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Abstract

The history of the application of formal methods

to cryptographic protocol analysis spans nearly twenty

years, and recently has been showing signs of new ma-

turity and consolidation. A number of specialized tools

have been developed, and others have e�ectively demon-

strated that existing general-purpose tools can also be

applied to these problems with good results. However,

with this better understanding of the �eld comes new

problems that strain against the limits of the existing

tools. In this paper we will outline some of these new

problem areas, and describe what new research needs to

be done to to meet the challenges posed.

1 Introduction

The history of the application of formal methods
to cryptographic protocol analysis spans nearly twenty
years, and recently has been showing signs of new
maturity and consolidation. A number of specialized
tools have been developed, and others have e�ectively
demonstrated that existing general-purpose tools can
also be applied to these problems with good results.

However, with this better understanding of the �eld
comes new problems that strain against the limits of
the existing tools. Tools as they exist today are mainly
intended to be applied to the problem of showing that
a key has been correctly authenticated. This was the
usual application for cryptographic protocols in the
past, and remains a common one today. But crypto-
graphic protocols are now being applied to new types
of problems, such as group communication, �nancial

transactions, and negotiation of algorithms as well as
keys. They also face new types of threats, such as de-
nial of service, and older threats, such as tra�c analy-
sis, that are becoming more prominent. In many cases
the existing tools are not capable of dealing with these
problems. However we believe that many of the ex-
isting techniques could be adapted so they could be
applied successfully. In this paper we will outline some
of these new areas, and describe what new research
needs to be done to to meet the challenges posed.

Many of the ideas on new directions that are de-
scribed in this paper were developed during the appli-
cation of the NRL Protocol Analyzer to the analysis
of the Internet Key Exchange protocol and during the
development of a set of formal requirements for the Se-
cure Electronic Transactions Protocols, both of which
were done as part of the DARPA project Formal Anal-
ysis of Internet Security Protocols. One of the purposes
of this project was to see how far current tools could be
pushed to analyze complex protocols that must satisfy
new types of requirements, and also to �nd out where
our tools need to be improved. In this paper we show
how this research contributed to our understanding of
the areas discussed in this paper.

The rest of this paper is organized as follows. In
Section Two we give a brief history and survey of the
state of the art in the �eld. In Section Three we de-
scribe the NRL Protocol Analyzer and the IKE and
SET protocols that we examined, describing the fea-
tures that made them a challenge. In Section Four we
describe seven di�erent emerging areas: open-ended
protocols, denial of service, anonymous communica-
tion, high �delity, composability, negotiation of com-
plex data structures, and getting the products of our
research into the real world. Where appropriate, we re-
fer back to our work on IKE and SET for motivation.
Section Five concludes the paper.



2 The History and Current State

of Formal Cryptographic Protocol

Analysis Tools

Cryptographic protocols are protocols that use cryp-
tography to distribute keys and authenticate principals
and data over a network. The network is assumed to
be hostile, in that it may contain intruders who can
read, modify, and delete tra�c, and who may have
control of one or more network principals. Because of
this, such protocols are often subject to nonintuitive
attacks which are not easily apparent even to a care-
ful inspector, especially when assumptions about the
environment in which the protocol operates change.
For example, as is pointed out in [39], the Needham-
Schroeder public key protocol [37], which was intended
to be used for communication between parties that
trust each other, and is secure as long as those assump-
tions hold, become subject to a man-in-the-middle at-
tack if we assume that one of the communicating par-
ties may be dishonest [24], an assumption which has
become more likely in a web-based environment.

For these reasons, it has long been realized that for-
mal methods can be a useful method for analyzing the
security of cryptographic protocols. They allow one
both to do a thorough analysis of the di�erent paths
which an intruder can take, and to specify precisely
the environmental assumptions that have been made.
Probably the �rst mention of formal methods as a pos-
sible tool for cryptographic protocol analysis came in
Needham and Schroeder [37]. However, the �rst work
that was actually done in this area was done by Dolev
and Yao [10], and slightly later by Dolev, Even, and
Karp [9], who in the late seventies and early eighties
developed a set of polynomial-time algorithms for de-
ciding the security of a restricted class of protocols.
Unfortunately, it was soon found that relaxing the re-
strictions on the protocols even slightly made the secu-
rity problem undecidable [13], and so the work did not
go much further than that. Dolev and Yao's work was
signi�cant, however, in that it was the �rst to develop a
formal model of an environment in which multiple ex-
ecutions of the protocol can be running concurrently,
in which cryptographic algorithms behave like black
boxes which obey a limited set of algebraic properties
(e.g. the encryption and decryption operations cancel
each other out), and which includes an intruder who
can read, alter, and destroy tra�c, and may also con-
trol some legitimate members of the system. Most later
work on the formal analysis of cryptographic protocols
is based on this model or some variant of it.

Shortly later, work began on developing tools for the
analysis of security protocols in general, all of which

were based on the Dolev-Yao model or some variant,
including the Interrogator [34], the NRL Protocol Ana-
lyzer [27], and the the Longley-Rigby tool [23]. Others
applied general-purpose formal methods to the prob-
lem [20]. Most of this work used some type of state
exploration technique, in which a state space is de�ned
and then explored by the tool to determine if there
are any paths through the space corresponding to a
successful attack by the intruder. Inductive theorem
proving techniques were also included in the tool in
some cases, as in the NRL Protocol Analyzer, to show
that the size of the search space was su�cient to guar-
antee security. Even during these early stages, much
of this work was successful in �nding aws in protocols
that had been previously undetected by human ana-
lysts, including the use of the NRL Protocol Analyzer
to �nd a aw in the Simmons Selective Broadcast Pro-
tocol [27], and the use of the Longley-Rigby tool to �nd
a aw in a banking protocol [23].

However, this still remained a fairly esoteric area
until the publication of the Burrows, Abadi, and Need-
ham logic [5] brought the problem to the attention of
a larger research community. BAN logic uses an ap-
proach very di�erent from that of the state exploration
tools. It is an example of a logic of knowledge and be-
lief, which consists of a set of possible beliefs that can
be held by principals (such as a belief that a message
was sent by a certain other principal), and a set of in-
ference rules for deriving new beliefs from old ones. An
example would be a rule saying that if A believes that
a key K is known only by him and B, and A receives a
message encrypted with K, than A believes that that
message was sent by B to A, or by A to B. The BAN
logic consisted of a very simple, intuitive set of rules,
which made it easy to use. Even so, as the BAN paper
demonstrated, it was possible to use the logic to pin-
point serious aws in protocols. As a result, the logic
gained wide attention and let to a host of other log-
ics, either extending BAN logic or applying the same
concept to di�erent types of problems in cryptographic
protocols.

Note that belief logics such as BAN are generally
weaker than the state exploration tools since they op-
erate at a much higher level of abstraction. Thus inter-
est in them has waned somewhat as state exploration
systems have improved. However, they have an advan-
tage in that they are usually decidable and often even
e�ciently computable, and thus can be completely au-
tomated, as has been shown by Brackin's Automated
Authentication Protocol Analyzer [3].

More recently, research has focused on state explo-
ration tools and theorem proving techniques based on
the Dolev-Yao model, much of it sparked by Lowe's



demonstration that it was possible to use a general-
purpose model checker, FDR, to �nd a man-in-the-
middle attack on the Needham-Schroeder public key
protocol [24]. Work since then has progressed in ap-
plying both model checkers [36, 7] and theorem provers
[41, 12] to the problem, as well as in the design of
special-purpose model checkers [19, 43, 25] and the use
of specialized tools originally intended for somewhat
di�erent applications [11].

There has also been a sign of consolidation in the
area, an indication that it has been maturing. For ex-
ample, Millen has been developing CAPSL [35], the
Common Authentication Protocol Language, which is
intended to provide a common speci�cation language
for cryptographic protocol analysis tools. Even more
recently, Thayer, Herzog, and Guttman [14] have devel-
oped a graph-theoretic interpretation of the Dolev-Yao
model, called the strand space model, that brings to-
gether many ideas and techniques that have been used
in the formal analysis of cryptographic protocols. Be-
cause of this, and because of its simplicity and elegance,
it has begun to be used both as a basis for new special-
purpose tools [43] and as a framework in which to ex-
press theoretical results [44]. This trend has promising
implications for the integration of future tools and the
incorporation of new theoretical results into these tools.

To sum up, at present we are rapidly approaching,
if we have not already reached, a state in which we
will have a number of di�erent tools available that will
be able to verify safety properties such as authenti-
cation and secrecy by performing a state space anal-
ysis of a protocol speci�ed at the same level of de-
tail that is normally provided in a journal paper using
the Dolev-Yao model of a protocol attacker. This is
not everything; such tools will not catch errors that
arise from implementation details that go beyond the
journal-level speci�cation, the Dolev-Yao model leaves
out some important attacker capabilities such as crypt-
analysis, and, since the Dolev-Yao model assumes an
intruder that is capable of blocking any message, it
is impossible to prove any kind of liveness property.
Nevertheless this is still a great deal; the wide range of
attacks found by such tools demonstrate that a number
of nontrivial problems occur at this level of speci�ca-
tion.

Since the protocol security problem in undecidable,
[13, 18, 6], the analysis tools will not be successful all
the time, and they may require human intervention
at times. But even so, the problem of tool design for
this area seems well enough understood by now so that
these limitations should not interfere too much with
their e�ective use.

Given that we have reached this plateau, it seems

reasonable at this point to ask, what comes next? And
indeed, there are a number of related problem areas
still to be explored. Some of them have only surfaced
in the last few years. Others have been known about for
some time, but it was thought more important to con-
centrate on the basics �rst. However, now that the ba-
sics are well understood, it is time to look more closely
at some of these areas. In the remainder of this paper
we do this, in each area pointing out what work has
already done, and what we believe still remains to be
done.

3 IKE, SET, and the NRL Protocol

Analyzer

3.1 Overview

In this section we describe the IKE and SET pro-
tocols that we analyzed for the DARPA project For-
mal Analysis of Internet Security Protocols, as well as
the tool we applied, the NRL Protocol Analyzer. We
concentrate, not on the analyses themselves, which are
described elsewhere, but on the challenges that each
posed. We identify both those challenges that our tools
proved capable of meeting, and those areas where we
felt our tools fell short.

3.2 The NRL Protocol Analyzer

The NRL Protocol Analyzer is a formal methods
tool for analyzing security properties of cryptographic
protocols. It uses automatic invariant generation to
limit a potentially in�nite search space in combination
with exploration of the remaining space to generate at-
tacks on insecure protocols and provide security proofs
for secure ones, even in the face of a potentially un-
limited number of protocol executions or an unlimited
number of intruder actions.

Protocols in the Analyzer model are speci�ed as
communicating state machines, one of which is a hos-
tile intruder following the Dolev-Yao model who can
read all tra�c, modify or delete tra�c, perform cryp-
tographic operations, and may be in cooperation with
some legitimate users of the system.

The user of the Analyzer attempts to determine
whether or not a protocol is secure by specifying an
insecure state. This state can be speci�ed not only in
terms of values of local state variables and terms known
by the intruder, but sequence of events that should or
should not have occurred. For example, the user could
ask the Analyzer to look for a state in which the same
key has been accepted twice by a principal (two events
occurring) or a state in which a responder B accepts a



key as good for communicating by an initiator A, but in
which A never initiated the protocol (one event having
occurred and another event not having occurred previ-
ously). The Analyzer works backwards from that state
until it has explored the search space exhaustively, so
that each path produced either begins in an initial state
(describing an attack) or an unreachable state. Thus,
like the other tools we mentioned earlier, it can be
used fo prove safety properties such that no party is
authenticated incorrectly, but not liveness properties
such that an authentication always completes.

The Analyzer makes no assumptions about limits on
the number of protocol executions, the number of prin-
cipals performing the di�erent executions, the number
of interleaved executions, or the number of times cryp-
tographic functions are applied. This results in a search
space that is originally in�nite. However, the Analyzer
provides means for specifying and proving inductive
lemmas about the unreachability of in�nite classes of
states. This allows the user to narrow down the search
space so that in many cases an exhaustive search is
possible.

We also made use of the NRL Protocol Analyzer
Temporal Requirements Language (NPATRL) [48].
NPATRL is a temporal logic language allowing us to
specify desirable protocol properties in terms of desir-
able or undesirable sequence of events. An NPATRL
requirement is applied to the NRL Protocol Analyzer
by taking the negation of the requirement and using
that as an insecure state for the Analyzer to prove un-
reachable.

The Analyzer has been applied to a number of dif-
ferent cryptographic protocols, and has found aws in
several. In some cases the aws had not been discov-
ered before. Examples of protocols the Analyzer has
been used to examine are the Simmons Selective Broad-
cast Protocol [27], the Burns-Mitchell Ticket Granting
Protocol [32], and an early version of the Encapsulat-
ing Security Protocol [46]. The Analyzer has also been
used to prove security properties of a number of other
protocols, by performing an exhaustive search of the �-
nite space that is left after the necessary lemmas have
been proved (see [28, 29]. A more detailed description
of the Analyzer is given in [33].

The NRL Protocol Analyzer, as we see, operates
within the same paradigm as most specialized tools for
cryptographic protocol analysis, and indeed, was one
of the �rst tools to make use of it. That is, it is based
on the Dolev-Yao model and it concentrates mainly
on proving authentication properties. Thus it is well
suited for testing the limits of that paradigm.

3.3 IKE

The Internet Key Exchange protocol (IKE) is a key
exchange protocol being developed by the IP Security
Protocol (IPSEC) Working Group of the Internet En-
gineering Task Force (IETF). It is intended to provide
the security support for client protocols of the Inter-
net Protocol. As such, it does much more than simply
distribute keys; it also is intended to be used to estab-
lish Security Associations that specify such things as
the protocol format used, the cryptographic and hash-
ing algorithms used, and other necessary features for
secure communication. Since it is intended to be exi-
ble, it supports a number of di�erent types of key ex-
change options, including digital signatures, public key
encryption, and conventional encryption using shared
keys. The Di�e-Hellman algorithm is used to gener-
ate shared key material, but is optional in some cases.
IKE has evolved from a number of di�erent protocols,
including ISAKMP [26], Oakley [38], the Station-to-
Station protocol [8], and SKEME [21], the last two of
which inuenced the development of Oakley.

A typical key establishment protocol proceeds in one
phase, in which two parties use master keys to estab-
lish shared keying material. IKE, however, proceeds in
two such phases. In the �rst phase, two entities use
master keys to agree, not only on keying material, but
on the various mechanisms (e.g. cryptographic algo-
rithms, hash functions, etc.), that they will use in the
second phase. The keying material and set of mech-
anisms thus agreed upon is called a security associa-

tion. In the �rst phase protocol, the initiator proposes
a number of possible security associations to the re-
sponder, who picks one. In the second phase, the keys
and mechanisms produced in the �rst phase are used
to agree upon new keys and mechanisms that will be
used to protect and authenticate further communica-
tions. The security association established in Phase
One is bidirectional, so the initiator in the �rst phase
can be either initiator or responder in the second phase.

At the time we analyzed IKE, it could be used in
four di�erent modes: main mode, aggressive mode,
quick mode, and new group mode. Main and aggressive
modes are used in Phase One negotiations, quick mode
is used in Phase Two negotiations, and New Group
Mode is used to change the Di�e-Hellman group. Both
main and aggressive mode can be implemented using
several di�erent types of authentication; there is a dif-
ferent protocol for each one.

The main goals of IKE are the authentication of
security associations, and the authentication and gen-
eration of keys. However, IKE has some other sec-
ondary goals, as well. A good deal of thought has



gone into making IKE resistant to denial of service
attacks by preventing it from requiring principals to
engage in resource-intensive activities until a \reason-
able" amount of authentication has occurred. IKE is
also designed to be somewhat resistant to tra�c anal-
ysis, in that in Main Mode identities are encrypted.

In our analysis of IKE, described in detail in [29],
we concentrated on verifying that keys were properly
authenticated, and that portions of the Security As-
sociations were authenticated. We did not attempt to
verify to what degree the protocol resistant to tra�c
analysis or denial of service; this was beyond the scope
of our tool. However, it is clear that such an analy-
sis would have been useful. These issues are discussed
in more detail in Section 4.2 on Denial of Service and
Section 4.3 on Anonymous Communication.

One of the main challenges in analyzing IKE was the
sheer proliferation of related subprotocols. Since we
wanted to verify, among other things, that one proto-
col could not be confused with another, we analyzed as
many subprotocols together as we possibly could. The
NRL Protocol Analyzer proved adequate to this task,
but not before undergoing a major overhaul designed
to increase its robustness, and some serious thinking
about how to identify possible interactions. These is-
sues are discussed in depth in Section 4.5 on Compos-
ability.

3.4 SET

The SET Protocol [31] is a protocol sponsored by
major credit card companies and others that is in-
tended to provide a standard for safe, secure credit card
transactions over the Internet. (`SET' stands for `Se-
cure Electronic Transactions'.) As such, it is intended
to supply an electronic version of the paper system that
exists today. However, there are a number of risks con-
nected with use of the Internet that do not arise in the
paper world, or at least are not considered as severe.
These arise from the di�culty of identifying partici-
pants in transactions and the di�culty of ensuring the
private information sent over the Internet remains so.
SET is intended to reduce these risks by introducing
cryptographic means to protect sensitive information
such as credit card numbers and to provide authenti-
cation of parties involved in a credit card transaction.

A payment transaction in the SET protocol involves
three parties: a customer, a merchant, and an applica-
tion payment gateway. The customer presents a pur-
chase request to the merchant, which includes credit
card information and a proposed purchase amount.
The purchase request is identi�ed with a transaction
ID. The merchant then passes the request along to

the gateway, together with a request that a certain
amount (not necessarily equal to the purchase amount)
be authorized. The gateway then checks the customer's
credit, authorizes a certain amount, and passes this in-
formation back to the merchant. The merchant passes
this information back to the customer. Either at the
same time as the authorization request, or later, the
merchant presents a capture request to the gateway for
the same transaction, requesting that a certain amount
of money be captured. The gateway approves a certain
amount which may or may not be equal to the amount
requested. The merchant then passes this information
back to the customer.

The authentication structure of the SET protocol is
complex. Messages between merchant and gateway are
always authenticated using digital signatures, as are
messages from the merchant to the customer. Digital
signatures for authentication for messages from cus-
tomer to merchant are optional, although they may be
made mandatory by a particular application. However,
it is in the authentication of forwarded messages that
the structure really becomes interesting. The message
from customer to merchant includes information that
is needed by the gateway but may be hidden from the
merchant, such as credit card number (PAN, i.e., Pri-
mary Account Number) and expiration date. Also in-
cluded, when customer digital signatures are used, is a
data item called the PANSecret, which is known only
by the customer and gateway, but not the merchant.
This is not available when customer digital signatures
are not used, since it is generated as part of the certi�-
cate registration process. This information is protected
by the use of a dual signature. Two hash functions are
computed, one over the the data to be kept hidden
from the merchant, and the other over the data to be
revealed to it, which includes a hash over the purchase
amount and order description that the customer and
merchant agreed to o�ine. The hidden data is en-
crypted using the gateway's public key. The customer
then computes a digital signature (if customer signa-
tures are used) over the two hashes. The signature,
the two hashes, and the encrypted and unencrypted
information are sent to the merchant. The merchant
veri�es the signature and forwards the information, in-
cluding the signature if any, to the gateway. When
the gateway receives the message, it veri�es the signa-
ture, if any, and also veri�es the PAN and PANSecret.
Whether or not signatures are used, it also veri�es the
PAN and and the customer's portion of the PANSecret
(if any) with the credit card issuer, although this may
be done o�ine.

Authentication of gateway to customer via the mer-
chant is much simpler: there is none. Any information



from the gateway that the merchant passes on to the
customer is authenticated only by the merchant's sig-
nature.

There are also a number of options available. A
customer has the option of sending an initialization
message prior to its purchase request, which allows it
to obtain more up-to-date certi�cates from the mer-
chant, and allows the merchant to send back a ran-
dom challenge which it can use to verify the freshness
of the customer's subsequent purchase request. When
an initialization message is sent, the transaction ID is
jointly created by customer and merchant. When no
initialization message is sent, the customer may create
the transaction ID, or it may be jointly created by the
customer and merchant. The gateway also has the op-
tion, depending upon the policy followed, of sending
the customer's PAN to the merchant (the PANSecret,
however, is never sent). There are also protocols for
inquiring about the status of an order, cancelling an
order, etc.

We have not yet completed our analysis of SET, but
we have written a formal speci�cation of the SET re-
quirements using the NPATRL requirements language
[31]. This turned out to be a nontrivial task. Although
the NPATRL language was expressive enough to state
the requirements, their complexity meant that any such
speci�cation would be incomprehensible unless we in-
troduced some higher-level framework in which to or-
ganize it. We describe the problem and our solution in
more detail in Section 4.6 on Negotiation of Complex
Data Structures.

4 Emerging Problems

4.1 Open-Ended Protocols

Most of the work on the formal analysis of crypto-
graphic protocols has concentrated on protocols that
involve the communication of a �xed number of prin-
cipals: for example, an initiator and a responder in a
key agreement protocol, or a customer, merchant, and
bank in an electronic commerce protocol. Most data
structures that are used are also closed-ended. That
is, in general each message is a �xed structure that is
composed of a bounded number �elds containing data
such as nonces, names, keys, etc. Open-endedness is
included in the protocol model, but only with respect
to the number of protocol executions that may be going
on at the same time, or the number of operations that
the intruder may perform to create a message. This
means that the protocol models do not need to include
such constructs as loops, thus simplifying the model
and, one hopes, the analysis.

However, open-ended structures are beginning to
show up in a number of di�erent applications. By open-
ended, we simply mean the the structure may include
an arbitrarily large number of data �elds; no precise
limit is put on them by the protocol speci�cation. The
most obvious is in group communication protocols, in
which keys must be shared among members of a group
of arbitrary size. Here, it is the group of principals
that may be participating in a particular instance of
the protocol that is open-ended. However, open-ended
structures show up in other types of protocols, as well.
For example, anonymous routing protocols make use of
an arbitrary number of routers to achieve their goals.
Open-ended structures are also used even in protocols
in which the number of principals is bounded. For ex-
ample, the SET protocol allows a merchant to batch
transactions for approval by a security gateway. The
IKE Protocol o�ers an even more complex example.
One of the purposes of IKE is to agree on a security
association (SA), the collection of algorithms and other
information used to encrypt and authenticate data. Al-
though there is some information that an SA must in-
clude, there is no de�ned limit on what it can include,
so its de�nition is left open-ended. In addition, an SA
is negotiated by having the initiator present a list of
SAs to a responder, who then picks one. Thus there are
two sources of open-endedness in the use of SAs. More-
over, this open-endedness is security-relevant. For ex-
ample, recently Zhou [54] and independently Ferguson
and Schneier [15] found an attack in which an intruder
could trick an initiator into agreeing on the wrong SA
by making use of the fact that only part of the SA is
actually used in IKE itself.

So far, there has been very little work on applying
formal analysis techniques to these kinds of problems
in cryptographic protocols. One notable exception has
been the work of Paulson [40] on the application of
the Isabelle theorem prover to the analysis of a pro-
tocol that involves an arbitrary number of principals,
and the work of Bryans and Schneider [4] applying the
PVS theorem prover to the same protocol. Since all
of this work involves general-purpose theorem provers
instead of special-purpose tools, we would not be sur-
prised to �nd that the authors were able to make use
of techniques that were not available in tools that were
speci�cally designed for cryptographic protocol anal-
ysis. However, it is heartening to note that Bryan
and Schneider's work makes use of a construct, the
rank function, that Schneider had previously devel-
oped for the analysis of cryptographic protocols that
involved only a bounded number of participants in a
single protocol execution. Thus it may be the case
that techniques that were developed to deal with the



unboundedness that arises �rst out of the ability of an
intruder to perform an arbitrary number of message
operations, and secondly out of the possible execution
of an unbounded number of protocol operations in par-
allel, should be applicable to other types of open-ended
protocols as well, although they will probably require
some adaptation and expansion.

4.2 Denial of Service

Denial of service was not a threat that was a cause
of much concern to the �rst designers of cryptographic
protocols. However, as we have seen from the SYN at-
tacks of TCP/IP, many communication protocols are
subject to a particular type of denial of service attack
in which the attacker initiates an instance of a pro-
tocol and then drops out, leaving the victim hanging.
Since the victim must use resources to keep the connec-
tion open until the protocol times out, the attacker, by
initiating and then dropping enough instances in the
protocol quickly enough, can cause the victim to waste
enough resources keeping connections open so that it is
unable to participate in any more instances of the pro-
tocol and is thus e�ectively cut o� from the network.

Strong authentication can both ameliorate and ex-
acerbate this problem. Authentication can be used to
identify the source of the attack, allowing the victim
to cut o� communication with the attacker. But au-
thentication can also be used as a means of launching
denial of service attacks, since it is both computation
and storage-intensive, and the attacker could launch a
denial of service attack on a victim by sending it a se-
ries of incorrectly authenticated messages that it would
waste its resources verifying.

The approach that has been taken to resolving this
problem is to use a tradeo� between resources required
of the victim (referred to from now on as the \de-
fender") with resources required of the intruder. Early
parts of the protocol require weak authentication that
do not require great resources on the part of the in-
truder to break, but require fewer resources on the part
of the defender to verify. More expensive forms of au-
thentication are reserved for later in the protocol when
a degree of assurance that the participating parties are
legitimate are obtained.

Note that the attacker model used in this strategy
is generally weaker than the model used in the veri�ca-
tion of traditional authentication goals. Thus the sort
of nonintuitive attacks that have been found on these
types of goals will not necessarily arise in the case of de-
nial of service, although they are not ruled out entirely.
However, the analysis becomes more complicated in a
number of other ways. First, the protocol must be an-

alyzed, not only in terms of its �nal goals, but along
each step of the way. Every time a a principal takes
part in some action that requires the use of a signi�-
cant amount of resources, one must check that that an
attacker could not fraudulently cause that principal to
reach that step without spending a signi�cant amount
of its own resources. Secondly, in order to make that
veri�cation possible, it is necessary to have a model,
not only of principal and intruder actions, but of the
cost of those actions. Thus some sort of formal analy-
sis technique would be bene�cial, simply in order to to
keep track of this complex multi-stage analysis.

Existing protocol analysis tools, although they can-
not be applied to the problem directly in their present
form, have many features that could be useful if
adapted properly. For example, for most it is possi-
ble to specify intermediate as well as ultimate goals.
Also, although most use a single model of the intruder,
most of the weaker intruder models that would be
used would be restrictions of this more general intruder
model.

We have been working on a framework [30] that
could be used to apply existing tools, appropriately
modi�ed, to the denial of service problem. We make
use of the concept developed by Gong and Syverson
[17] of a fail-stop cryptographic protocol. Briey, a
protocol is fail-stop if, whenever an attacker interferes
with a message, this is detected by the receiving prin-
cipal and the protocol is halted. We have modi�ed the
fail-stop model to include an attacker whose capabili-
ties change as the protocol progresses, and have devel-
oped a framework for trading o� intruder capabilities
against e�ort expended by the defenders. In this frame-
work the protocol designer speci�es a protocol tolerance
relation, which describes how much e�ort he believes
it should be necessary to expend against an attacker
of a given strength. Since we are developing a frame-
work for models instead of a speci�c model, we do not
specify exactly how this e�ort should be quanti�ed, but
examples would include amount of resources expended,
amount of time expended, or amount of computational
power required. A protocol is then designed so that
the e�ort expended by the defender increases as the
protocol executes, and also as each message is veri�ed.
The protocol is then analyzed to show that it is fail-
stop against an attacker whose capabilities are within
the constraints of the desired tolerance relation. That
is, at each veri�cation point, the amount of e�ort re-
quired by the attacker to spoof the veri�cation, versus
the amount of e�ort wasted by the defender if the ver-
i�cation is successfully spoofed, should fall within the
tolerance relation.



4.3 Anonymous Communication

Anonymous communication is an application that
has recently begun to move from the laboratory to the
real world, as the ubiquity of the World Wide Web
makes even ordinary users more sensitive to the dan-
gers of tra�c analysis and of indiscriminately reveal-
ing personal information over the Web. Thus systems
such as the Onion Router [16], the Anonymizer and
Crowds [42], are designed to prevent an onlooker from
determining the origination or destination of requests
to servers. Basically the way all these systems work is
by having requests from users routed through one or
more nodes. In the simplest versions, a user proxies a
request through a single site, which strips the request of
identifying data or otherwise disguises its source, and
forwards it to the server. More sophisticated systems,
such as Crowds and Onion Routing, have the request
routed through a number of nodes. Onion Routing uses
cryptographic means to keep each node ignorant of all
other nodes in the path except the ones with which it
communicates directly.

Other systems provide other types of anonymity.
Proxymate distributes pseudonyms for dealing with
third parties. The Rewebber supports anonymous
publishing. Anonymous remailers support anonymous
email. Indeed, we can safely assume that, for any
application involving communication over the Inter-
net, there are situations in which one might be con-
cerned about preserving anonymity and preventing
tra�c analysis.

We note that anonymity has properties that make
it challenging to analyze. First of all, it is an emergent
property, that is, one that is not apparent in isolation.
It would be hard to disguise the source of a request if
it is the only request in the network, no matter how
many nodes it was routed through. An anonymizing
protocol depends upon a mix of tra�c to disguise the
source and destination of any particular item. Statisti-
cal studies, such as the work of Timmerman [51], will
be of use here to determine how well this strategy works
in di�erent situations. Previous work done on the anal-
ysis of covert channels in networks [52] might also be of
use here, if applied properly. Next, the more powerful
anonymizing protocols require communication between
an arbitrary number of nodes, instead of just two or
three, whic is the number of principals that are usually
assumed to be communicating in most of the proto-
cols that have been analyzed using the existing cryp-
tographic protocol analysis tools. Thus any techniques
that are developed for analyzing group communication
protocols will probably also be useful in this area. Fi-
nally, since an anonymity protocol attempts to preserve

secrecy by distributing the data over a wide area, the
assumptions made about the capacities of an attacker
are very relevant. A ubiquitous attacker will be able to
break most anonymity protocols, but ubiquity is not
a very realistic assumption. However, attackers who
only reside at single nodes and do not communicate
are not very realistic either. The work by Syverson
and Stubblebine on group principals [47] deals with
some aspects of this problem, introducing the notion
of a group principal that consists of a certain number
of members who are assumed to have certain speci�ed
capacities for sharing knowledge.

In summary, we believe that the analysis of
anonymity protocols pose a new research challenges
which are beginning to be met, at least partially and
in di�erent aspects. The main challenge may be tying
these di�erent threads together.

4.4 High Fidelity

Most work on the application of formal methods to
cryptographic protocol analysis have modeled proto-
cols at a very high level of abstraction. Techniques
based on state reachability analysis usually assume
that the algorithms used behave like black boxes, with
only enough algebraic properties included (e.g. that
encryption and decryption cancel each other out) to
allow the protocol to function correctly. Techniques
based on belief logics are usually even more abstract,
forgoing in most cases even a general explicit model of
the intruder or of the cryptographic operations; instead
goals achieved by the protocol are derived directly from
the messages sent.

However, it is well known that many security prob-
lems in protocols arise at a much lower level of abstrac-
tion. Some come from interactions of the cryptosys-
tem with the protocol, such as a protocol that includes
known or chosen plaintext while using a cryptographic
algorithm that may be vulnerable to attacks based on
the inclusion of this type of plaintext. Others come
from problems with other supporting algorithms, such
as hash functions or modes of encryption. Some come
from other types of low-level implementation details.
For example, in our analysis of the Internet Key Ex-
change protocol, we found an attack that would work
if a recipient's decision as to the possible source of a
message was implemented in one way, but would fail if
it was implemented in another way. Thus, it appears
to be well worth our while to take our analysis to a
lower level of abstraction.

Some work in this direction already exists. For ex-
ample, work on the analysis of modes of encryption
and chosen and known plaintext has been successful



both in �nding new problems [45] and reproducing
known attacks [46]. From an entirely di�erent angle,
work has also been ongoing on introducing some of the
polynomial-time reduction techniques used by cryptog-
raphers into the framework used by formal methods,
making it possible to reason more precisely about the
interaction of a protocol with the cryptographic algo-
rithms that is uses [22] Finally, recently new interest
has been shown in revisiting the problems of secrecy
models in cryptographic protocols, thus going beyond
the standard black-box assumptions [53]. Thus we see
new interest in the problem of high �delity from a num-
ber of di�erent sides.

4.5 Composability

Most work on the analysis of cryptographic proto-
cols has concentrated on the analysis of protocols that
can be described in terms of a single sequence of mes-
sages without any choice points or loops. However,
most cryptographic protocols are not actually deployed
in this fashion. Indeed, many cryptographic protocols
as they are actually implemented can be thought of as a
suite of \straight-line" sub-protocols (that is protocols
that involve no if-then-elses and no loops) along with a
number of choice points in which the user may choose
which sub-protocol to execute. In this kind of environ-
ment, it is necessary, not only that each subprotocol
be shown to execute correctly in isolation, but that the
subprotocols do not interact with each other in harm-
ful ways. This problem in its general form is known as
the composition problem for cryptographic protocols:
given that two or more di�erent protocols are executing
in the same environment, is it possible that a message
or messages from one protocol could be used to subvert
the goals of the other?

The composability problem is not only a theoretical
concern. Consider, for example, the following attack,
described in [1] on a very early version of SSL. The
early version included an optional client authentica-
tion phase in which the client's challenge response was
independent of the type of cipher negotiated for the
session, and also of whether or not the authentication
was being performed for a reconnection of an old ses-
sion or for a new one. Moreover, this version of SSL
allowed the use of cryptographic algorithms of various
strength (weak algorithms for export and stronger ones
for home use), and since weakness could be guaranteed
by revealing part of the key, it was not always clear
by inspection of the key whether weak or strong cryp-
tography was being used. This allowed the following
attack (note that in this version of SSL, session keys
were supplied by the client):

1. A key K is agreed upon for session A using weak
cryptography.

2. Key K is broken by the intruder in real time.

3. The client initiates a reconnection of session A.

4. The intruder initiates a new session B, pretend-
ing to be the client, using strong cryptography to-
gether with the compromised key K.

5. As part of the connection negotiations for session
B, the server presents a challenge to the client.
The client should return a digital signature of both
K and the challenge. The intruder can't do this
itself, but it can pass the server's request on to the
client, who will take it to be part of the reconnec-
tion negotiations for session A, and produce the
appropriate response. The intruder passes the re-
sponse on to the server as part of the session B
negotiations, and the protocol completes.

6. If the client would have been given access to special
privileges as a result of using strong cryptography,
this could lead to the intruder gaining privileges
that it should not be able to have by breaking the
key K.

Since this attack involves a confusion of the recon-
nection protocol with the connection protocol, it is an
example of a failure of composition which would not
have been found if the two protocols had been ana-
lyzed separately.

Early work on composability [18, 17] concentrated
on determining under what conditions protocols could
be guaranteed to be composable. The early results
led to rather stringent requirements: in essence, they
required the fail-stop property [17] or something very
similar to it [18]. Thus they did not have much practi-
cal application.

More recent work has concentrated, not on design-
ing protocols that are guaranteed to be composable,
but on reducing the amount of work that is required to
show that protocols are composable. In our work in us-
ing the NRL Protocol Analyzer to analyze the Internet
Key Exchange protocol, we found it useful to take each
state transition that required an input message and de-
termine which transitions could produce that output.
This information was stored in a database, and only
those rules that have a chance of producing that out-
put are consulted when the reachability of an output is
being veri�ed. This allowed us to reduce the number
of state transitions that had to be tested whenever we
had to determine how a message could be produced,
thus limiting the state explosion problem. We do not



make any claims for the originality of this idea (indeed
some sort of rule pre-veri�cation and storage is nor-
mally done by rule-based systems that must process
a large number of rules), but we were suprised at the
dramatic speedup it caused, (at least threefold for the
IKE analysis [29]). This is a technique that would be
useful for the analysis of any complex protocol, but
which was particularly helpful for the analysis of suites
of protocols, since only a few state transitions from dif-
ferent protocols had the potential of interacting with
each other.

Independently, Thayer, Herzog, and Guttman used
a similar insight to develop a technique for analyzing
composition properties using their strand space model
[49]. Their technique consists of showing that a certain
set of terms generated by the �rst protocol can never be
accepted by principals executing the second protocol.
This information is then used to prove the full result
that the �rst protocol does not interfere with the sec-
ond. The techniques used for choosing the set of terms
and for using them in the proof are speci�c to the pro-
tocols used in [14], but it is likely that they could be
generalized into heuristics that could be applied more
widely. We think that it is likely that these techniques
will continue to be useful as they are further re�ned.

We also believe that the last word has not been writ-
ten on designing protocols that are guaranteed to be
composable, or are at least easier to prove composable.
Recently some promising work has been done on de-
signing protocols that are veri�able by model-checkers
[24, 44]. A model-checker checks that a protocol is
secure by simulating its interaction with an intruder.
Since simulation is used, only a �nite number of ex-
ecutions of the protocol can be examined. Thus it is
helpful to know if there is some �nite number of execu-
tions such that the examination of this �nite number
is enough to guarantee security. In general, the answer
to this is no [13, 18, 6], but it is still possible, as is
shown by the work of Lowe [24] and Stoller [44], to put
design constraints on protocols that guarantee them
to be veri�able through examination of a �nite num-
ber (and manageable) number of executions. Moreover,
the constraints involved are much more realistic than
the fail-stop constraint used in the early composability
results.

We believe that this work could be used in the anal-
ysis of composability in the following way. Consider
a protocol that integrates a set of straight-line sub-
protocols (where a \straight-line" protocol is de�ned
to be one that involves no if-then-elses or loops) by
proceeding in two stages. In the �rst stage, an initia-
tor chooses which of a suite of straight-line protocols it
will execute. In the next stage it executes the subpro-

tocol. In order for two subprotocols to interact harm-
fully, at least two executions of the protocol must have
taken place. If we can modify Lowe's and/or Stoller's
results so that they would still hold in such an environ-
ment, then they could be used to limit the complexity
of checking for an interaction by limiting the size of the
set of subprotocols that needs to be checked at any one
time.

4.6 Negotiation of Complex Data Structures

Key distribution and agreement protocols usually
negotiate agreement upon a single �eld: the key. Most
work on formal analysis of cryptographic protocols has
concentrated on this problem. But once more structure
is introduced into the data to be agreed upon, new
problems of maintaining the consistency of the data
emerge. For example, Thayer, Herzog, and Guttman
[50] recently discovered a new attack on the Otway-
Rees protocol, which distributes a key and a key iden-
ti�er together. In this attack the principals wound up
agreeing on the same key identi�er but not the same
key. Although the Otway-Rees protocol had been care-
fully studied in the past, this possible behavior had not
been uncovered before.

Many of the newer protocols negotiate agreement on
much more complex structures than this. As we saw
earlier, the Internet Key Exchange Protocol negotiates
agreement on a complex data structure that not only
includes multiple �elds, but is also open ended. SET
goes IKE one further by having principals agree on a
data structure the contents of whose �elds are gener-
ated by di�erent members of a three-party protocol as
the protocol progresses, so that we are dealing with a
data structure that evolves as the protocol completes.
Moreover, di�erent parts of the structure may be kept
secret from di�erent principals, so it is possible that no
one principal knows the contents of all the �elds in the
data structure, even after the protocol completes.

In spite of this complexity, we found the tool we
were using, the NRL Protocol Analyzer, adequate to
this task, except for the case of open-ended data struc-
ture, described in Section 4.1. The hard part was un-
derstanding and specifying the protocol requirements
that needed to be satis�ed, especially for SET. We were
fortunate to have the NPATRL requirements language
[48], that had been developed speci�cally to specify
complex protocol requirements for the NRL Protocol
Analyzer. However, we still found it necessary to aug-
ment it in order to reason about agreement on data
structures with possibly unknown or not yet de�ned
�elds. We did this in terms of specifying requirements
on agreement on projections of the entire data struc-



ture. This was not di�cult to do, but did require an
enhancement to the NPATRL language.

We can see other types of data structures emerg-
ing as well. Certi�cate hierarchies are one example.
Since any protocol that manages certi�cate hierarchies
must deal with the revocation of certi�cates as well,
this brings up the problem of introducing negation.
There is also a growing body of work on using certi�-
cates to implement security policies (e.g. Policymaker
[2]). Although there has been a good deal of research in
the development of policy de�nition languages, little of
this work has concentrated on examining their interac-
tion with the protocols that implement them. It is still
early to tell if there are any problems here the require
special attention, but the area bears watching.

4.7 Getting it into the Real World

Throughout most of this paper, we have concen-
trated on extending the limits of research. But we also
need to concentrate on getting the results of our re-
search out to the people who can make best use of it:
the designers and evaluators of the cryptographic sys-
tems that are being deployed in our networks. For this
we want not to concentrate on cutting-edge research
problems, but on what we do best now, and what is
the best use we can make use of these capabilities.

I think that few would argue that what we do best
now is the analysis of straight-line key distribution and
authentication protocols, in which the lowest level of
abstraction used is a black-box model of a cryptosys-
tem. For these types of protocols there now exist be-
lief logic tools that can do provide a totally automated
analysis [3]. On a somewhat deeper level there are
a number of state-based analysis tools that can do a
more thorough analysis with minimal input from the
user. High-level languages like CAPSL [35] also make
it easy to specify these protocols in a way usable by
the tools.

We have noted, of course, that the reality is often
much more complex than the simple protocols that
these tools were devised to analyze. But most of the
complex protocols had their origins in the simpler jour-
nal level protocols; for example the complex Internet
Key Exchange protocol is in part derived from the
very simple Station to Station protocol. Nor are the
\simple" protocols as transparent as they might ap-
pear at �rst glance. Lowe's analysis of the Needham-
Schroeder public key protocol and Thayer, Herzog, and
Guttman's analysis of the Otway-Rees protocol show
that it is possible for possibly harmful properties to
go undiscovered for years. Thus, it is important to
have the ability to recognize and �x potential problems

up front. If we think of the existing tools as provid-
ing the potential for animating \back-of-the-envelope"
sketches of protocols so that they can be thoroughly
examined before the e�ort is made to developed them
into more �nished products, I think we will have an
idea of how our tools as they exist now can be made
immediately useful to protocol designers.

5 Conclusion

In this paper we have given a brief outline of the
state of the art of cryptographic protocols and shown
many directions in which it could be extended. Most
conclusions to papers include suggestions for further
research. Since this paper consists of nothing but sug-
gestions for further research, we will forgo that here.
However, we do note that we did not intend our list of
topics to be exclusive. Indeed, we imagine that there
will be many other areas that come to light as research
progresses.
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