
A Security Model for Military Message Systems: Retrospective

Carl E. Landwehr Constance L. Heitmeyer John D. McLean
Mitretek Systems, Inc. Naval Research Laboratory Naval Research Laboratory

Carl.Landwehr@mitretek.org heitmeyer@itd.nrl.navy.mil mclean@itd.nrl.navy.mil

Retrospective
1

In the late 1970’s and early 1980’s, the military

conducted an experiment (the Military Message

Experiment, or MME) to investigate replacing existing

message systems in use at CINCPAC that were based on
the AUTODIN system, with local distribution of copies

via a pneumatic tube system, with a new system based on

the ARPANET and e-mail that provided a simulated

multilevel secure (MLS) interface. At the same time,

research was underway to develop multilevel secure

operating systems. Experiences with both the MME and
with prototype MLS systems led to research conducted at

the Naval Research Laboratory to specify and prototype a

family of military message systems (MMS) based on

software engineering principles and on specifying the

desired security behavior at the application level, rather
than at the operating system level. The resulting security

model was published as an NRL technical report and

subsequently in ACM Transactions on Computer Systems

in August, 1984.

The approach to developing informal security models

presented here remains quite relevant. Efforts to develop
assurance arguments for today’s systems can in many

cases be related to the approach taken in this work [25].

This paper was the first in an archival journal to

present a security model based on application

requirements as opposed to operating system structure. It

argues that this is the appropriate orientation for a security
model that is to be understood by users, and it presents a

framework for developing and expressing security models

informally, using natural language, and then formalizing

the result. The informal model is accessible to users,

while the formal model provides the precision needed for

designing a system and determining whether an
implementation enforces the model.

The example presented, developed in the context of

military message systems, includes a number of concepts

that are appropriate for other applications as well. Among

1 This retrospective was written by the first author in August, 2001. It

draws on an introduction written when the paper was anthologized in
about 1990.

these are the concepts of roles—job-related sets of

permissions—and of multilevel object—an object (here

termed a container) that has a security level of its own and

also encloses other objects that retain their own security
levels.

Each user had an allowed set of roles, and the access

controls on objects in the system could include roles as

well as userIDs. A user could occupy one or more roles at

a time, and some roles could be occupied only by a single

user at a given time. These constraints were based on the
observed needs of operational message systems to support

one person acting for another as shifts and watches

change, and for a single point of control (though not

necessarily a single individual) for operations like

message release.
The approach to multilevel objects exploits an analogy

with the physical world of safes, file folders, and

documents to provide a model that application users can

understand, and in which they can apply their intuition

about familiar objects. Subsequent work has debated

whether multilevel objects need to be reflected in the
abstractions provided by operating systems, but their

appeal to users seems beyond question. In fact, much of

the work reported in this paper can fit quite naturally into

the framework provided by object-oriented databases.

An informal model has four parts: definitions of terms

used in the model, a brief prose description of system
operation from the security viewpoint, a set of

assumptions, and a set of assertions. Assumptions are

statements that must be true if system security is to be

preserved, but that cannot be maintained by the computer

system itself. For example, users entering message text

must be relied on to classify the input properly.
Assertions are statements that must be true for system

security to be preserved and that the computer system can

enforce.

It is the assertions of the model that are re-stated

formally. In contrast with the structure of most other
security models, security assertions apply without

exception to all system users and entities. The formal

statement of the model's assertions is notable for being

based on both information flow and access control and for

being the first state-machine formalization to contain

transition restrictions as well as state restrictions.

Prior to its publication, a draft version of the security

model formed the basis for a study of database security

problems conducted under the auspices of the National
Academy of Sciences in the early 1980’s to investigate

problems in multilevel secure document handling

systems. In this context, the message system example

was considered as a restricted version of a database

management system.

Many other technical reports and papers were
produced by the SMMS research project, covering

software design, implementation, and operation of

prototype systems based on this model. Some of these are

included in the bibliography at the end of this paper [27-

38]. None of the prototypes made the transition to an

operational system, but the ideas in this paper did
influence the design of some classified operational

systems. The security modeling approach was

subsequently applied to several operational systems as

documented in [26].

The paper as presented below is substantially the same

as published in ACM Transactions on Computer Systems,
except for the correction of a few minor errors in the

original publication.

Abstract
2

Military systems that process classified information

must operate in a secure manner; that is, they must

adequately protect information against unauthorized
disclosure, modification, and withholding. A goal of

current research in computer security is to facilitate the

construction of multilevel secure systems, systems that

protect information of different classifications from users

with different clearances. Security models are used to

define the concept of security embodied by a computer
system. A single model, called the Bell and LaPadula

model, has dominated recent efforts to build secure

systems but has deficiencies. We are developing a new

approach to defining security models based on the idea

that a security model should be derived from a specific

application. To evaluate our approach, we have
formulated a security model for a family of military

message systems. This paper introduces the message

system application, describes the problems of using the

Bell-LaPadula model in real applications, and presents

our security model both informally and formally.
Significant aspects of the security model are its definition

of multilevel objects and its inclusion of application-

dependent security assertions. Prototypes based on this

model are being developed.

Categories and Subject Descriptors: C.2.0 [Computer-

Communication Networks]: General--Security and
protection; D.4.6 [Operating Systems]: Security and

Protection--access controls; information flow controls;

2 The work described in this paper was performed while all three authors
were associated with the Naval Research Laboratory.

verification; F.3.1 [Logics and Meaning of Programs]:

Specifying and Verifying and Reasoning about Programs-

-assertions; invariants; specification techniques; H.4.3
[Information Systems Applications]: Communications

Applications--electronic mail

General Terms: Security, Verification

Additional Key Words and Phrases: Storage channels,

message systems, confinement

1 Introduction

A system is secure if it adequately protects information
that it processes against unauthorized disclosure,

unauthorized modification, and unauthorized withholding

(also called denial of service). We say "adequately"

because no practical system can achieve these goals

without qualification; security is inherently relative. A

secure system is multilevel secure if it protects
information of different classifications from users with

different clearances; thus some users are not cleared for

all of the information that the system processes. Security

models have been developed both to describe the

protection that a computer actually provides and to define
the security rules it is required to enforce [14]. In our

view, a security model should enable users to understand

how to operate the system effectively, implementors to

understand what security controls to build, and certifiers

to determine whether the system's security controls are

consistent with the relevant policies and directives and
whether these controls are implemented correctly [13].

In recent years, the Bell and LaPadula model [4, 8],

has dominated efforts to build secure systems. The

publication of this model advanced the technology of

computer security by providing a mathematical basis for

examining the security provided by a given system.
Moreover, the model was a major component of one of

the first disciplined approaches to building secure

systems. The model describes a secure computer system

abstractly, without regard to the system's application. Its

approach is to define a set of system constraints whose

enforcement will prevent any application program
executed on the system from compromising system

security. The model includes subjects, which represent

active entities in a system (such as active processes), and

objects, which represent passive entities (such as files and

inactive processes). Both subjects and objects have
security levels, and the constraints on the system take the

form of axioms that control the kinds of access subjects

may have to objects.

One of the axioms, called the *-property ("star-

property"), prohibits a subject from simultaneously

having read access to one object at a given security level
and write access to another object at a lower security

level. Its purpose is to prevent subjects from moving data

of a given security level to an object marked with a lower

security level. Originally, the model applied this

constraint to all subjects, since a subject might execute

any arbitrary application program, and arbitrary programs
executed without this constraint could indeed cause

security violations.

A system that strictly enforces the axioms of the

original Bell-LaPadula model is often impractical: in real

systems, users may need to invoke operations that,

although they do not violate our intuitive concept of
security, would require subjects to violate the *-property.

For example, a user may need to extract an

UNCLASSIFIED paragraph from a CONFIDENTIAL

document and use it in an UNCLASSIFIED document. A

system that strictly enforces the *-property would prohibit

this operation.
Consequently, a class of trusted subjects has been

included in the model. These subjects are trusted not to

violate security even though they may violate the *-

property. Systems based on this less restrictive model

usually contain mechanisms that permit some operations

the *-property prohibits, for example, the trusted
processes in KS OS [17] and SIGMA [1]. The presence of

such mechanisms makes it difficult to determine the

actual security policy enforced by the system and

complicates the user interface.

To avoid these problems, we propose a different
approach. Instead of starting with an application-

independent abstraction for a secure computer system and

trying to make an application fit on top of it, we start with

the application and derive the constraints that the system

must enforce from both the functional and security

requirements of the application. In this way, it is possible
to construct a set of assertions that is enforced uniformly

on all the system software. To evaluate our approach, we

have formulated a security model for a family of military

message systems. Defining an application-based security

model is part of a larger effort whose goals are (1) to

develop a disciplined approach to the production of secure
systems and (2) to produce fully worked-out examples of

a requirements document and a software design for such

systems. In this paper, we introduce the message system

application, discuss the Bell-LaPadula trusted process

approach to building secure systems, and present a
security model for military message systems both

informally and formally.

2 Requirements of Military Message

Systems

In recent years, automation has been applied

increasingly to the handling of military messages [10].

While the primary purpose of military message systems is

to process formal messages (i.e., official messages
exchanged by military organizations), such systems may

also handle informal messages (i.e., unofficial messages

exchanged by individuals). Formal messages are

transmitted over military networks, such as AUTODIN;

their format and use is governed by military standards.
Examples of informal messages are those currently

supported by several message systems (e.g., HERMES

[19]) available on the ARPA network.

2.1 Functional Requirements

Message system operations may be organized into

three categories: operations on incoming messages,

operations on outgoing messages, and message storage

and retrieval. Operations in the first category permit a

user to display and print messages he has received.
Second-category operations support the creation, editing,

and transmission of outgoing messages. Message storage

and retrieval operations allow users to organize messages

into message files and to retrieve messages via single keys

(e.g., message id) or combinations of keys (e.g., subject

and originator). Typically, military systems that process
formal messages provide the same operations as systems

that process informal messages plus several additional

operations, such as distribution determination, action and

information assignment, and release [10].

2.2 Security Requirements

Each formal military message is composed of several

fields, including To, From, Info, Date-Time-Group,

Subject, Text, Security, and Precedence. A classification,

such as UNCLASSIFIED or SECRET, is assigned to each
field and to some subfields, for example, the paragraphs

of the Text field; further, the overall message has a

classification that is at least as high as that of any field or

subfield. Thus, the Subject field of a message may be

classified at a lower level than the message as a whole,

and two paragraphs of the Text field may have different
classifications.

In some data processing applications, users process

information at a single security level for long periods of

time. In contrast, message system users often need to

handle data of several classifications during a single

computer session. For example, a user may wish to
compose an unclassified message based in part on a

previous classified message he has received. To

accomplish this, he must simultaneously display the

classified information and compose the unclassified

message. As a further example, the user may wish to scan
newly arrived messages and print only those that are

unclassifed. To do so, he must display data of several

different classifications and then print a hard copy only of

the unclassifed data.

Military message systems are required to enforce

certain security rules. For example, they must insure that
users cannot view messages for which they are not

cleared. Unfortunately, most automated systems cannot be

trusted to enforce such rules. The result is that many

military message systems operate in "system-high" mode:
each user is cleared to the level of the most highly

classified information on the system. A consequence of

system-high operation is that all data leaving the

computer system must be classified at the system-high

level until a human reviewer assigns the proper

classification.
A goal of our research is to design message systems

that are multilevel secure. Unlike systems that operate at

system-high, multilevel secure systems do not require all

users to be cleared to the level of the highest information

processed. Moreover, information leaving such a system

can be assigned its actual security level rather than the
level of the most highly classified information in the

system. Unlike a system that operates at system-high, a

multilevel system can preserve the different

classifications of information that it processes.

3 Experience with the Bell-Lapadula

Model and Trusted Processes

While its complete formal statement is lengthy and
complex, the Bell-LaPadula model may be briefly

summarized by the following two axioms:

(a) the simple security rule, which states that a subject

cannot read information for which it is not cleared ("no

read up"), and

(b) the *-property, which states that a subject cannot
move information from an object with a higher security

classification to an object with a lower classification ("no

write down").

These axioms are to be enforced by restricting the

access rights that subjects, for example, users and

processes, have to objects, for example, files and devices.
A less frequently described part of the Bell-LaPadula

model is its concept of trusted subjects, that is, subjects

that are allowed "to operate without the extra

encumbrance of the *-property" because they are trusted

"never [to] mix information of different security levels"

[3]. More precisely, a trusted subject can have
simultaneous read access to objects of classification x and

write access to objects of classification y, even if the

classification of y is less than the classification of x. The

formal statement of the Bell-LaPadula model places no

constraints on the trusted subject's violations of the *-
property.

A number of projects have used the Bell-LaPadula

model to describe their security requirements. In these

projects, strict enforcement of the Bell-LaPadula axioms

without trusted subjects has proved to be overly

restrictive. Hence, trusted processes have been introduced
as an implementation of the concept of trusted subjects.

Below, we summarize experience with the Bell-LaPadula

model and trusted processes in four projects: the Military

Message Experiment (MME), the Air Force Data Services

Center (AFDSC) Multics, the Kernelized Secure Oper-
ating System (KSOS), and the Guard message filter.

3.1 MME

The MME's goal was to evaluate the utility of an

interactive message system in an operational military
environment [23]. During the MME, more than 100

military officers and staff personnel used SIGMA, the

message system developed for the experiment, to process

their messages [21, 22]. Although SIGMA was built on

the nonsecure TENEX operating system, its user interface
was designed as though it were running on a security

kernel (i.e., a minimal, tamperproof mechanism that

assures that all accesses subjects have to objects conform

to a specified security model). SIGMA's user interface

was designed so that it would not change if SIGMA were

rebuilt to operate with a security kernel. During the
planning phase of the MME, it was decided that SIGMA

would enforce the Bell-LaPadula model [1]. This decision

led to a number of difficulties, three of which are

described below. The first problem arose from the initial

decision, later changed, to adopt the model without

trusted subjects; the other two problems apply to Bell-
LaPadula with or without trusted subjects.

Prohibition of write-downs. The *-property of Bell-

LaPadula disallows write-downs; yet, in certain cases,

message system users need to lower the classification of

information. For example, a user may create a message at

TOP SECRET, and, after he has entered the message text,
decide that the message classification should be SECRET.

A system that strictly enforces the *-property would

prohibit a user from reducing the message classification.

The user would be required to create a new message at

SECRET and re-enter the text.
Absence of multilevel objects. Bell-LaPadula

recognizes only single-level objects; some message

system data objects (e.g., messages and message files) are

inherently multilevel. A computer system that treats a

multilevel object as single-level can cause some

information to be treated as more highly classified than it
really is. For example, when a user of such a system

extracts an UNCLASSIFIED paragraph from a SECRET

message, the system labels the paragraph SECRET even

though the paragraph is actually UNCLASSIFIED.

No structure for application-dependent security rules.

Military message systems must enforce some security
rules that are absent in other applications. An example is a

rule that allows only users with release authority to invoke

the release operation3. Such application-dependent rules

are not covered by Bell-LaPadula, and, hence, must be

defined outside of it.
To address the first problem (and, to some extent, the

third), the SIGMA developers designed a trusted process

that is not constrained by the *-property and is, therefore,

permitted to perform write-downs. For example, a

SIGMA user could search a file containing both

UNCLASSIFIED and SECRET messages and then
display an UNCLASSIFIED message whose citation was

returned by the search; such an operation required the

intervention of the trusted process since the message

citation was transmitted from the SECRET process that

did the search to the UNCLASSIFIED process that

handled the message display. Unlike the Bell-LaPadula
model, which puts no explicit constraints on write-downs

performed by the trusted subjects, SIGMA's trusted

process narrowly limited the cases in which write-downs

were permitted. Ames [1] provides further details on the

role of the trusted process in SIGMA.

SiGMA's use of a trusted process was helpful in that it
relaxed the rigid constraints of Bell-LaPadula, thus

permitting users to perform required operations. However,

adding the trusted process also caused a serious problem:

it made the security policy that SIGMA enforced difficult

to understand. Interviews held during the MME revealed
that few SIGMA users clearly understood the security

policy that was being enforced. It was an assumption of

SIGMA's design that user confirmation of security-

relevant operations would prevent security violations.

However, because users issued confirmations without

comprehending why these confirmations were needed,
this assumption was unwarranted.

3.2 AFDSC Multics

In the mid-1970s, Multics was modified to include the
Access Isolation Mechanism (AIM). This version of

Multics, which has been used at the ADFSC for several

years, supports the assignment of security levels to

processes and segments and enforces the Bell-LaPadula

model. Multics-AIM also contains trusted functions,

invoked via a special operating system gate, to enforce
access control on objects smaller than a segment, to allow

security officers to downgrade files in response to user

requests, and to provide other "privileged" operations.

Although Multics-AIM is generally considered a

success, experience with it at the AFDSC illustrates some

difficulties that arise from strict enforcement of the Bell-
LaPadula axioms and from the use of trusted functions.

For example, if a user operating at the TOP SECRET

3 Releasing a message is security-relevant because it allows a wider set

of users to view the message and because it certifies that a particular
military organization originated the message.

level wishes to send an UNCLASSIFIED message to

another user operating at the SECRET level, Multics-AIM

requires that the message be treated as though it were
TOP SECRET. The recipient is not notified of its arrival

until he logs in as a TOP SECRET user.

Problems also occur when a user operating at a low

security level tries to send mail to a user at a higher level.

Mailbox segments in Multics-AIM are special: they have

both a minimum and maximum access level. The
minimum is defined by the level of the directory that

contains the mailbox segment. Thus, a user operating at

UNCLASSIFIED is prohibited from sending a message to

a mailbox located in a SECRET directory. In this case, the

mail could not be sent unless the sender were to log out

and log back in at the SECRET level. Because this
situation arises frequently, system administrators are

allowed to invoke a trusted function that permits them to

send mail without logging out and logging back in again.

3.3 KSOS

KSOS [17] was to be a security-kernel based system

with a UNIX-compatible program interface on a DEC

PDP-11. The KSOS security kernel was designed to

strictly enforce the axioms of the Bell-LaPadula model on

user-provided programs. To handle those situations where
strict enforcement is incompatible with functional

requirements, the kernel recognizes certain "privileges"

that allow some processes to circumvent parts of this

enforcement. These privileges include the ability to

violate the *-property to change the security or integrity

level [5] of objects, and to invoke certain security kernel
functions. KSOS developers defined a special category of

software, called Non-Kernel Security Related (NKSR),

that supports such privileges. For example, the "Secure

Server" of the KSOS NKSR allows a user to reduce the

security level of files he owns and to print a file classified
at a lower security level without raising the security level

of the printed output to the level of this process. Both of

these operations would be prohibited by strict

enforcement of the Bell-LaPadula axioms.

3.4 Guard

The Guard message filter [24] is a computer system

that supports the monitoring and sanitization of queries

and responses between two database systems operating at

different security levels. When a user of the less sensitive
system requests data from the more sensitive system, a

human operator of the Guard must review the response to

ensure that it contains only data that the user is authorized

to see. The operator performs this review via a visual

display terminal.

One version of the Guard is being built on a security
kernel that enforces the axioms of the Bell-LaPadula

model. However, strict enforcement of the *-property is

not possible since a major requirement of the Guard

system is to allow the operator to violate it, that is, to
allow information from the more sensitive system to be

sanitized and "downgraded" (or simply downgraded), so

that it can be passed to systems that store less sensitive

information. An important component of this version's

design is the trusted process that performs this

downgrading.

3.5 Lessons Learned

Experience has shown that, on one hand, the axioms of

the Bell-LaPadula model are overly restrictive: they
disallow operations that users require in practical

applications. On the other hand, trusted subjects, which

are the mechanism provided to overcome some of these

restrictions, are not restricted enough. The formal model

provides no constraints on how trusted subjects violate the

*-property. Consequently, developers have had to develop
ad hoc specifications for the desired behavior of trusted

processes in each individual system. While such an

approach relaxes the rigid enforcement of the *-property,

it introduces two additional problems:

(1) Use of the axioms in conjunction with trusted

processes makes it difficult to determine the exact nature
of the security rules that a system enforces. In the MME

and the other three projects described, the security rules

enforced by the system as a whole are not the same as the

axioms of the model. The actual security rules enforced

by each system include both the axioms of the Bell-

LaPadula model and the exceptions allowed by the trusted
processes.

(2) Because the actual policies in practical systems

deviate from the Bell-LaPadula axioms, any inductive

proof that such a system maintains a secure state, based

on strict enforcement of the axioms of the model, is a
proof about only part of the system and cannot apply to

the entire system. Moreover, trusted subjects do not

address directly4 the two other problem areas of the Bell-

LaPadula model discussed above, that is, its failure to

support multilevel objects and its lack of a structure for

including application-dependent security rules.

4 Indirectly, trusted subjects can implement any arbitrary security policy.
For example, a trusted subject that acts as a type manager can provide

multilevel objects, and application-dependent security rules can be

enforced by making controlled operations available only through trusted
subjects. Our point here is that the notion of trusted subjects in itself

serves only to draw a circle around the aspects of security policy not

addressed by the axioms of the Bell-LaPadula model. It does not provide
any framework for formulating that policy.

4 Military Message System (MMS)

Security Model

Our goal is to define a single, integrated security

model that captures the security policy that a military

message system must enforce, without mentioning the
techniques or mechanisms used to implement the system

or to enforce the policy. The security model defined

below is intended to allow users to understand security in

the context of message systems, to guide the design of

military message systems, and to allow certifiers to

evaluate such systems. The model presented here is
informal; it is the basis for the formal model presented in

the following section.

In this section we define some terms, use them to

describe how a user views the system's operation, and

state assumptions and assertions, based on the terms and

the user's view of operation, that are intended to be
sufficient to assure the security of the system. The

security model comprises the definitions, user's view of

operation, the assumptions, and the assertions. It is a

revision of earlier work [13, 16].

This model does not address auditing, although secure
message systems clearly require auditing mechanisms.

The existence of an audit trail may deter potential

penetrators, but auditing is primarily a technique for

providing accountability and for detecting security

violations after the fact. The security model focuses on

assertions that, if correctly enforced, will prevent security
violations. Consequently, assertions and assumptions

about auditing do not appear; in a more detailed system

specification, auditing requirements would be explicit.

 The model itself places no constraints on the

techniques used to implement a military message system

or to verify that a particular system correctly enforces the
assertions of the model. An implementation based on a

complete formal specification and proof of correctness

would be as admissible as one based on a security kernel

and trusted processes, or even one employing standard

software engineering techniques for design, testing, and

validation. By separating the statement of the security
model from the concerns of implementation and

verification, we can allow for advances in these areas

without depending on them.

4.1 Definitions

The definitions below correspond in most cases to

those in general use and are given here simply to establish

an explicit basis for the model. We distinguish between

objects, which are single-level, and containers, which are

multilevel. We also introduce the concept of user roles,
which define job-related sets of privileges.

Classification5: a designation attached to information

that reflects the damage that could be caused by

unauthorized disclosure of that information. A
classification includes a sensitivity level

(UNCLASSIFIED, CONFIDENTIAL, SECRET, or TOP

SECRET) and a set of zero or more compartments

(CRYPTO, NUCLEAR, etc.). The set of classifications,

together with the relation defining the allowed

information flows between levels, form a lattice [7]. Most
dissemination controls, such as NATO, NOFORN, and

NOCONTRACTOR, can be handled as additional

compartment names.

Clearance: the degree of trust associated with a

person. This is established on the basis of background

investigations and the tasks performed by the person. It is
expressed in the same way as classifications are, as a

sensitivity level and a {possibly null) compartment set. In

a secure MMS, each user will have a clearance, and

operations performed by the MMS for that user may

check the user's clearance and the classifications of

objects to be operated on. Some other characteristics of a
user, such as his nationality and employer, may also be

treated as part of this clearance so that dissemination

controls are handled properly.

UserID: a character string used to denote a user of the

system. To use the MMS, a person must present a userID
to the system, and the system must authenticate that the

user is the person corresponding to that userID. This

procedure is called logging in. Since clearances are

recorded on the basis of one per userID, each user should

have a unique userID.

User: a person who is authorized to use the MMS.
Role: the job a user is performing, such as

downgrader, releaser, distributor, and so on. A user is

always associated with at least one role at any instant, and

the user can change roles during a session. To act in a

given role, the user must be authorized for it. Some roles

may be assumed by only one user at a time {e.g.,
distributor). With each role comes the ability to perform

certain operations.

Object: a single-level unit of information. An object is

the smallest unit of information in the system that has a

classification. An object thus contains no other objects; it
is not multilevel. There are many kinds of objects; an

example is the date-time-group of a message.

Container: A multilevel information structure. A

container has a classification and may contain objects

(each with its own classification) and/or other containers.

In most MMS family members, message files and
messages are containers. Some fields of a message (such

5 This definition corresponds to that used by other

authors for security level. In this paper, security level and

classification are synonyms.

as the Text field) may be containers as well. The

distinction between an object and a container is based on

type, not current contents: within a family member, if an
entity of type message file is a container, then all message

files in that family member are containers, even if some of

them are empty or contain only objects and/or containers

classified at the same level as the message file itself.

Devices such as disks, printers, tape drives, network

interfaces, and users' terminals will be containers, rather
than objects, in most MMS members.

Entity: either a container or an object.

Container Clearance Required (CCR): an attribute of

some containers. For some containers, it is important to

require a minimum clearance, so that if a user does not

have at least this clearance, he cannot view any of the
entities within the container. Such containers are marked

with the attribute Container Clearance Required (CCR).

For example, a user with only a CONFIDENTIAL

clearance could be prohibited from viewing just the

CONFIDENTIAL paragraphs of a message classified

TOP SECRET by marking the message (which is a
container) "CCR." On the other hand, given a message

file containing both TOP SECRET and CONFIDENTIAL

messages, it may be acceptable to allow the user in

question to view the CONFIDENTIAL ones, even though

the container (message file) as a whole is classified TOP
SECRET. In this case, the file would not be marked

"CCR."

ID: identifier. An ID names an entity without referring

to other entities. For example, the name of a message file

is an ID for that file. Some, but not necessarily all, entities

can be named by identifiers. Entities may also be named
by indirect references (see below).

Direct reference: a reference to an entity is direct if it

is the entity's ID.

Indirect reference: a reference to an entity is indirect

if it is a sequence of two or more entity names (of which

only the first may be an ID). An example is "the current
message's Text field's third paragraph."

Operation: a function that can be applied to an entity.

It may simply allow that entity to be viewed (e.g., display

a message), or it may modify the entity (update a

message), or both (create a message). Some operations
may involve more than one entity (copy a message from

one message file to another).

Access Set: a set of triples (userID or role, operation,

operand index) that is associated with an entity. The

operations that may be specified for a particular entity

depend on the type of that entity. If a given operation
requires more than one operand, the operand index

specifies the position in which a reference to this entity

may appear as an operand. For messages, operations

include DISPLAY, UPDATE, DELETE, and so on. The

existence of a particular triple in the access set implies

that the user corresponding to the specified userID or role

is authorized to invoke the specified operation on the

entity with which the set is associated.

Message: a particular type implemented by an MMS.
In most MMS family members, a message will be a

container, though messages may be objects in some

receive-only systems. A message will include To, From,

Date-Time-Group, Subject, Releaser, and Text fields, and

additional fields as well. A draft message also includes a

Drafter field.

4.2 User's View of MMS Operation

We present the following as a model of the use of a

secure MMS. Terms defined above are printed in
uppercase.

People can gain access to the system only by logging

in. To log in, a person presents a USERID and the system

performs authentication, using passwords, fingerprint

recognition, or any appropriate technique. Following a

successful authentication, the USER invokes
OPERATIONS to perform the functions of the message

system. The OPERATIONS a USER may invoke depend

on his USERID and the ROLES for which he is

authorized; by applying OPERATIONS, the USER may

view or modify OBJECTS or CONTAINERS. The system

enforces the security assertions listed below (that is, it
prevents the user from performing OPERATIONS that

would contradict these assertions).

4.3 Security Assumptions

It will always be possible for a valid user to

compromise information to which he has legitimate

access. To make the dependence of system security on

user behavior explicit, we list the following assumptions.

These assumptions are really security assertions that can

only be enforced by the users of the system.
A1. The System Security Officer (SSO) assigns

clearances, device classifications, and role sets

properly.

A2. The user enters the correct classification when

composing, editing, or re-classifying information.

A3. Within a classification, the user addresses messages
and defines access sets for entities he creates so that

only users with a valid need-to-know can view the

information.

A4. The user properly controls information extracted

from containers marked CCR {i.e., exercises
discretion in moving that information to entities that

may not be marked CCR).

The basis for these assumptions is that when there is

no other source of information about the classification of

an entity or the clearance of a person, the user is assumed

to provide information that is correct.

4.4 Security Assertions

The following statements hold for a multilevel secure

MMS:

Authorization

1. A user can invoke an operation on an entity only if

the user's userID or current role appears in the entity's

access set along with that operation and with an index
value corresponding to the operand position in which the

entity is referred to in the requested operation.

Classification hierarchy

2. The classification of any container is always at least

as high as the maximum of the classifications of the
entities it contains.

Changes to objects

3. Information removed from an object inherits the

classification of that object. Information inserted into an

object must not have a classification higher than the

classification of that object.

Viewing

4. A user can view (on some output medium) only an

entity with a classification less than or equal to the user's

clearance and the classification of the output medium.

(This assertion applies to entities referred to either

directly or indirectly).

Access to CCR entities

5. A user can have access to an indirectly referenced

entity within a container marked "Container Clearance

Required" only if the user's clearance is greater than or

equal to the classification of that container.

Translating indirect references
6. A user can obtain the ID for an entity that he has

referred to indirectly only if he is authorized to view that

entity via that reference.

Labeling requirement

7. Any entity viewed by a user must be labeled with its
classification

Setting clearances, role sets, device levels

8. Only a user with the role of System Security Officer

can set the clearance and role set recorded for a user or

the classification assigned to a device. A user's current

role set can be altered only by that user or by a user with
the role of System Security Officer.

Downgrading

9. No classification marking can be downgraded

except by a user with the role of downgrader who has

invoked a downgrade operation.

Releasing
10. No draft message can be released except by a user

with the role of releaser. The userID of the releaser must

be recorded in the "releaser" field of the draft message.

4.5 Discussion

The purpose of this subsection is to clarify the effects

of the model in particular cases. The paragraphs below are

not part of the model; the previous subsections define the

model completely. Here we seek only to show how the

model applies in specific circumstances.

(1) What prevents a user from copying a classified
entity to an unclassified entity?

The classification of the entity being copied

accompanies the data. Moving explicitly classified data to

an unclassified container is a violation of assertion 2

(classification hierarchy) and 9 (downgrading), unless the
user requesting the operation is the downgrader and is

performing a downgrade operation, since the

classification of the data in question is effectively

changed by the operation. Manipulations that affect only

objects are covered by assertion 3 (changes to objects).

(2) What about copying a part of an object into another
object?

A part of an object inherits the classification of the

whole object (assertion 3, changes to objects). Thus

moving part of an object into another object is disallowed

by assertions 2 (classification hierarchy) and 3 unless

classification of the former object is less than or equal to
that of the latter. Note that this constraint does not affect

the user's ability to remove an UNCLASSIFIED

paragraph (an object) from a CONFIDENTIAL document

(a container) and use it in an UNCLASSIFIED document

(another container).

(3) Does a user have a "login level"?
Login levels are not explicitly part of the model, but

the effect of a login level can be obtained through the

classification of the user's terminal. The classification of

the terminal is an upper bound on the classification of

information that can be displayed on it (assertion 4,
viewing). If the user wishes to restrict further the level of

the information that appears on the terminal, he may

invoke an operation to reduce the classification of the

terminal. The right to determine the classification of

shared devices (disks, printers, etc.) will generally belong

to the SSO. Note that restricting the level of the
information that can appear on the user's terminal does

not necessarily restrict the level of information that

programs he invokes may have access to.

(4) Processes do not appear in the model but surely

will be present in the implementation. How will their

activities be constrained?
Operations, rather than processes or programs, are in

the model because they correspond more closely to the

user's view of the system. To the user, the system offers

functions that may be invoked by typing strings of

characters, pushing function keys, etc. Each function can
be understood by the user as an operation. In the

implementation, processes are constrained to invoke only

operations that preserve the truth of the assertions.

(5) Which entities in a particular message system will
be containers and which will be objects?

This decision is part of the next more detailed level of

the stated model. Some likely choices are that messages

and message files will be containers and that the date-time

group will be an object. It is not necessary that all

message systems in the family make the same choices. If
two message systems that make different choices

communicate, some method of mapping between those

entities that are objects in one system and containers in

the other must be defined.

(6) How are entities created?

For each type of entity that users can create, there will
be an operation that, when invoked, creates a new

instance of that type. As with all other operations, only

users who are authorized for it can invoke it. Thus, it is

not necessarily the case that any particular user will be

able to create any particular kind of entity; he must be

authorized to do so. In particular, only users authorized
for certain roles may be allowed to create certain kinds of

entities.

(7) How does a user refer to an object or a container?

Some entities have identifers (IDs) that allow them to

be named directly. A given entity may have zero, one, or
more IDs. An entity may also be referred to indirectly by

a qualified name (see the example under the definition of

indirect reference). A user (or a program he invokes) can

refer to an entity using any valid ID or qualified name.

The former is called a direct reference and the latter an

indirect reference.
(8) What policy governs access to an entity in a

container? Is the classification of the container or of the

contents tested and with what is it compared?

The answer to this question depends on the type of

access (the operation invoked) and whether the reference

is direct or indirect. If the entity is referred to directly for
viewing, assertion 4 (viewing) gives the appropriate

restriction. If the reference is indirect, there are two cases

depending on whether or not the entity is within a

container marked CCR. If it is, both assertions 4 and 5

(access to CCR entities) have an effect; otherwise, only
assertion 4 is relevant. Note that a user may be permitted

to view a particular entity in a CCR container if he refers

to it directly, but be denied access if he refers to it

indirectly. This provides a means for dealing with the

aggregation problem without requiring duplicate copies of

protected information: a collection of CONFIDENTIAL
aggregation-sensitive objects might be stored in a

container marked SECRET-CCR. A user with a

CONFIDENTIAL clearance who had been given the ID

of an individual object could refer to it directly, but would

be unable to view the same item via an indirect reference

that identified it as a member of the SECRET-CCR

container. Assertion 1 (authorization) always requires that

the user (or his role) be in the access set for the entity-

operation pair specified.
(9) Is there anything in the system that is not (or is not

part of or a name for) an entity or a user?

From the user's point of view, no. There may be

structures in the implementation that the user is unaware

of and would be difficult to assign a legitimate

classification to (such as internal operating system
queues, perhaps). Anything the user can create, display, or

modify, however, must be (or be part of or a name for) an

entity or a user.

(10) What are the relationships among a user, an

operation he invokes, and programs that the operation

may invoke on his behalf?. For example, what privileges
do the programs inherit, how is it determined whether a

given invocation is allowed under the security policy?

A user has a clearance recorded in the system. When a

user invokes an operation on an entity, his clearance and

role, the appropriate device classifications, and the

classification, CCR mark, and access set for that entity
determine whether the operation is permitted. The user's

ID or current role must be paired with the specified

operation in the access set of the entity in question

(assertion 1, authorization). If the operation allows

information to be viewed via a given device, then the
user's clearance and the classification of the output device

must equal or exceed the classification of the information

(assertion 4, viewing). Similarly, other security assertions

must not be violated by the programs invoked as part of

the requested operation.

(11) There are no integrity levels or controls defined in
the model. What prevents accidental/malicious

modification of sensitive data?

The reasons for omitting integrity levels have been

discussed separately [15]. Modifications of clearances,

classifications, and role sets are covered in the given set

of assertions. To alter data, a user must invoke an
operation; assertion 1 (authorization) requires that the user

be authorized to invoke that operation. In the future,

specific cases may be treated in additional assertions

similar to assertion 10 (releasing).

5 Formalizing the MMS Security Model

To provide a firm foundation for proofs about the
security properties of a system specification or

implementation, a formal statement of its security model

is needed. This section presents a formal model that

corresponds to the informal MMS security model. It

serves three purposes: (1) it is an example of how an

informal model of a system's security requirements can be
made formal; (2) being abstract, it can be interpreted by

others for different but related applications; and (3) it is a

basis for proofs about particular message system

specifications and implementations.

The MMS security model comprises fifteen
definitions, a one-paragraph description of MMS

operation, four assumptions about user behavior, and ten

assertions that hold for the MMS. We focus on

formalizing the ten assertions only, although in doing so,

some notation is required to define formal entities that

correspond to those discussed informally in the fifteen
definitions. Below, the assertions are explicated formally

in definition (2) concerning system states and definitions

(5) through (11) concerning the system transform.

Although the correctness of the explication cannot be

proven, we discuss the correspondence between the

formalism and the informal model briefly following the
explication.

Each MMS family member can be modeled as an

automaton with inputs, an internal state, and outputs. The

inputs correspond to the commands users give to the

system. Because this is a security model, we are

principally concerned with modeling the categories of
inputs that affect system security. The internal state of the

automaton corresponds to the information currently stored

in the message system--messages, message files,

classifications, access sets, and so on. Output from the

automaton consists of command responses--the things that
users view or obtain in response to particular requests.

These may include entities, classification labels, IDs, and

so on. We model output as a set of distinguished entities;

although output is treated as part of the internal state, it

represents that part that is directly visible to users. Some

commands cause a state change that affects the output set,
others may cause a change of state without changing the

output set, and still others {particularly commands that do

not satisfy the security assertions) cause no state change at

all. A history of the system is a particular sequence of

inputs and states.

5.1 Formal Model

We assume the existence of a set of possible users and

a set of possible entities. Given these sets we define

system state and the notion of a secure state. Next, we
define system and history and introduce constraints on the

transform that moves a system from one state to another.

A system whose transform meets all these constraints is

said to be transform secure. Finally, the notions of secure

history and secure system are defined.

The structure of the formal model is intended to
simplify its application to defining preconditions and

postconditions for system operations. To make explicit

the entities that a given operation may change, we define

the concept of potential modification based, in part, on the

work of Popek and Farber [20]. Potential modification is
similar to strong dependency, developed by Cohen [6].

5.1.1 System State

In this section we define what it is to be a system state and

what it is for a system state to be secure. We assume the
existence of the following sets.

OP is a set of operations.

L is a set of security levels. ≥ is a partial order on L such

that (L, ≥) is a lattice.

UI is a set of userID's.

RL is a set of user roles.

US is a set of users. For all u � US, CU(u) � L is the

clearance of u, R(u)⊆RL is the set of authorized roles

for u, and RO(u) ⊆ RL is the current role set for user u.

RF is a set of references. This set is partitioned into a set,

DR, of direct references and a set, IR, of indirect

references. Although the exact nature of these

references is unimportant, we assume that the direct
references can be ordered by the integers. In this

model we treat each direct reference as a unary

sequence consisting of a single integer, for example,

<17>. Each indirect reference is treated as a finite

sequence of two or more integers, for example, <nl

,…, nm>, where <nl>is a direct reference.

 VS is a set of strings (bit or character). These strings

serve primarily as entity values (e.g., file or message

contents).

TY is a set of message system data types that includes

"DM" for draft messages and "RM" for released
messages.

ES is a set of entities. For all e ∈ ES CE(e) ∈ L is the

classification of e. AS(e) ⊆ (UI ∪ RL) × OP × N is a

set of triples that compose the access set of e. (u, op, k)

∈ AS(e) iff u is a userID or user role authorized to

perform operation op with a reference to e as op's kth

parameter. T (e) ∈ TY is the type of entity e. V(e) ∈ VS

is the value of entity e. If T(e) = DM or T(e) = RM,

then V(e) includes a releaser field RE(e), which if

nonempty, contains a userID. ES contains as a subset

the set of entities that are containers. For any entity e

in this set H(e) = <e1 ,..., en> where entity ei is the ith

entity contained in e. CCR(e) is true iff e is marked

CCR, else false. If T(e1) = T(e2) then e1 and e2 are both

containers or both objects. The set O of output devices

is a subset of the set of containers6. Elements o ∈ 0

serve as the domain of two further functions. D(o) is a

set of ordered pairs {(x1, y1), (x2, y2) , (xn, yn)}

where each yi is displayed on o. Each xi is either a user
or an entity, and the corresponding yi is either a

reference, a userID, or the result of applying one of the

above functions to xi.
7 We require that (x,V(x)) ∈ D(o)

� x ∈ H(o)8. CD(o) gives the maximum

classification of information that may be displayed on

o. This allows CE(o) to be used as the current upper
limit of the classification of information to be

displayed by the output device, so that users can

restrict the classification of output to be less than the

maximum level permitted.

A state maps a subset of userIDs and references
(intuitively, those that exist in the state in question) to

elements of US and ES that represent their corresponding

properties. A state also maps a subset of userIDs that

"exist" into references that correspond to output devices

(intuitively, these users are logged on to the specified

devices). To this end we define three mappings. An id
function, U, is a one-to-one mapping from a (possibly

improper) subset of UI into US. A reference function, E,

is a mapping from a (possibly improper) subset of RF into

ES such that for all n ≥ 2, E(<i l ,..., in>) = e iff E(<i l

,..., in-1>) = e* where e* is a container such that e is the

inth element of H(e*). For any reference r, if E(r) = e, we
say that r is a reference to e (relative to E). A login

function, LO, is a one-to-one mapping from a (possibly

improper) subset of UI into RF. 9

Given a reference function, E, each indirect reference

of the form <n0 ,..., nm> to an entity em corresponds to a

path of entities <e0 ,..., em> such that each ei ∈ rng(E), e0

is denoted by the direct reference <n0>, and for all

positive integers i ≤ m, ei is the nith entity in container

ei-1. Such an indirect reference is said to be based on each

entity ej where 0 ≤ j < m .

6 In implementations, some kinds of output "disappear" from the

system state (e.g., information sent to a printer or a telecommunications

port) while others persist (e.g., information displayed on the screen of a
terminal, which a user may later refer to and modify). In the

formalization, we do not distinguish between these types; both are

intended to be covered by O.
7 Both the item and what is displayed must be specified so that, for

example, cases in which two entities have identical values but different
security levels can be distinguished.
8 We extend the set theoretic notions of membership and intersection to

apply to tuples in the obvious sense.
9 The condition that LO is a function reflects an assumption that a user

cannot be on two terminals at the same time. We also assume that a

user's output is directed to the terminal he is on. These assumptions are
merely for ease of exposition and are not an essential part of the model.

One way to appropriately restrict output that is not directed to the user's

terminal would be to consider a user logged in on a device when he
directs output to it.

Definition 1. A system state, s, is an ordered triple10

(U, E, LO) where U is an id function, E is a reference

function, and LO is a login function such that dom(LO) ⊆

dom(U) and rng(LO) ⊆ dom(E∩(RF×O)). We also

require that if o�rng(E) ∩ O and (x, y) ∈ D(o), then x ∈

rng(E) ∪ rng(U) to assure that only information about

users and entities that "exist" in the current state can

actually be displayed, and that for any reference r, (x, r) ∈

D(o) � E(r) = x. Finally, we require that E(LO(u1)) =

E(LO(u2)) � u1 = u2 to prevent two users from being

logged in simultaneously on the same terminal.
Given a system state s = (U, E, LO), we abbreviate

E(r) by rs, U(u) by us, and E(LO(u)) by ûs.

Definition 2. A state s is secure if ∀ x, y ∈ rng(E),

∀ o ∈ O ∩ rng(E), ∀ w ∈ dom(LO), and ∀ u

∈ rng(U):

x ∈ H(y) � CE(x) ≤ CE(y),

x ∈ H(
s

ŵ) � CU(ws) ≥ CE(x),

(x, V(x)) ∈ D(o) � (x, CE(x)) ∈ D(o),

RO(u) ⊆ R(u), and

CD(o) ≥ CE(o).

5.1.2 Secure System

 In this section we define what a system is and what it

is for a system to be secure.

Definition 3. A system Σ is a 4-tuple (I,S, s0, T) where
I is the set of well-formed system requests, where each

request i � I is of the form <op, xl, x2 xn> where each

xj � RF ∪ UI ∪ VS and op � OP;

S is the set of possible system states;
s0 designates a special state called the initial state; and

T is the system transform, that is, a function from UI ×

I × S into S.

Definition 4. A history, Π, of a system is a function
from the set of nonnegative integers N to UI × I × S such

that (1) the third element of Π(0) is s0, and (2) for all n �

N, if Π (n) = (u, i, s) and Π(n + 1) = (u*, i*, s*), then T(u,

i, s) = s*.
Before defining what it means for an operation to

potentially modify a reference11, we notice that a

10 State is defined as a tuple, rather than as a set of functions, because

two states whose elements have the same values are in fact identical,

while two entities for which the defined functions return the same values
may in fact be different (e.g., two copies of the same citation).
11 The version of the paper published in ACM TOCS incorrectly had

“entity” in place of “reference” at this point. The definition of “potential
modification” was given correctly, however.

reference function E, and a fortiori a state s, induces a set

of functions defined on references that are counterparts to

the set of functions introduced above that are defined on
entities. For example, there is a function, call it Vs, such

that Vs(r) = V(rs). Similarly, there is a counterpart

predicate, call it Hs, such that Hs <r, r1, ..., rn> iff H(rs)=

<r, rs
1, ..., rs

n
>. Each counterpart is the user-visible

version of the corresponding entity function. We call

these referential counterparts and use them to define what

it means for two states to be equivalent except for a set of
references.12

State s = (U, E, LO) and s* = (U*, E*, LO*) are

equivalent except for some set of references ρ iff (1) U =
U*, (2) LO = LO*, (3) dom(E) = dom(E*), (4) for any

entity function F except V, Fs = Fs*, and (5) for any

reference r � dom(E) 	 ρ, Vs(r) = Vs*(r).

We now define potential modification as follows:

u, i, s potentially modify r iff ∃ s1, s1* : s1 is equivalent

to s except possibly for some set of references and T(u, i,

s1) = s
*
1 and for some entity function F,

)()(*

11 ss
rFrF ≠ .13

Call y a contributing factor in such a case iff y = r or ∃

s1 as above and s2, s
*
2: s1 and s2 are equivalent except for

{y} and T(u, i, s2) = s
*
2 and)()(*

1

*

2
ss

rFrF ≠ .

That is, u, i, s potentially modifies r if there is some

(second) state that may differ from s in the values of some

entities, and T maps u, i, and this state into a third state in

which some entity function F (value, containment, access
set, etc.) on r differs from the second state. The

contributing factors are r and those entities whose values

affect the final F(r).

For each referential counterpart and each function

defined on users, we posit a unique operation that changes

an existing entity or user with respect to that function. For
example, an operation set__AS(r, new_access_set) is the

only operation that affects r’s access set, and it has no

other user-visible effect. Further, if the transition is, for

example, from state s to state s*, ASs*(r) is

new_access_set if new_access_set is a character string

and Vs(new_access_set) if new_access_set is an entity
reference. Changes to the domain of E or U (creation or

deletion of entities or users) are also assumed to occur

only by explicit request. The formal release operation

defined below is the single exception to this assumption

12 We could have developed the entire formal model in terms of

referential counterparts, but preferred the simplicity of functions to

working with the predicate Hs.
13 This covers cases of creation (and deletion) since)(

1
s
rF will be

undefined and)(*

1s

rF will be defined (although possibly empty).

(besides delete(r) and possibly, create(r)); it changes the

type of r and, potentially, the releaser field of r's value as

well.
The exact nature of these operations is unimportant

since these assumptions are included solely for ease of

exposition. Their purpose is not to rule out

implementation commands that affect different parts of

entities, but to eliminate the problem of unspecified side

effects in the formal model (e.g., permission to view a
message marked CCR is not permission to clear the CCR

mark). Implementation commands that can alter more

than a single part of a single entity correspond to a

sequence of formal operations. For a given

implementation, this correspondence is determined by the

semantics of the implementation command language.
Once this correspondence has been determined, so that the

security-relevant effects of each user command are clear, I

can be replaced by the set of implementation commands

with access sets also changed accordingly. Nevertheless,

prudence dictates that modifications (e.g., changing a

user's clearance) that can be made only by the security
officer, be restricted so that there is only a single

command that performs them in any implementation.

The following constraints on the system transform lead

to the definition of a secure history and a secure system.

Where quantification is not explicit below, universal
quantification is assumed.

Definition 5. A transform T is access secure iff ∀ u, i,

s, s*: T(u, i, s)=s*, [(op � i ∩ OP and rk � i ∩ RF) � ((u,

op, k) ∈ AS(E(rk)) or ∃ l ∈ RO(us), and (l, op, k)

∈ AS(E(rk)))] or s=s*.
14

Definition 6. A transform T is copy secure iff ∀ u, i, s,

s*: T(u, i, s)=s*, x is potentially modified with y as a

contributing factor � CE(xs) ≥ CE(ys).

Definition 7. A transform T is CCR secure iff ∀ u, i, s,

s*: T(u, i, s)=s*, r ∈ i ∩ IR is based on y and CCR(y)

and z is potentially modified with r as a contributing

factor � CU(us) ≥ CE(y).

Definition 8. A transform T is translation secure iff

∀ u, i, s, s*: T(u, i, s)=s*, x ∈ DR and (xs*, x) ∈ D (ûs*)

� ∃ r ∈ i ∩ RF, rs = xs and (r is based on z and CCR(z)

� CU(us) ≥ CE(z)).15

Definition 9. A transform T is set secure iff ∀ u, i, s,

s*: T(u, i, s)=s*, (a) ∃ o ∈ dom(E ∩ (RF × O)), CD(os)

14 For simplicity we disregard error messages in the formalism. In an

implementation we assume that if an unauthorized operation is
attempted, an appropriate error message will be produced in the next

state.
15 Strictly speaking, references can be written to an entity without
violating translation secure only if they are not displayed. A practical

implementation that satisfies the spirit of this policy is to permit the

writing of references to an entity but only on the condition that the
reference could have been displayed without violating translation secure.

≠ CD (os*) or ∃ x ∈ dom(U), CU(xs) ≠ CU(xs*) or R(xs)

≠ R(xs*) � security_officer ∈ RO(us); and (b)

x ∈ dom(U) and RO(xs) ≠ RO(xs*) � us = xs or

security_officer ∈ RO(us).

Definition 10. A transform T is downgrade secure iff

∀ u, i, s, s*: T(u, i, s)=s*, x ∈ dom(E� (RF × {ûs})) and

CE(xs) > CE(xs*) � downgrader ∈ RO(us).

Definition 11. A transform T is release secure iff ∀ u,

i, s, s*: T(u, i, s)=s*, (T(xs)=RM � T(xs*)=RM and

RE(xs*)=RE(xs)) and (T(xs)≠RM and T(xs*)=RM �

RE(xs*)=u, ∃ r: rs= xs, i is the operation <release, r>,

releaser ∈ RO(us) and T(xs) = DM).

Definition 12. A transform is transform secure iff it is

access secure, copy secure, CCR secure, translation

secure, set secure, downgrade secure, and release secure.

Definition 13. A history is secure if all its states are

state secure and its transform is transform secure.
Definition 14. A system is secure if each of its histories

is secure.

5.2 Discussion

Perhaps the most basic decision we made in

formalizing the MMS model concerns our general

conception of a computer system, in particular the relation

between a system state and a system. We considered a

view where a system state consists of entities and their

relations, and where a system adds to this users and user
operations on entities. Hence, all restrictions on user

properties (in particular, the restriction for all u,

RO(u)⊆R(u)) are included in the definition of a secure

system. We chose instead to view the distinction between

system states and systems in terms of static as opposed to

dynamic properties. Static properties are those that hold
for all secure states and, hence, can be checked by

examining a state in isolation; dynamic properties are

those that hold for the relation between secure states and,

hence, can be checked only by comparing two or more

states. In the view we adopted, all static security
properties are included in the definition of a secure state.

To a large extent the choice in conceptualizations is a

matter of taste. Bell and LaPadula [4] use the latter, while

Feiertag et al. [8] lean to the former. By minimizing the

notion of a secure state, the former view makes the Basic

Security Theorem shorter. The deciding factor in our
adopting the latter view is that it makes it impossible for a

system to undergo a security-relevant change without

undergoing a change in state.

Principal difficulties we encountered in formalizing the

MMS security model were in representing "copy" and

"view," system output, and the notion of an authorized
operation. Assertion 3 (changes to objects) in the informal

model requires formal semantics to reflect the movement

of information between entities, while assertion 4

(viewing) requires formal semantics to reflect making an

entity visible to a user. Assertion 5 (accessing CCR

entities) now addresses both copying and viewing. The
semantics for "copy," embodied in the definitions of

"potential modification" and "contributing factor," are

based on a broad interpretation of "copy." Information is

considered to be copied, not only if it is directly moved

from one entity to another, but also if it contributes to the

potential modification of some other entity. For example,
if an operation scans message file A and copies messages

selected by a filter F to message file B, both A and F

contribute to the potential modification of B (and are

therefore subject to the constraints imposed by copy

secure and CCR secure), even if both A and F are empty.

The semantics for "view" are straightforward: a thing is
viewed if an operation makes it a member of an output

container. In light of these considerations, we have used

"access" instead of "view" in assertion 5.

In the formalization, system output is interpreted as a

set of containers; other entities, parts of entities,

references, and classifications that are made visible to a
user are interpreted as being copied to his output

container. We assume that in any implementation the

classifications displayed appear close to the entities (or

parts) they correspond to, but we have not formalized this

assumption. References are explicitly included as a part of
output because the same operation applied to the same

entities can yield different results, depending on how the

entities are referenced. This leads to the constraint

(translation secure) on operations that produce as output

direct references that are translations of indirect ones. To

enforce this constraint, the system must recognize
references as a particular kind of output.

Formalizing the concept of an authorized operation is

difficult because the semantics of authorized operations

are unspecified. Our definition of access secure requires

that, if an operation changes the system state (beyond

producing an error message as output), then for each
entity in the set of operands the user or role, operation,

and operand index must appear in the access set.

Unauthorized operations must not alter the system state

except to report that they are erroneous.

5.3 Correspondence to the Informal Model

Assertions (2), (4), and (7) of the informal model,

concerning classification hierarchy, viewing, and labeling,

are incorporated in the formal definition of secure state.

They correspond respectively to the first three conditions
a secure state must satisfy; the last two conditions require

that each user's current role set must be a subset of his

authorized role set and that the current security level of

each output device must be dominated by its maximum

allowed level. These last two conditions are implicit in the
informal model.

The remaining assertions of the informal model have

been translated into constraints on the system transform.

Assertion (1) {authorization) corresponds directly to
access secure, assertion (6) to translation secure, and

assertions (8)-(10) (setting, downgrading, and releasing)

correspond respectively to set secure, downgrade secure,

and release secure. Set secure restricts the permission to

set device classifications and user role sets to security

officers and restricts permission to set a user's current role
to himself or a security officer. Downgrade secure

contains an exception for ûs, so that a user is not

prohibited from lowering the current level of his output

device. The formal statement of release secure makes

explicit the requirement that, once released, a message

cannot have its type or releaser field altered.
Assertions (3) and (5) correspond to copy secure and

CCR secure. The definition of copy secure actually covers

parts of both assertion 3 and assertion 4 because output

devices are treated as containers. So, if entity x receives

information from an object y, CE(x)≥ CE(y) (assertion 3),

and if an output container o receives information from

entity x, CE(o)≥CE(x) (assertion 4). CCR secure

corresponds to assertion 5, under the interpretation that

having access to an entity is significant only if that entity

is a contributing factor in the potential modification of

another entity.

5.4 Storage Channels

Because we have defined potential modification and

contributing factor in terms of changes only to entities,

the constraints imposed by copy secure and CCR secure
do not apply to changes made to functions defined on

users (clearance, role set, and current role). Thus, there is

the potential for information to be transferred from a

higher level to a lower one through these functions.

However, changes to user clearances and role sets are

controlled by set secure; the normal user can change only
his current role set, and this provides a channel of very

limited bandwidth.

Among entities, one class of storage channel remains.

Consider two entities with the same classification. The

model permits an operation to modify an entity function

of one entity based on the value of the other entity. Since
entity functions other than value (i.e., containment (H),

classification, access set, CCR mark, or type) have no

classifications, there is nothing in the model to prohibit a

user from viewing those functions, even if he is not

cleared to see the entity's value. So information might
flow from the value of one entity to the access set of

another at the same security level and the change in

access set could be observed by a user at a lower security

level.

Changes in H offer the greatest opportunity for

exploitation, but all of the channels offered by entity

functions could be closed by attributing the classification

of the entity value to the other entity functions as well. In

practice, the semantics of message system commands
should restrict these channels sufficiently so that this will

be unnecessary. If designers should find the constraints

imposed by the present definitions of potential

modification and contributing factor too confining, these

could be relaxed by restricting their coverage to a subset

of the entity functions. The price of such a change would
be the increased potential for storage channels using the

excluded functions. The bandwidths of potential storage

channels cannot be precisely estimated at the abstract

level of the formal model, yet it is clear that the value

function should never be excluded from the definitions.

Of the other entity functions, H is the most problematic
both because message system operations are more likely

to alter H than the other entity functions and because a

relatively large amount of information could be encoded

in a single change to H.

5.5 A Basic Security Theorem for the Formal

MMS Security Model

In formalizations where a secure system is a collection

of secure states, some feel that a Basic Security Theorem

is needed to show the restrictions on system transforms

that ensure that a system starting in a secure state will not

reach a state that is not secure [4]. Such theorems are of

little practical significance, since their proofs do not
depend on the particular definition of security provided by

the model [18]. Further, in our approach such a theorem is

not pressing since the concept of a secure system is

defined largely in terms of a secure transform.

Nevertheless, we do appeal to the notion of a secure state,

and some readers may feel that some form of Basic
Security Theorem is needed. Those readers should find it

trivial to prove the following analog of the Basic Security

Theorem for our definition of a secure state.

THEOREM. Every state of a system Σ is secure if s0 is
secure and T meets the following conditions for all u, i, s,

s*: T(u, i, s) = s* and for all x, y ∈ RF, w ∈ US:

(1) xs ∉ H(ys) and xs* ∈ (ys*) � CE(xs*) ≤ CE(ys*).

(2) xs ∈ H(ys) and CE(xs*)≤/ CE(ys*) � xs* ∉ H(ys*).

(3) xs∉H(s
ŵ) and xs* ∈H(*

ˆ
s

w) � CU(ws*)>_CE(xs*).

(4) xs ∈H(s
ŵ) and CU(ws*)~CE(xs*) � x∉H(

*
ˆ
s

w).

(5) (xs, V(xs)) ∉ s
ŵ and (xs* , V(xs*)) ∈ *

ˆ
s

w � (xs* ,

CE(xs*))∈ *
ˆ
s

w

(6) (xs, V(xs)) ∈ s
ŵ and (xs* , CE(xs*)) ∉ *

ˆ
s

w � (xs* ,

V(xs*)) ∉ *
ˆ
s

w

(7) R(ws) ≠ R(ws*) or RO(ws) ≠ RO(ws*) �

RO(ws*) ⊆ R(ws*).

(8) CE(
s

ŵ)≠CE(
*

ˆ
s

w) or CD(
s

ŵ)≠CD(
*

ˆ
s

w) �

CD(
*

ˆ
s

w)>CE(
*

ˆ
s

w).

Together, (1)–(8) are necessary and sufficient

conditions for every state of a system to be secure in any
system that does not contain states that are unreachable

from s0 .

6 Conclusions

We favor an approach to building secure systems that

includes an application-based security model. An instance

of such a model and its formalization have been

presented. They are intended as examples for others who
wish to use this approach. Important aspects of the model

are summarized below:

(1) Because it is framed in terms of operations and data

objects that the user sees, the model captures the system's

security requirements in a way that is understandable to
users.

(2) The model defines a hierarchy of entities and

references; access to an entity can be controlled based on

the path used to refer to it.

(3) Because the model avoids specifying

implementation strategies, software developers are free to
choose the most effective implementation.

(4) The model and its formalization provide a basis for

certifiers to assess the security of the system as a whole.

Simplicity and clarity in the model's statement have

been primary goals. The model's statement does not,

however, disguise the complexity that is inherent in the
application. In this respect, we have striven for a model

that is as simple as possible but stops short of distorting

the user's view of the system. The work reported here

demonstrates the feasibility of defining an application-

based security model informally and subsequently

formalizing it. The security model described has been
used almost without change by another message system

project [9], and has been adapted for use in document

preparation and bibliographic systems [2].

Judgments about the viability of our approach as a

whole must await its application in building full-scale
systems. This we are pursuing in the development of

message system prototypes [11, 12].

Acknowledgments

Many individuals contributed to the work reported
here. Discussions with David Parnas led to an initial

version of the security model. Later revisions of the

model were based on reviews by Jon Millen, Stan Wilson,

Mark Cornwell, Rob Jacob, Jim Miller, Marv Schaefer,

and others too numerous to mention. Participants in the

1982 Air Force Summer Study on Multilevel Data

Management Security also provided many helpful
comments. For providing the funding that allows us to

continue our work, we are grateful to H. O. Lubbes of the

Naval Electronic Systems Command and to the Office of

Naval Research.

References

1. AMES, S.R., JR., AND OESTRE1CHER, D.R. Design of a

message processing system for a multilevel secure

environment. In Proceedings of the AFIPS 1978 National

Computer Conference (June 5-8), Vol. 47. AFIPS Press,

Reston, Va., 765-771.

2. Air Force Studies Board. Multilevel Data Management

Security. Commission on Engineering and Technical

Systems, National Research Council, National Academy

Press, Washington, D.C., 1983.

3. BELL, D.E. Secure computer systems: A refinement of the

mathematical model. MTR-2547, Vol. III, MITRE Corp.,

Bedford, Mass., Apr. 1974, 30-31. Available as NTIS AD

780 528.

4. BELL, D.E., AND LAPADULA, L.J. Secure computer

system: Unified exposition and Multics interpretation. MTR-

2997, MITRE Corp., Bedford, Mass., Mar 1976. Available

as NTIS ADA 023 588.

5. BIBA, K.J. Integrity considerations for secure computer

systems. ESD-TR-76-372, ESD/AFSC. Hanscom AFB,

Bedford, MA, Apr. 1977 (available as MITRE MTR-3153,

NTIS AD A039324).

6. COHEN, E. Information transmission in computational

systems. In Proceedings of the 6th ACM Symposium on

Operating Systems Principles, West Lafayette, Ind. ACM

SIGOPS Oper. Syst. Rev 11, 5, (Nov. 1977), 133-139.

7. DENNING, D.E. A lattice model of secure information flow.

Commun ACM 19, 5 (May 1976), 236-243.

8. FEIERTAG, R.J., LEVITT, K.N., AND ROBINSON, L.

Proving multilevel security of a system design. In

Proceedings of the 6th ACM Symposium on Operating

Systems Principles, West Lafayette, Ind. ACM SIGOPS

Oper. Syst. Rev. 11, 5 (Nov. 1977), 57-65.

9. FORSDICK, H.C., AND THOMAS, R.H. The design of a

Diamond--A distributed multimedia document system. BBN

Rep. 5204, Bolt, Beranek, and Newman, Cambridge, Mass.,

Oct. 1982.

10. HEITMEYER, C.L., AND WILSON, S.H. Military message

systems: Current status and future directions. IEEE Trans.

Commun., COM-28, 9, (Sept. 1980), 1645-1654.

11. HEITMEYER, C.L., LANDWEHR, C.E., AND

CORNWELL, M.R. The use of quick prototypes in the

secure military message systems project. ACM SIGSOFT

Softw. Eng. Notes 7, 5 (Dec. 1982), 85-87.

12. HEITMEYER, C.L., AND LANDWEHR, C.E. Designing

secure message systems: The Military Message Systems

(MMS) project. In Proceedings of the IFIP 6.5 Working

Conference on Computer-Based Message Services

(Nottingham, U.K., May 1984) Elsevier North-Holland,

New York, pp. 245-255.

13. LANDWEHR, C.E. Assertions for verification of multilevel

secure military message systems. ACM SIGSOFT Softw.

Eng. Notes 5, 3 (July 1980), 46-47.

14. LANDWEHR, C.E. Formal models for computer security.

ACM Comput. Surv. 13, 3 (Sept. 1981), 247-278.

15. LANDWEHR, C.E. What security levels are for and why

integrity levels are unnecessary. NRL Tech. Memo 7590-

308:CL:uni, Naval Research Laboratory, Washington, D.C.,

Feb. 1982.

16. LANDWEHR, C. E., AND HEITMEYER, C.L. Military

message systems: Requirements and security model. NRL

Memo. Rep. 4925, Naval Research Laboratory, Washington,

D.C., Sept. 1982. Available as NTIS ADA 119 960.

17. MCCAULEY, E.J., AND P.J. DRONGOWSKI. KSOS--The

design o f a secure operating system. In Proceedings of the

AFIPS 1979 National Computer Conference (June 4-7), Vol.

48. AFIPS Press, Reston, Va., 345-353.

18. MCLEAN, J. A comment on the basic security theorem of

Bell and LaPadula. Inf. Proc. Lett., Elsevier North-Holland,

New York, 1984, to be published.

19. MOOERS, C.D. The HERMES guide. BBN Rep. 4995,

Bolt, Beranek, and Newman, Cambridge, Mass., Aug. 1982.

20. POPEK, G.J., AND FARBER, D.A. A model for

verification of data security in operating systems. Commun.

ACM 21, 9 (Sept. 1978), 737-749.

21.ROTHENBERG, J. SIGMA message service: Reference

manual, Version 2.3, Rep. ISI/TM-78-11.2, USC/Inform.

Sci. Inst., Marina del Rey, Calif., June 1979. Available as

NTIS ADA 072 840.

22. STOTZ, R., TUGENDER, R., AND WILCZYNSKI, D.

SIGMA--An interactive message service for the military

message experiment. In Proceedings of the AFIPS 1979

National Computer Confer-ence, (June 4-7, 1979), Vol. 48.

AFIPS Press, Reston, Va. pp. 855-861.

23. WILSON, S.H., GOODWIN, N.C., BERSOFF, E.H., AND

THOMAS, N.M., III. Military message experiment--Vol. I

executive summary. NRL Rep. 4454, Naval Research

Laboratory, Washington, D.C., Mar. 1982. Available as

NTIS ADA 112 789.

24. WOODWARD, J. P.L. Applications for multilevel secure

operating systems. In Proceedings of the AFIPS 1979

National Computer Conference (June 4-7), Vol. 48. AFIPS

Press, Reston, Va. 1979, pp. 319-328.

Additional references

25. PAYNE, C., FROSCHER, J. AND LANDWEHR, C.

Toward a comprehensive INFOSEC certification

methodology. Proc. Sixteenth National Computer Security

Conference, Baltimore, MD, Sept., 1993. pp. 165-172.

26. FROSCHER, J. AND CARROLL, J. Security requirements

of Navy embedded computers. NRL Memorandum Report

5425, Naval Research Laboratory, Washington, D.C., Sept.

1984.

SMMS Chronological Bibliography

27. LANDWEHR, C.E. Assertions for verification of multilevel

secure military message systems. ACM SIGSOFT Softw.

Eng. Notes 5, 3 (July 1980), 46-47.

28. HEITMEYER, C.L., AND WILSON, S.H. Military message

systems: Current status and future directions. IEEE Trans.

Commun., COM-28, 9, (Sept. 1980), 1645-1654.

29. HEITMEYER, C. AND CORNWELL, M. Specifications

for three members of the military message system (MMS)

family. NRL Memorandum Rep. 5654, Naval Research

Laboratory, Washington, D.C., Mar., 1982.

30. HEITMEYER, C.L., LANDWEHR, C.E., AND

CORNWELL, M.R. The use of quick prototypes in the

secure military message systems project. ACM SIGSOFT

Softw. Eng. Notes 7, 5 (Dec. 1982), 85-87.

31. HEITMEYER, C.L., AND LANDWEHR, C.E. Designing

secure message systems: The Military Message Systems

(MMS) project. In Proceedings of the IFIP 6.5 Working

Conference on Computer-Based Message Services

(Nottingham, U.K., May 1984) Elsevier North-Holland,

New York, pp. 245-255.

32. LANDWEHR, C., HEITMEYER, C., AND McLEAN, J. A

security model for military message systems. ACM Trans.

Computer Syst. Vol. 2, No. 3, Aug., 1984, pp. 198-222.

33. CORNWELL, M. AND JACOB, R. Structure of a rapid

prototype secure military message system. Proc. 7th

DoD/NBS Computer Security Conf., Gaithersburg, MD,

Sept, 1984, p. 48-57.

34. TRETICK, B., CORNWELL, M., LANDWEHR, C.,

JACOB, R., AND TSCHOHL, J. User’s manual for the

seucre military message system M2 prototype. NRL

Memorandum Rep. 5757, Naval Research Laboratory,

Washington, D.C., Mar. 1986.

35. JACOB, R. Survey and examples of specification

techniques for user-computer interfaces. NRL Rep. 8948,

Naval Research Laboratory, Washington, D.C. April, 1986.

36. CORNWELL, M. R. AND MOORE, A.P. Security

architecture for a secure military message system. NRL Rep.

9187, Naval Research Laboratory, Washington, D.C., April,

1989.

37. CORNWELL, M. A software engineering approach to

designing trustworthy software. Proc. 1989 IEEE CS Symp.

on Security and Privacy, May, 1989, pp. 148-156.

38. QUINN, J. T., BULL, A., EVANS, A. A standard

organization for specifying abstract interfaces for the SMMS

application. NRL Memorandum Rep. 6552, Naval Research

Laboratory, Washington, D.C., Sept., 1989.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

