. Within a classification, the user addresses messages 
and defines access sets for entities he creates so that 

only users with a valid need-to-know can view the 

information. 

A4.  The user properly controls information extracted 

from containers marked CCR {i.e., exercises 
discretion in moving that information to entities that 

may not be marked CCR). 

The basis for these assumptions is that when there is 

no other source of information about the classification of 

an entity or the clearance of a person, the user is assumed 

to provide information that is correct. 

4.4 Security Assertions  

The following statements hold for a multilevel secure 

MMS: 

Authorization  

1. A user can invoke an operation on an entity only if 

the user's userID or current role appears in the entity's 

access set along with that operation and with an index 
value corresponding to the operand position in which the 

entity is referred to in the requested operation.  

Classification hierarchy   

2. The classification of any container is always at least 

as high as the maximum of the classifications of the 
entities it contains.  

Changes to objects   

3. Information removed from an object inherits the 

classification of that object. Information inserted into an 

object must not have a classification higher than the 

classification of that object.  

Viewing  

4. A user can view (on some output medium) only an 

entity with a classification less than or equal to the user's 

clearance and the classification of the output medium. 

(This assertion applies to entities referred to either 

directly or indirectly).  

Access to CCR entities   

5. A user can have access to an indirectly referenced 

entity within a container marked "Container Clearance 

Required" only if the user's clearance is greater than or 

equal to the classification of that container.  

Translating indirect references  
6. A user can obtain the ID for an entity that he has 

referred to indirectly only if he is authorized to view that 

entity via that reference. 

Labeling requirement   

7. Any entity viewed by a user must be labeled with its 
classification 

Setting clearances, role sets, device levels   

8. Only a user with the role of System Security Officer 

can set the clearance and role set recorded for a user or 

the classification assigned to a device. A user's current 

role set can be altered only by that user or by a user with 
the role of System Security Officer. 

Downgrading  

9. No classification marking can be downgraded 

except by a user with the role of downgrader who has 

invoked a downgrade operation. 

Releasing  
10. No draft message can be released except by a user 

with the role of releaser. The userID of the releaser must 

be recorded in the "releaser" field of the draft message.  



4.5 Discussion 

The purpose of this subsection is to clarify the effects 

of the model in particular cases. The paragraphs below are 

not part of the model; the previous subsections define the 

model completely. Here we seek only to show how the 

model applies in specific circumstances. 

(1) What prevents a user from copying a classified 
entity to an unclassified entity? 

The classification of the entity being copied 

accompanies the data. Moving explicitly classified data to 

an unclassified container is a violation of assertion 2 

(classification hierarchy) and 9 (downgrading), unless the 
user requesting the operation is the downgrader and is 

performing a downgrade operation, since the 

classification of the data in question is effectively 

changed by the operation. Manipulations that affect only 

objects are covered by assertion 3 (changes to objects). 

(2) What about copying a part of an object into another 
object? 

A part of an object inherits the classification of the 

whole object (assertion 3, changes to objects). Thus 

moving part of an object into another object is disallowed 

by assertions 2 (classification hierarchy) and 3 unless 

classification of the former object is less than or equal to 
that of the latter. Note that this constraint does not affect 

the user's ability to remove an UNCLASSIFIED 

paragraph (an object) from a CONFIDENTIAL document 

(a container) and use it in an UNCLASSIFIED document 

(another container). 

(3) Does a user have a "login level"? 
Login levels are not explicitly part of the model, but 

the effect of a login level can be obtained through the 

classification of the user's terminal. The classification of 

the terminal is an upper bound on the classification of 

information that can be displayed on it (assertion 4, 
viewing). If the user wishes to restrict further the level of 

the information that appears on the terminal, he may 

invoke an operation to reduce the classification of the 

terminal. The right to determine the classification of 

shared devices (disks, printers, etc.) will generally belong 

to the SSO. Note that restricting the level of the 
information that can appear on the user's terminal does 

not necessarily restrict the level of information that 

programs he invokes may have access to. 

(4) Processes do not appear in the model but surely 

will be present in the implementation. How will their 

activities be constrained? 
Operations, rather than processes or programs, are in 

the model because they correspond more closely to the 

user's view of the system. To the user, the system offers 

functions that may be invoked by typing strings of 

characters, pushing function keys, etc. Each function can 
be understood by the user as an operation. In the 

implementation, processes are constrained to invoke only 

operations that preserve the truth of the assertions. 

(5) Which entities in a particular message system will 
be containers and which will be objects? 

This decision is part of the next more detailed level of 

the stated model. Some likely choices are that messages 

and message files will be containers and that the date-time 

group will be an object. It is not necessary that all 

message systems in the family make the same choices. If 
two message systems that make different choices 

communicate, some method of mapping between those 

entities that are objects in one system and containers in 

the other must be defined. 

(6) How are entities created? 

For each type of entity that users can create, there will 
be an operation that, when invoked, creates a new 

instance of that type. As with all other operations, only 

users who are authorized for it can invoke it. Thus, it is 

not necessarily the case that any particular user will be 

able to create any particular kind of entity; he must be 

authorized to do so. In particular, only users authorized 
for certain roles may be allowed to create certain kinds of 

entities. 

(7) How does a user refer to an object or a container? 

Some entities have identifers (IDs) that allow them to 

be named directly. A given entity may have zero, one, or 
more IDs. An entity may also be referred to indirectly by 

a qualified name (see the example under the definition of 

indirect reference). A user (or a program he invokes) can 

refer to an entity using any valid ID or qualified name. 

The former is called a direct reference and the latter an 

indirect reference. 
(8) What policy governs access to an entity in a 

container? Is the classification of the container or of the 

contents tested and with what is it compared? 

The answer to this question depends on the type of 

access (the operation invoked) and whether the reference 

is direct or indirect. If the entity is referred to directly for 
viewing, assertion 4 (viewing) gives the appropriate 

restriction. If the reference is indirect, there are two cases 

depending on whether or not the entity is within a 

container marked CCR. If it is, both assertions 4 and 5 

(access to CCR entities) have an effect; otherwise, only 
assertion 4 is relevant. Note that a user may be permitted 

to view a particular entity in a CCR container if he refers 

to it directly, but be denied access if he refers to it 

indirectly. This provides a means for dealing with the 

aggregation problem without requiring duplicate copies of 

protected information: a collection of CONFIDENTIAL 
aggregation-sensitive objects might be stored in a 

container marked SECRET-CCR. A user with a 

CONFIDENTIAL clearance who had been given the ID 

of an individual object could refer to it directly, but would 

be unable to view the same item via an indirect reference 

that identified it as a member of the SECRET-CCR 



container. Assertion 1 (authorization) always requires that 

the user (or his role) be in the access set for the entity-

operation pair specified. 
(9) Is there anything in the system that is not (or is not 

part of or a name for) an entity or a user? 

From the user's point of view, no. There may be 

structures in the implementation that the user is unaware 

of and would be difficult to assign a legitimate 

classification to (such as internal operating system 
queues, perhaps). Anything the user can create, display, or 

modify, however, must be (or be part of or a name for) an 

entity or a user. 

(10) What are the relationships among a user, an 

operation he invokes, and programs that the operation 

may invoke on his behalf?. For example, what privileges 
do the programs inherit, how is it determined whether a 

given invocation is allowed under the security policy? 

A user has a clearance recorded in the system. When a 

user invokes an operation on an entity, his clearance and 

role, the appropriate device classifications, and the 

classification, CCR mark, and access set for that entity 
determine whether the operation is permitted. The user's 

ID or current role must be paired with the specified 

operation in the access set of the entity in question 

(assertion 1, authorization). If the operation allows 

information to be viewed via a given device, then the 
user's clearance and the classification of the output device 

must equal or exceed the classification of the information 

(assertion 4, viewing). Similarly, other security assertions 

must not be violated by the programs invoked as part of 

the requested operation. 

(11) There are no integrity levels or controls defined in 
the model. What prevents accidental/malicious 

modification of sensitive data? 

The reasons for omitting integrity levels have been 

discussed separately [15]. Modifications of clearances, 

classifications, and role sets are covered in the given set 

of assertions. To alter data, a user must invoke an 
operation; assertion 1 (authorization) requires that the user 

be authorized to invoke that operation. In the future, 

specific cases may be treated in additional assertions 

similar to assertion 10 (releasing). 

5 Formalizing the MMS Security Model 

To provide a firm foundation for proofs about the 
security properties of a system specification or 

implementation, a formal statement of its security model 

is needed. This section presents a formal model that 

corresponds to the informal MMS security model. It 

serves three purposes: (1) it is an example of how an 

informal model of a system's security requirements can be 
made formal; (2) being abstract, it can be interpreted by 

others for different but related applications; and (3) it is a 

basis for proofs about particular message system 

specifications and implementations. 

The MMS security model comprises fifteen 
definitions, a one-paragraph description of MMS 

operation, four assumptions about user behavior, and ten 

assertions that hold for the MMS. We focus on 

formalizing the ten assertions only, although in doing so, 

some notation is required to define formal entities that 

correspond to those discussed informally in the fifteen 
definitions. Below, the assertions are explicated formally 

in definition (2) concerning system states and definitions 

(5) through (11) concerning the system transform. 

Although the correctness of the explication cannot be 

proven, we discuss the correspondence between the 

formalism and the informal model briefly following the 
explication. 

Each MMS family member can be modeled as an 

automaton with inputs, an internal state, and outputs. The 

inputs correspond to the commands users give to the 

system. Because this is a security model, we are 

principally concerned with modeling the categories of 
inputs that affect system security. The internal state of the 

automaton corresponds to the information currently stored 

in the message system--messages, message files, 

classifications, access sets, and so on. Output from the 

automaton consists of command responses--the things that 
users view or obtain in response to particular requests. 

These may include entities, classification labels, IDs, and 

so on. We model output as a set of distinguished entities; 

although output is treated as part of the internal state, it 

represents that part that is directly visible to users. Some 

commands cause a state change that affects the output set, 
others may cause a change of state without changing the 

output set, and still others {particularly commands that do 

not satisfy the security assertions) cause no state change at 

all. A history of the system is a particular sequence of 

inputs and states. 

5.1 Formal Model 

We assume the existence of a set of possible users and 

a set of possible entities. Given these sets we define 

system state and the notion of a secure state. Next, we 
define system and history and introduce constraints on the 

transform that moves a system from one state to another. 

A system whose transform meets all these constraints is 

said to be transform secure. Finally, the notions of secure 

history and secure system are defined. 

The structure of the formal model is intended to 
simplify its application to defining preconditions and 

postconditions for system operations. To make explicit 

the entities that a given operation may change, we define 

the concept of potential modification based, in part, on the 

work of Popek and Farber [20]. Potential modification is 
similar to strong dependency, developed by Cohen [6]. 



5.1.1 System State 

In this section we define what it is to be a system state and 

what it is for a system state to be secure. We assume the 
existence of the following sets. 

 

OP is a set of operations. 

 

L is a set of security levels. ≥ is a partial order on L such 

that (L, ≥) is a lattice. 

 
UI is a set of userID's. 

 

RL is a set of user roles. 

 

US is a set of users. For all u � US, CU(u) � L is the 

clearance of u, R(u)⊆RL is the set of authorized roles 

for u, and RO(u) ⊆ RL is the current role set for user u. 

 

RF is a set of references. This set is partitioned into a set, 

DR, of direct references and a set, IR, of indirect 

references. Although the exact nature of these 

references is unimportant, we assume that the direct 
references can be ordered by the integers. In this 

model we treat each direct reference as a unary 

sequence consisting of a single integer, for example, 

<17>. Each indirect reference is treated as a finite 

sequence of two or more integers, for example, <nl 

,…, nm>, where <nl>is a direct reference. 

 
 VS is a set of strings (bit or character). These strings 

serve primarily as entity values (e.g., file or message 

contents). 

 

TY is a set of message system data types that includes 

"DM" for draft messages and "RM" for released 
messages. 

 

ES is a set of entities. For all e ∈ ES CE(e) ∈ L is the 

classification of e. AS(e) ⊆ (UI ∪ RL) × OP × N is a 

set of triples that compose the access set of e. (u, op, k) 

∈ AS(e) iff u is a userID or user role authorized to 

perform operation op with a reference to e as op's kth 

parameter. T (e) ∈ TY is the type of entity e. V(e) ∈ VS 

is the value of entity e. If T(e) = DM or T(e) = RM, 

then V(e) includes a releaser field RE(e), which if 

nonempty, contains a userID. ES contains as a subset 

the set of entities that are containers. For any entity e 

in this set H(e) = <e1 ,..., en> where entity ei is the ith 

entity contained in e. CCR(e) is true iff e is marked 

CCR, else false. If T(e1) = T(e2) then e1 and e2 are both 

containers or both objects. The set O of output devices 

is a subset of the set of containers6. Elements o ∈ 0 

serve as the domain of two further functions. D(o) is a 

set of ordered pairs {(x1, y1), (x2, y2) .... , (xn, yn)} 

where each yi is displayed on o. Each xi is either a user 
or an entity, and the corresponding yi is either a 

reference, a userID, or the result of applying one of the 

above functions to xi.
7  We require that (x,V(x)) ∈ D(o) 

� x ∈ H(o)8.  CD(o) gives the maximum 

classification of information that may be displayed on 

o. This allows CE(o) to be used as the current upper 
limit of the classification of information to be 

displayed by the output device, so that users can 

restrict the classification of output to be less than the 

maximum level permitted. 

 

A state maps a subset of userIDs and references 
(intuitively, those that exist in the state in question) to 

elements of US and ES that represent their corresponding 

properties. A state also maps a subset of userIDs that 

"exist" into references that correspond to output devices 

(intuitively, these users are logged on to the specified 

devices). To this end we define three mappings. An id 
function, U, is a one-to-one mapping from a (possibly 

improper) subset of UI into US. A reference function, E, 

is a mapping from a (possibly improper) subset of RF into 

ES such that for all n ≥ 2, E(<i l ,..., in>) = e iff E(<i l 

,..., in-1>) = e* where e* is a container such that e is the 

inth element of H(e*). For any reference r, if E(r) = e, we 
say that r is a reference to e (relative to E). A login 

function, LO, is a one-to-one mapping from a (possibly 

improper) subset of UI into RF. 9 

Given a reference function, E, each indirect reference 

of the form <n0 ,..., nm> to an entity em corresponds to a 

path of entities <e0 ,..., em> such that each ei ∈ rng(E), e0 

is denoted by the direct reference <n0>, and for all 

positive integers i ≤ m,  ei is the nith entity  in container 

ei-1.  Such an indirect reference is said to be based on each 

entity ej where 0 ≤ j < m . 

 

                                                           
6 In implementations, some kinds of output "disappear" from the 

system state (e.g., information sent to a printer or a telecommunications 

port) while others persist (e.g., information displayed on the screen of a 
terminal, which a user may later refer to and modify). In the 

formalization, we do not distinguish between these types; both are 

intended to be covered by O. 
7 Both the item and what is displayed must be specified so that, for 

example, cases in which two entities have identical values but different 
security levels can be distinguished.  
8 We extend the set theoretic notions of membership and intersection to 

apply to tuples in the obvious sense. 
9 The condition that LO is a function reflects an assumption that a user 

cannot be on two terminals at the same time. We also assume that a 

user's output is directed to the terminal he is on. These assumptions are 
merely for ease of exposition and are not an essential part of the model. 

One way to appropriately restrict output that is not directed to the user's 

terminal would be to consider a user logged in on a device when he 
directs output to it. 



Definition 1. A system state, s, is an ordered triple10 

(U, E, LO) where U is an id function, E is a reference 

function, and LO is a login function such that dom(LO) ⊆ 

dom(U) and rng(LO) ⊆ dom(E∩(RF×O)). We also 

require that if o�rng(E) ∩ O and (x, y) ∈ D(o), then x ∈ 

rng(E) ∪ rng(U) to assure that only information about 

users and entities that "exist" in the current state can 

actually be displayed, and that for any reference r, (x, r) ∈ 

D(o) � E(r) = x. Finally, we require that E(LO(u1)) = 

E(LO(u2)) � u1 = u2 to prevent two users from being 

logged in simultaneously on the same terminal. 
Given a system state s = (U, E, LO), we abbreviate 

E(r) by rs, U(u) by us, and E(LO(u)) by ûs. 

 

Definition 2. A state s is secure if ∀ x, y ∈ rng(E), 

∀ o ∈ O ∩ rng(E), ∀ w ∈ dom(LO), and ∀ u 

∈ rng(U): 

x ∈ H(y)  �  CE(x) ≤ CE(y), 

x ∈ H(
s

ŵ )  �  CU(ws) ≥ CE(x), 

(x, V(x)) ∈ D(o)  �  (x, CE(x)) ∈  D(o), 

RO(u) ⊆ R(u),  and 

CD(o) ≥  CE(o). 

 

5.1.2 Secure System 

 
 In this section we define what a system is and what it 

is for a system to be secure. 

 

Definition 3. A system Σ is a 4-tuple (I,S, s0, T) where 
I is the set of well-formed system requests, where each 

request i � I is of the form <op, xl, x2 ..... xn> where each 

xj � RF ∪ UI ∪ VS and op � OP; 

S is the set of possible system states; 
s0 designates a special state called the initial state; and 

T is the system transform, that is, a function from UI × 

I ×  S into S. 

 

Definition 4. A history, Π, of a system is a function 
from the set of nonnegative integers N to UI × I × S such 

that (1) the third element of Π(0) is s0, and (2) for all n � 

N, if Π (n) = (u, i, s) and Π(n + 1) = (u*, i*, s*), then T(u, 

i, s) = s*. 
Before defining what it means for an operation to 

potentially modify a reference11, we notice that a 

                                                           
10 State is defined as a tuple, rather than as a set of functions, because 

two states whose elements have the same values are in fact identical, 

while two entities for which the defined functions return the same values 
may in fact be different (e.g., two copies of the same citation). 
11 The version of the paper published in ACM TOCS incorrectly had 

“entity” in place of  “reference” at this point. The definition of “potential 
modification” was given correctly, however. 

reference function E, and a fortiori a state s, induces a set 

of functions defined on references that are counterparts to 

the set of functions introduced above that are defined on 
entities. For example, there is a function, call it Vs, such 

that Vs(r) = V(rs). Similarly, there is a counterpart 

predicate, call it Hs, such that Hs <r, r1, ..., rn> iff H(rs)= 

<r, rs
1, ..., rs

n
>. Each counterpart is the user-visible 

version of the corresponding entity function. We call 

these referential counterparts and use them to define what 

it means for two states to be equivalent except for a set of 
references.12  

State s = (U, E, LO) and s* = (U*, E*, LO*) are 

equivalent except for some set of references ρ iff (1) U = 
U*, (2) LO = LO*, (3) dom(E) = dom(E*), (4) for any 

entity function F except V, Fs = Fs*, and (5) for any 

reference r � dom(E) 	 ρ, Vs(r) = Vs*(r). 

 
We now define potential modification as follows: 

 

u, i, s potentially modify r iff ∃ s1, s1* : s1 is equivalent 

to s except possibly for some set of references and T(u, i, 

s1) = s
*
1 and for some entity function F, 

)()( *

11 ss
rFrF ≠ .13 

 

Call y a contributing factor in such a case iff y = r or ∃ 

s1 as above and s2, s
*
2:  s1 and s2 are equivalent except for 

{y} and T(u, i, s2) = s
*
2 and )()( *

1

*

2
ss

rFrF ≠ . 

That is, u, i, s potentially modifies r if there is some 

(second) state that may differ from s in the values of some 

entities, and T maps u, i, and this state into a third state in 

which some entity function F (value, containment, access 
set, etc.) on r differs from the second state. The 

contributing factors are r and those entities whose values 

affect the final F(r). 

For each referential counterpart and each function 

defined on users, we posit a unique operation that changes 

an existing entity or user with respect to that function. For 
example, an operation set__AS(r, new_access_set) is the 

only operation  that affects r’s access set, and it has no 

other user-visible effect. Further, if the transition is, for 

example, from state s to state s*, ASs*(r) is 

new_access_set if new_access_set is a character string 

and Vs(new_access_set) if new_access_set is an entity 
reference. Changes to the domain of E or U (creation or 

deletion of entities or users) are also assumed to occur 

only by explicit request. The formal release operation 

defined below is the single exception to this assumption 

                                                           
12 We could have developed the entire formal model in terms of 

referential counterparts, but preferred the simplicity of functions to 

working with the predicate Hs. 
13 This covers cases of creation (and deletion) since )(

1
s
rF will be 

undefined and )( *

1s

rF  will be defined (although possibly empty). 



(besides delete(r) and possibly, create(r)); it changes the 

type of r and, potentially, the releaser field of r's value as 

well. 
The exact nature of these operations is unimportant 

since these assumptions are included solely for ease of 

exposition. Their purpose is not to rule out 

implementation commands that affect different parts of 

entities, but to eliminate the problem of unspecified side 

effects in the formal model (e.g., permission to view a 
message marked CCR is not permission to clear the CCR 

mark). Implementation commands that can alter more 

than a single part of a single entity correspond to a 

sequence of formal operations. For a given 

implementation, this correspondence is determined by the 

semantics of the implementation command language. 
Once this correspondence has been determined, so that the 

security-relevant effects of each user command are clear, I 

can be replaced by the set of implementation commands 

with access sets also changed accordingly. Nevertheless, 

prudence dictates that modifications (e.g., changing a 

user's clearance) that can be made only by the security 
officer, be restricted so that there is only a single 

command that performs them in any implementation. 

The following constraints on the system transform lead 

to the definition of a secure history and a secure system. 

Where quantification is not explicit below, universal 
quantification is assumed. 

 

Definition 5. A transform T is access secure iff ∀ u, i, 

s, s*: T(u, i, s)=s*, [(op � i ∩ OP and rk � i ∩ RF) � ((u, 

op, k) ∈ AS(E(rk)) or ∃ l ∈ RO(us), and (l, op, k) 

∈ AS(E(rk)))] or s=s*. 
14 

Definition 6. A transform T is copy secure iff ∀ u, i, s, 

s*: T(u, i, s)=s*, x is potentially modified with y as a 

contributing factor � CE(xs) ≥ CE(ys).  

Definition 7. A transform T is CCR secure iff ∀ u, i, s, 

s*: T(u, i, s)=s*, r ∈ i ∩ IR is based on y and CCR(y) 

and z is potentially modified with r as a contributing 

factor � CU(us) ≥ CE(y).  

Definition 8. A transform T is translation secure iff 

∀ u, i, s, s*: T(u, i, s)=s*, x ∈ DR and (xs*, x) ∈ D (ûs*) 

� ∃ r ∈ i ∩ RF, rs = xs and (r is based on z and CCR(z) 

� CU(us) ≥ CE(z)).15  

Definition 9. A transform T is set secure iff ∀ u, i, s, 

s*: T(u, i, s)=s*, (a) ∃ o ∈ dom(E ∩ (RF × O )), CD(os) 

                                                           
14 For simplicity we disregard error messages in the formalism. In an 

implementation we assume that if an unauthorized operation is 
attempted, an appropriate error message will be produced in the next 

state. 
15 Strictly speaking, references can be written to an entity without 
violating translation secure only if they are not displayed. A practical 

implementation that satisfies the spirit of this policy is to permit the 

writing of references to an entity but only on the condition that the 
reference could have been displayed without violating translation secure. 

≠ CD (os*) or ∃ x ∈ dom(U), CU(xs) ≠ CU(xs*) or R(xs) 

≠ R(xs*) � security_officer ∈ RO(us); and (b) 

x ∈ dom(U) and RO(xs) ≠ RO(xs*) � us = xs or 

security_officer ∈ RO(us). 

Definition 10. A transform T is downgrade secure iff 

∀ u, i, s, s*: T(u, i, s)=s*, x ∈ dom(E� (RF × {ûs})) and 

CE(xs) > CE(xs* ) � downgrader ∈ RO(us). 

Definition 11. A transform T is release secure iff ∀ u, 

i, s, s*: T(u, i, s)=s*, (T(xs)=RM � T(xs*)=RM and 

RE(xs*)=RE(xs)) and (T(xs)≠RM and T(xs*)=RM � 

RE(xs*)=u, ∃ r: rs= xs, i is the operation <release, r>, 

releaser ∈ RO(us) and T( xs) = DM). 

Definition 12. A transform is transform secure iff it is 

access secure, copy secure, CCR secure, translation 

secure, set secure, downgrade secure, and release secure. 

Definition 13. A history is secure if all its states are 

state secure and its transform is transform secure.  
Definition 14. A system is secure if each of its histories 

is secure. 

5.2 Discussion 

Perhaps the most basic decision we made in 

formalizing the MMS model concerns our general 

conception of a computer system, in particular the relation 

between a system state and a system. We considered a 

view where a system state consists of entities and their 

relations, and where a system adds to this users and user 
operations on entities. Hence, all restrictions on user 

properties (in particular, the restriction for all u, 

RO(u)⊆R(u)) are included in the definition of a secure 

system. We chose instead to view the distinction between 

system states and systems in terms of static as opposed to 

dynamic properties. Static properties are those that hold 
for all secure states and, hence, can be checked by 

examining a state in isolation; dynamic properties are 

those that hold for the relation between secure states and, 

hence, can be checked only by comparing two or more 

states. In the view we adopted, all static security 
properties are included in the definition of a secure state.  

To a large extent the choice in conceptualizations is a 

matter of taste. Bell and LaPadula [4] use the latter, while 

Feiertag et al. [8] lean to the former. By minimizing the 

notion of a secure state, the former view makes the Basic 

Security Theorem shorter. The deciding factor in our 
adopting the latter view is that it makes it impossible for a 

system to undergo a security-relevant change without 

undergoing a change in state. 

Principal difficulties we encountered in formalizing the 

MMS security model were in representing "copy" and 

"view," system output, and the notion of an authorized 
operation. Assertion 3 (changes to objects) in the informal 

model requires formal semantics to reflect the movement 

of information between entities, while assertion 4 



(viewing) requires formal semantics to reflect making an 

entity visible to a user. Assertion 5 (accessing CCR 

entities) now addresses both copying and viewing. The 
semantics for "copy," embodied in the definitions of 

"potential modification" and "contributing factor," are 

based on a broad interpretation of "copy." Information is 

considered to be copied, not only if it is directly moved 

from one entity to another, but also if it contributes to the 

potential modification of some other entity. For example, 
if an operation scans message file A and copies messages 

selected by a filter F to message file B, both A and F 

contribute to the potential modification of B (and are 

therefore subject to the constraints imposed by copy 

secure and CCR secure), even if both A and F are empty. 

The semantics for "view" are straightforward: a thing is 
viewed if an operation makes it a member of an output 

container. In light of these considerations, we have used 

"access" instead of "view" in assertion 5.  

In the formalization, system output is interpreted as a 

set of containers; other entities, parts of entities, 

references, and classifications that are made visible to a 
user are interpreted as being copied to his output 

container. We assume that in any implementation the 

classifications displayed appear close to the entities (or 

parts) they correspond to, but we have not formalized this 

assumption. References are explicitly included as a part of 
output because the same operation applied to the same 

entities can yield different results, depending on how the 

entities are referenced. This leads to the constraint 

(translation secure) on operations that produce as output 

direct references that are translations of indirect ones. To 

enforce this constraint, the system must recognize 
references as a particular kind of output. 

Formalizing the concept of an authorized operation is 

difficult because the semantics of authorized operations 

are unspecified. Our definition of access secure requires 

that, if an operation changes the system state (beyond 

producing an error message as output), then for each 
entity in the set of operands the user or role, operation, 

and operand index must appear in the access set. 

Unauthorized operations must not alter the system state 

except to report that they are erroneous. 

5.3 Correspondence to the Informal Model 

Assertions (2), (4), and (7) of the informal model, 

concerning classification hierarchy, viewing, and labeling, 

are incorporated in the formal definition of secure state. 

They correspond respectively to the first three conditions 
a secure state must satisfy; the last two conditions require 

that each user's current role set must be a subset of his 

authorized role set and that the current security level of 

each output device must be dominated by its maximum 

allowed level. These last two conditions are implicit in the 
informal model. 

The remaining assertions of the informal model have 

been translated into constraints on the system transform. 

Assertion (1) {authorization) corresponds directly to 
access secure, assertion (6) to translation secure, and 

assertions (8)-(10) (setting, downgrading, and releasing) 

correspond respectively to set secure, downgrade secure, 

and release secure. Set secure restricts the permission to 

set device classifications and user role sets to security 

officers and restricts permission to set a user's current role 
to himself or a security officer. Downgrade secure 

contains an exception for ûs, so that a user is not 

prohibited from lowering the current level of his output 

device. The formal statement of release secure makes 

explicit the requirement that, once released, a message 

cannot have its type or releaser field altered. 
Assertions (3) and (5) correspond to copy secure and 

CCR secure. The definition of copy secure actually covers 

parts of both assertion 3 and assertion 4 because output 

devices are treated as containers. So, if entity x receives 

information from an object y, CE(x)≥ CE(y) (assertion 3), 

and if an output container o receives information from 

entity x, CE(o)≥CE(x) (assertion 4). CCR secure 

corresponds to assertion 5, under the interpretation that 

having access to an entity is significant only if that entity 

is a contributing factor in the potential modification of 

another entity. 

5.4 Storage Channels 

Because we have defined potential modification and 

contributing factor in terms of changes only to entities, 

the constraints imposed by copy secure and CCR secure 
do not apply to changes made to functions defined on 

users (clearance, role set, and current role). Thus, there is 

the potential for information to be transferred from a 

higher level to a lower one through these functions. 

However, changes to user clearances and role sets are 

controlled by set secure; the normal user can change only 
his current role set, and this provides a channel of very 

limited bandwidth. 

Among entities, one class of storage channel remains. 

Consider two entities with the same classification. The 

model permits an operation to modify an entity function 

of one entity based on the value of the other entity. Since 
entity functions other than value (i.e., containment (H), 

classification, access set, CCR mark, or type) have no 

classifications, there is nothing in the model to prohibit a 

user from viewing those functions, even if he is not 

cleared to see the entity's value. So information might 
flow from the value of one entity to the access set of 

another at the same security level and the change in 

access set could be observed by a user at a lower security 

level. 

Changes in H offer the greatest opportunity for 

exploitation, but all of the channels offered by entity 



functions could be closed by attributing the classification 

of the entity value to the other entity functions as well. In 

practice, the semantics of message system commands 
should restrict these channels sufficiently so that this will 

be unnecessary. If designers should find the constraints 

imposed by the present definitions of potential 

modification and contributing factor too confining, these 

could be relaxed by restricting their coverage to a subset 

of the entity functions. The price of such a change would 
be the increased potential for storage channels using the 

excluded functions. The bandwidths of potential storage 

channels cannot be precisely estimated at the abstract 

level of the formal model, yet it is clear that the value 

function should never be excluded from the definitions. 

Of the other entity functions, H is the most problematic 
both because message system operations are more likely 

to alter H than the other entity functions and because a 

relatively large amount of information could be encoded 

in a single change to H. 

5.5 A Basic Security Theorem for the Formal 

MMS Security Model 

In formalizations where a secure system is a collection 

of secure states, some feel that a Basic Security Theorem 

is needed to show the restrictions on system transforms 

that ensure that a system starting in a secure state will not 

reach a state that is not secure [4]. Such theorems are of 

little practical significance, since their proofs do not 
depend on the particular definition of security provided by 

the model [18]. Further, in our approach such a theorem is 

not pressing since the concept of a secure system is 

defined largely in terms of a secure transform. 

Nevertheless, we do appeal to the notion of a secure state, 

and some readers may feel that some form of Basic 
Security Theorem is needed. Those readers should find it 

trivial to prove the following analog of the Basic Security 

Theorem for our definition of a secure state. 

 

THEOREM. Every state of a system Σ is secure if s0 is 
secure and T meets the following conditions for all u, i, s, 

s*: T(u, i, s) = s* and for all x, y ∈ RF, w ∈ US: 

(1)  xs ∉ H(ys) and xs*  ∈ (ys*) � CE( xs*) ≤ CE(ys*). 

(2)  xs ∈ H(ys) and CE(xs*)≤/ CE(ys*) � xs*  ∉ H(ys*). 

(3)  xs∉H( s
ŵ ) and xs* ∈H( *

ˆ
s

w ) � CU(ws*)>_CE(xs* ). 

(4)  xs ∈H( s
ŵ ) and CU(ws*)~CE(xs* ) � x∉H(

*
ˆ
s

w ). 

(5) (xs, V(xs)) ∉ s
ŵ  and (xs* , V(xs* )) ∈ *

ˆ
s

w  � (xs* , 

CE(xs*))∈ *
ˆ
s

w  

(6) (xs, V(xs)) ∈ s
ŵ  and (xs* , CE(xs* )) ∉ *

ˆ
s

w � (xs* , 

V(xs* )) ∉ *
ˆ
s

w  

 

(7) R(ws) ≠ R(ws*) or RO(ws) ≠ RO(ws*) �  

RO(ws*) ⊆ R(ws*). 

(8) CE(
s

ŵ )≠CE(
*

ˆ
s

w ) or CD(
s

ŵ )≠CD(
*

ˆ
s

w ) �    

CD(
*

ˆ
s

w )>CE(
*

ˆ
s

w ). 

Together, (1)–(8) are necessary and sufficient 

conditions for every state of a system to be secure in any 
system that does not contain states that are unreachable 

from s0 . 

6 Conclusions 

We favor an approach to building secure systems that 

includes an application-based security model. An instance 

of such a model and its formalization have been 

presented. They are intended as examples for others who 
wish to use this approach. Important aspects of the model 

are summarized below: 

(1) Because it is framed in terms of operations and data 

objects that the user sees, the model captures the system's 

security requirements in a way that is understandable to 
users. 

(2) The model defines a hierarchy of entities and 

references; access to an entity can be controlled based on 

the path used to refer to it. 

(3) Because the model avoids specifying 

implementation strategies, software developers are free to 
choose the most effective implementation. 

(4) The model and its formalization provide a basis for 

certifiers to assess the security of the system as a whole. 

Simplicity and clarity in the model's statement have 

been primary goals. The model's statement does not, 

however, disguise the complexity that is inherent in the 
application. In this respect, we have striven for a model 

that is as simple as possible but stops short of distorting 

the user's view of the system. The work reported here 

demonstrates the feasibility of defining an application-

based security model informally and subsequently 

formalizing it. The security model described has been 
used almost without change by another message system 

project [9], and has been adapted for use in document 

preparation and bibliographic systems [2]. 

Judgments about the viability of our approach as a 

whole must await its application in building full-scale 
systems. This we are pursuing in the development of 

message system prototypes [11, 12]. 
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