
Interpreting Strands in Linear Logic�y

I. Cervesato

ITT Industries

iliano@itd.nrl.navy.mil

N. Durgin

Stanford University

nad@cs.stanford.edu

M. Kanovich, A. Scedrov

University of Pennsylvania

fmaxkanov, scedrovg@math.upenn.edu

Abstract

The adoption of the Dolev-Yao model, an abstraction of se-
curity protocols that supports symbolic reasoning, is respon-
sible for many successes in protocol analysis. In particular,
it has enabled using logic e�ectively to reason about pro-
tocols. One recent framework for expressing the basic as-
sumptions of the Dolev-Yao model is given by strand spaces,
certain directed graphs whose structure re
ects causal inter-
actions among protocol participants. We represent strand
constructions as relatively simple formulas in �rst-order lin-
ear logic, a re�nement of traditional logic known for an in-
trinsic and natural accounting of process states, events, and
resources. The proposed encoding is shown to be sound and
complete. Interestingly, this encoding di�ers from the mul-
tiset rewriting de�nition of the Dolev-Yao model, which is
also based on linear logic. This raises the possibility that the
multiset rewriting framework may di�er from strand spaces
in some subtle way, although the two settings are known to
agree on the basic secrecy property.

1 Introduction

In recent years, a variety of methods have been developed
for analyzing and reasoning about protocols based on cryp-
tographic primitives. Although there are many di�erences
among these proposals, most current formal approaches use
the so-called \Dolev-Yao" model of adversary capabilities,
which appears to be drawn from positions taken in [34] and
from a simpli�ed model presented in [11]. In this idealized
setting, a protocol adversary is allowed to nondeterministi-
cally choose among possible actions. Messages are composed
of indivisible abstract values, not sequences of bits, and en-
cryption is modeled in an idealized way. The adversary may
only send messages comprised of data it \knows" as the re-
sult of overhearing past transmissions.

The Dolev-Yao abstraction makes symbolic reasoning
about crypto-protocols a viable approach. This observation
has materialized in a number of successful analyses that use
model checking [29, 33, 38] and on several proposals based
on logic, the quintessential tool of symbolic reasoning [4, 35].

�Partially supported by DoD MURI \Semantic Consistency in
Information Exchange" as ONR Grant N00014-97-1-0505, by NSF
Grants CCR-9509931, CCR-9629754 and CCR-9800785, and by NRL
under contract N0014-96-D2024 to various authors.

yWe would like to thank John Mitchell, Patrick Lincoln, Cather-
ine Meadows and Sylvan Pinsky for the fruitful discussions that con-
tributed to this work.

One recent setting for stating the basic assumptions of
the Dolev-Yao model is given by strand spaces [13, 14, 39].
Roughly, a strand is a linearly ordered sequence of events
that represents the actions of a protocol participant. A
strand space is a collection of strands, equipped with a
graph structure generated by causal interaction among par-
ticipants. This is closely related to Lamport's notion of
causality in distributed systems [21], and a clear instance of
Mazurkiewicz's de�nition of trace within concurrency the-
ory [31]. Prior to a run of the protocol, each principal
chooses certain data to be used in the protocol, such as
keys or nonces.

In contrast, a formal de�nition of the Dolev-Yao model
in terms of multiset rewriting with existential quanti�cation,
MSR [6, 7, 12], allows new values such as keys and nonces to
be chosen at any time during the protocol run, as the need
for new choices arises. In this formalism, a way of choos-
ing new values is provided by the proof rules of existential
quanti�cation. The MSR formalism has been incorporated
into a high-level speci�cation language for authentication
protocols, CAPSL [10].

In [7], we established a substantial equivalence of the
MSR and strand space formalisms. We introduced a suit-
able abstraction of strand con�gurations that corresponds
to MSR states, and showed that related pairs of states and
con�gurations are equi-reachable. This is relevant for se-
curity analysis because several basic properties of security
protocols (e.g. secrecy) can be phrased as reachability prob-
lems. However, it is not clear that all relevant properties of
security protocols can be phrased in terms of reachability.
Thus a more re�ned analysis of the MSR and strand space
formalisms might reveal the di�erences between the two for-
malisms in regard to some subtle properties of protocols. In
this paper, which may be seen as a companion to [7], we
provide some preliminary steps in this direction.

The MSR and strand space formalisms are analyzed here
in the formal setting of linear logic [16], a re�nement of
modal logic with an intrinsic and natural accounting of pro-
cess states and events. The choice of linear logic is natu-
ral because of the very close connection between multiset
rewriting and simple fragments of linear logic, which has
been studied extensively [3, 30, 15, 19, 5]. We extend this
standard correspondence to include �rst-order parameters
and existentially quanti�ed variables.

On the other hand, we also formally represent strand
constructions as relatively simple formulas in �rst-order lin-
ear logic. This encoding is also shown to be sound and
complete. As in our previous work on multiset rewriting

1

speci�cations of security protocols [6, 7, 12], the proof rules
of existential quanti�cation provided a way of choosing new
values, such as nonces or keys. However, the linear logic
interpretation introduced here maintains the strand space
intuition that nonces are chosen before the protocol is run.
Let us note that this encoding di�ers from the standard lin-
ear logic representation of multiset rewriting. This raises
the possibility that the multiset rewriting framework may
di�er from strand spaces in some subtle way.

Linear logic has found applications in numerous areas
of Computer Science, and it has concrete prospects of in-

uencing the �eld of security protocol analysis in a sim-
ilar way. As a speci�cation language, linear logic has
been used to provide elegant and e�ective representations
of many systems that share characteristics with crypto-
protocols [8, 9, 17, 18]. The natural embedding of concurrent
systems in linear logic [15, 20], in particular in its graph-
based presentations [16], is also likely to be relevant, given
the interpretation of security protocols as concurrent sys-
tems [1, 40]. Work on meta-reasoning in linear logic [32]
promises to address protocol correctness [4, 35] e�ectively
and e�ciently. Finally, some of the theoretical results lin-
ear logic has brought about (e.g. complexity issues [23]) are
expected to yield a better understanding of the most funda-
mental aspects of security protocols [12].

This paper is organized as follows: Section 2 recalls the
notion of strand and reachability between strand con�gura-
tions; Section 3 provides some background on linear logic;
Section 4 describes the translation of strand constructions
into linear logic, while in Section 5 we prove soundness and
completeness theorems that relate strand reachability and
linear logic derivability for their translation. In Section 6,
we compare these results with the translation of the multiset
rewriting speci�cations of a security protocol in linear logic.

2 Parametric Strands

In this section, we recall �rst the notions of strand spaces
and bundles [13, 39], and then recent extensions aimed at
capturing protocol execution at the level of strands [7].

An event is a pair consisting of a message m and an
indication of whether it has been sent (+m) or received
(�m) [13]. A strand is a �nite sequence of events. We indi-
cate strands with the letter s, the length of a strand as jsj,
and its i-th event as si (for i = 1 : : : jsj). A strand s is there-
fore a chain graph (S;=)), where S = fsi : i = 1 : : : jsjg,
moreover si =) sj i� j = i+ 1, and �nally the nodes si are
labeled with events.

A strand space is a set of strands with an additional
relation (�!) on the nodes, such that if �1 �! �2, then
�1 = +m and �2 = �m; �! represents the transmission
of the message m from the sender �1 to the receiver �2. A
strand space is therefore a graph with two types of arrows,
a bi-graph using the terminology in [7], � = (S;=);�!)
with the above restriction on �!. Given such �, we will
sometimes write S�, =)�, and �!� for S, =), and �!
respectively.

Let S+ and S� indicate the set of positively- and
negatively-labeled nodes in S respectively. A bundle [13, 7]
(see also [21]) is a strand space � = (S;=);�!) such that
the bipartite graph (S+; S�;�!) is functional (a positive
node has at most one outgoing �!-edge), injective (a nega-
tive node has at most one incoming�!-edge), and surjective
(a negative node has at least one incoming �!-edge), and

(=) [�!) is acyclic [7]. In terms of protocols, the �rst
three constraints imply that a message is sent to at most one
recipient at a time, no message is received from more than
one sender, and every received message has been sent, re-
spectively. Dangling positive nodes correspond to messages
in transit. Therefore, a bundle represents a snapshot of the
execution of a protocol.

�(~x; ~n) : ~n fresh, �(~x) >ww�
�m1(~x; ~n)ww�
�m2(~x; ~n)

...

�mj�j�1(~x; ~n)ww�
�mj�j(~x; ~n)ww�

?

Figure 1: A Parametric Strand

We now build on these accepted de�nitions and present a
strand-based language for the speci�cation of protocols and
of their execution. The interested reader may consult [7] for
further details.

Data such as the identity of principals and their long-
term keys often constitute the stage on which the execution
of a protocol takes place, and does not change as it un-
folds. We represent and access this persistent information
through a �xed multiset � of ground atomic formulas with
distinguished persistent predicates (e.g. PubK and PrvK) [7].

A role is modeled as a parametric strand: a strand where
the messages may contain variables. An actual strand is
obtained by instantiating all the variables in a parametric
strand (or an initial segment of one) with persistent infor-
mation and actual message pieces. A parametric strand for
the role � may look as in Figure 1. The freshness of ~n,
i.e. the fact that the variables ~n should be instantiated with
\new" constants that have not been used before, is expressed
as a side condition. Using the terminology in [13, 39], the
values ~n are uniquely originated. The relationship between
variables are expressed in [39] using intuitive notation, e.g.
k�1 for the inverse key of k, or kA for the public key of A.
We formalize these relations by equipping � with constraints
�(~x), that, without loss of generality, will be a set of persis-
tent atomic formulas parameterized over ~x. In this paper, it
is convenient to equip each parametric strand with an initial
node labeled with > and an ending node labeled ?. This
addition is discussed at length in [7].

A protocol is given as a set of roles. The model of the
intruder in the style of Dolev and Yao [11, 34] is also spec-
i�ed as a set of parametric strands P(P0) called penetrator
strands, where P0 is the intruder's initial knowledge [7, 39].
As an example, Figure 2 shows how the Needham-Schroeder
public key protocol is modeled using parametric strands,
where we have used incoming and outgoing arrows instead
of the tags + and � for readability. We ask the reader to

2

Initiator(KA;K
�1
A ;KB; NA;NB)

NA fresh, �A(KA;K
�1
A ;KB)

>www�Q(q0)

fNA;KAgKB
�!www�Q(q1)

�! fNA;NBgKAwww�Q(q2)

fNBgKB
�!www�stop

?

Responder(KB ;K
�1
B ;KA; NB ; NA)

NB fresh, �B(KB;K
�1
B ;KA)

>www�Q(q00)

�! fNA;KAgKBwww�Q(q01)

fNA;NBgKA
�!www�Q(q02)

�! fNBgKBwww�stop
?

where �A(KA;K
�1
A ;KB) = PubK(KA); PrvK (KA;K

�1
A); PubK(KB)

�B(KB;K
�1
B

;KA) = PubK(KB); PrvK (KB;K
�1
B

); PubK(KA)

Figure 2: Extended Strand Speci�cation of Needham-Schroeder

ignore the shaded annotations on the =)-edges for the mo-
ment.

These de�nitions allow us to specialize the bundles we are
looking at: given a set of parametric strands S, every strand
in a bundle � should be an initial pre�x of an instantiated
protocol (or penetrator) strand. We are interested in initial
pre�xes since a bundle is a snapshot of the execution of
a protocol, and a particular role instance may be halfway
through its execution. We then say that � is a bundle over
S.

We will now give a few de�nitions needed to emulate the
execution of a protocol with parametric strands. First, ob-
serve that the network tra�c in a bundle is expressed in
terms of events and of the �! relation. The edges of �!
represent past tra�c: messages that have been sent and suc-
cessfully received. The dangling positive nodes correspond
to current tra�c: messages in transit that have been sent,
but not yet received. We will call these nodes the fringe of
the bundle (or strand space). More formally, given a strand
space � = (S;=);�!), its fringe is the set

Fr(�) = f� : � 2 S; � = +m; and 69�0: � �! �0g:

Another component of the execution state of a protocol
is a description of the actions that can legally take places in
order to continue the execution. First, some technicalities.
Let � be a bundle over a set of parametric strands S, a
completion of � is any strand space ~� that embeds � as a
subgraph, and that extends each incomplete strand in it with
the omitted nodes and the relative =)-edges. If s is a strand
in � and ~s is its extension in ~�, the sequence obtained by
removing every event in s from ~s is itself a (possibly empty)
strand. We call it a residual strand and indicate it as ~s n s.
We then write ~� n � for the set of all residual strands of ~�
with respect to �.

Given these preliminary de�nitions, a con�guration over
S is a structure (�; �])� where � is a bundle over S, and �] is
an extension of � whose only additional �!-edges originate
in Fr(�), cover all of Fr(�), and point to �] n �, and �nally
the signature � lists all the symbols that appear in �] (and
�).

We de�ne the notion of one-step transition between
two con�gurations (�1; �

]
1)�1 and (�2; �

]
2)�2 , written

(�1; �
]
1)�1

o7�!S(�2; �
]
2)�2 , by means of four rules that we

call Cf , Ci, S and R. For the sake of conciseness, we limit
ourselves to an intuitive presentation based on the following
sketches. A formal de�nition can be found in [7].

�S �S]n �S

Cf (�;�)
�!S

>ww�
... �[�]

�S �S]n �S

>ww�
... �[�]

�S �S]n �S

Ci(�[�];�)
�!S

>ww�
... �[�;�]

�S �S]n �S

�

(+m)

�00

(�m)

ww�
�0S S]nS

S(�;�0;�00)
�!S

�

(+m)

�00

(�m)

ww�
�0

����!

S S]nS

�

(�m)

�00

(+m)
����!

ww�
�0S S]nS

R(�;�0;�00)
�!S

�

(�m)

�00

(+m)
����!

ww�
�0S S]nS

Themove o that labels the transition arrow 7�!S records the
necessary information to reconstruct the transition uniquely.

Rule Cf describes the instantiation of a parametric
strand �(~x; ~n) with a substitution � for all its variables that
are marked \fresh" (~n). The substituted constants must be
distinct from each other and from any other value appear-
ing in �]1. Rule Ci realizes the second stage of instantiation:
it applies a substitution � to the remaining variables ~x of
a partially instantiated strand �[�], checks that the atomic

3

formulas resulting from instantiating the constraints �(~x) of

� with � satisfy �, and install its initial node > in �]1 to

produce �]2. We must perform instantiation in two stages
to handle protocols where two parties exchange newly pro-
duced nonces as in the Needham-Schroeder protocol in Fig-
ure 2.

The remaining rules deal with message transmission and
reception once a strand has been installed in the con�gura-
tion. In particular, �, �0 and �00 are nodes on fully instanti-
ated strands. Rule Smodels the action of sending a message:
if the con�guration at hand embeds a strand that is not fully
contained in the bundle part �1 and the �rst missing node
� is positive, we add an �!-arrow to a matching negative
node �00 and include � in �2. Receiving a message is mod-
eled by rule R: if (�1; �

]
1)�1 mentions a strand that is not

fully contained in its bundle part and its �rst missing node
� has an incoming �!-edge, we add it to the bundle.

A multistep transition amounts to chaining zero or more
one-step transitions. This relation is obtained by taking the
re
exive and transitive closure ~o7�!�

S of o7�!S , where ~o is the
sequence of the component moves (\�" if empty). ~o is a trace
of the computation.

Our de�nition of transition preserves con�gurations, i.e.
if (�1; �

]
1)�1 is a con�guration and (�1; �

]
1)�1

o7�!S(�2; �
]
2)�2 ,

then (�2; �
]
2)�2 is also a con�guration. Moreover, �1 � �2.

These properties extend to multistep transitions.

3 Elements of Linear Logic

The target of our interpretation of strand constructions will
be a sublanguage of linear logic [16]. We choose this formal-
ism over more traditional logics because of its interpretation
of formulas as consumable resources. This provides, for ex-
ample, a simple way of modeling the fact that receiving a
message makes it unavailable to other recipients (unless fur-
ther actions are taken).

This language, a fragment of �rst-order multiplicative ex-
ponential linear logic to be precise, is given by the following
grammar:

A ::= P Atomic formulas
j 1 Multiplicative unit
j A1
 A2 Multiplicative conjunction
j A1��A2 Linear implication
j 8x:A Universal quanti�cation
j 9x:A Existential quanti�cation

P ::= N(m) Message in transit
j PubK(k) j : : : Persistent information
j Q(q) Intermediate step
j stop Role completion

We use messages and their constituents as the basis of the
term language of our formulas, as described in [7]. We rely
on the unary predicate symbol N to hold messages being
exchanged, and we maintain the syntax we glimpsed at in
the previous section for persistent information. Atoms of the
form Q(q) identify uniquely the intermediate =)-edges in a
con�guration (see Section 4). Finally, the atomic constant
stop will indicate the completion of a strand.

The connectives we will need are
, known as multi-
plicative conjunction, the constant 1 (multiplicative unit),
�� or linear implication, and the usual quanti�ers. A re-
source A1
 A2 consists of the sum of parts A1 and A2,

while A1��A2 realizes resource A2 subject to the avail-
ability of A1 while consuming A1 itself (this implements
therefore the notion of transition). When instantiating
quanti�ers, we write [t=x]A for the capture-free substitu-
tion of term t for variable x in formula A. We abbreviate
[t1=x1]([t2=x2](: : : [tn=xn]A)) as [t1=x1; : : : ; tn=xn]A.

Contexts are �nite multisets of comma-separated formu-
las. The empty context is denoted \�". We will use the
letter � and �, possibly subscripted, to indicate contexts.
A signature � is a list of constants.

The derivability judgments we will rely upon are sequents
of the form [17]:

�; � `� A

where the formulas in � and � are the resources available
to produce the formula A. While the elements in � shall
be used exactly once, the resources in � can be exploited
arbitrarily many times, possibly zero. This convenient two-
context formulation [17] is rewritten as a more common
single-context sequent by augmenting � with the result of
pre�xing every formula in � with the exponential modality
\!" [16]. The signature � lists all the constants mentioned
in the sequent. Although usually omitted in presentations
of (linear) logic, it simpli�es our treatment of nonces.

The relevant inference rules for this language are dis-
played in Figure 3. The rules on the left-hand side are called
multiplicative. Rule id will be used at the leaves of a deriva-
tion: it speci�es that an object A can be trivially produced
from A itself (the formulas in � are ignored). Notice that
no excess resources are admitted. Rule ��l speci�es how
to use a resource A1��A2 to build an object C: if A1 can
be produced using part of the context (�1), then A2 and
what remains of the context (�2) are available to produce
C. Rule
l states that a composite resource can be bro-
ken to make its components individually available, while
r
speci�es that A1
 A2 is produced by building its parts in-
dependently. The constant 1 is the non-resource: it does not
contribute to a goal (rule 1l) and does require any resource
to be established (rule 1r). Rule cut permits constructing
an object in stages: in order to obtain C, one can �rst build
A with some of the available resources, and then use A to
achieve C. Since C can always be produced directly from the
original resources, this rule is e�ectively redundant, which
we emphasize by displaying it in a shaded font.

The right-hand side of Figure 3 shows rule dl (derelic-
tion), which makes a copy of a formula A in � available in
�, and the rules concerning the quanti�ers. Observe that
the existential quanti�ers in the context � are instantiated
with new constants (rule 9l), which we record in the sig-
nature �. In the right-hand side of the turnstile (rule 9r),
these quanti�ers have instead the function of hiding the use
of these newly introduced constants. Notice that they are
instantiated with constants from � rather than with arbi-
trary terms: this is su�cient for our purposes. Instead, we
allow universally quanti�ed variables to be instantiated with
arbitrary terms (rule 8l).

4 Strands in Linear Logic

We will now describe the translation of parametric strands
and con�gurations into the fragment of linear logic we just
discussed. We shall emphasize that this encoding does not
treat penetrator strands di�erently from regular protocol
strands in any way. This adheres to the strand philosophy,

4

Multiplicatives Exponentials and quanti�ers

id

�; A `� A

�; �1 `� A �; �2; A `� C
cut

�; �1;�2 `� C

�; A; �; A `� C
dl

�; A; � `� C

�; �1 `� A1 �; �2; A2 `� C
�� l

�; �1;�2; A1��A2 `� C

�; �; [t=x]A `� C
8l

�; �;8x:A `� C

�; �; A1; A2 `� C

 l

�; �; A1
 A2 `� C

�; �1 `� A1 �; �2 `� A2

 r

�; �1;�2 `� A1
 A2

�; �; [c=x]A `�;c C
9l (�)

�; �; 9x:A `� C

�; � `�;c [c=x]A
9r

�; � `�;c 9x:A

�; � `� C
1l

�; �;1 `� C
1r

�; � `� 1 (�) c not in �

Figure 3: Relevant Rules of Linear Logic

and contrasts with other approaches which syntactically dif-
ferentiate the intruder model (e.g. [6]).

Let �(~n; ~x; ~y) be a parametric strand with constraints \~n
fresh, �(~x)". Let s0; s1; : : : ; sn; sn+1 be the nodes of �, with
s0 = >, sn+1 = ?, and for i = 0::n, si =) si+1. We de�ne
the encoding of node si (for i = 0::n + 1), written psiq, as
follows:

psn+1q = stop
psiq = Q(qi�1)
 (Q(qi�1)
 N(m)�� psi+1q)

if si = �m
psiq = Q(qi�1)
 (Q(qi�1)��N(m)
 psi+1q)

if si = +m
ps0q =
�(~x)��
�(~x)
 ps1q

where, given a multiset of formulas �,
� is the formula
obtained by taking the multiplicative conjunction of very
element of �. For i = 1::n, psiq expresses the action in si
by placing the sent (received) message m in the consequent
(resp. antecedent) of the implication. Rule ��l will have the
e�ect of inserting (resp. removing) N(m) into (resp. from)
the context �. Notice that its application will also insert
psiq into �, enabling in this way the next action. This
technique is known as continuation-passing style in the pro-
gramming language community.

The arguments of the conjuncts Q(q0); : : : ;Q(qn�1) are
distinct variables. It is convenient to interpret them as labels
for the =)-edges of �, as shown in Figure 2. The last ar-
row, leading to sn+1 = ?, is instead labeled with the propo-
sitional letter stop. These atoms serve multiple purposes:
�rst they provide a way to preserve the order of consecutive
message transmissions or receptions, which may prove im-
portant for some applications; second their presence greatly
simpli�es our proofs as they implement the \locks and keys"
technique [23], which has yielded faithful representations of
various computational paradigms in linear logic [22, 23, 24];
third, they are a crucial device for bridging the gap with
the multiset rewriting speci�cation of a protocol [7]. Were
these reasons, in particular the �rst one, to fall, a simpler
encoding can be achieved by replacing the Q(qi)'s and stop
with the linear logic constant 1.

The encoding of � is achieved by appropriately quantify-
ing the free variables in ps0q:

p�q = 9qo; : : : ; qn�1: 9~n: 8~x; ~y: ps0q

Existentially quantifying the qi's, as well as ~n, guarantees
that they will be instantiated with constants distinct from

any other value in use. Applying this encoding to the
Needham-Schroeder protocol speci�ed in Figure 2 yields the
linear logic formulas in Figure 4.

In order to de�ne the encoding of a con�guration, we
need to extend this notation to partially and fully instanti-
ated strands. Let � be a substitution for the \fresh" variables
~n of �. Then

p�[�]q = [�; u0=q0; : : : ; un�1=qn�1]8~x; ~y: ps0q;

where u0; : : : ; un�1 are distinct constants. If furthermore �
is a substitution for the remaining variables ~x; ~y of �, we
de�ne

p�[�; �]q = [�]([�; u0=q0; : : : ; un�1=qn�1]ps0q):

Observe that � can mention some of the constants newly
introduced by �. We extend the notation psiq, for i = 0::n+
1, to the case where si is a node in a fully instantiated strand
(clearly, the qi's will have been replaced with ui's).

We shall now encode con�gurations. A con�guration
(�; �])� comprises three types of information: 1) an account
of how this situation has been reached (as � and the strands
in �] that have been instantiated, but not yet used); 2) a
description of the current situation (in Fr(�)); and 3) a sum-
mary of the future actions that can be performed (in �] n�).
We will ignore the �rst aspect since it will be partially cap-
tured through the notion of derivation. The representation
of Fr(�) will simply be the conjunction of the messages in it
(or 1 if none is present):

pFr(�)q =
N

HN(m) : m 2 Fr(�)I:

where we write H: : :I for the multiset equivalent of the usual

set notation f: : :g. As for �] n �, we take the conjunction of
the representation of each fully instantiated residual strand
in it, plus the representation of the strands that are only
partially instantiated:

p�] n �q =
N

Hpsi+1q : s = �[�; �] in �];

si 2 �S; and si+1 2 �]S n �SI

N

Hp�[�]q : �[�] in �]I:

For the sake of conciseness, we de�ne the representation
of a con�guration (�; �])� as

p(�; �])�q = pFr(�; �])q
 p� n �]q:

5

9q0; q1; q2: 9nA: 8kA; k
�1
A ; kB ; nB :
�A(kA; k

�1
A ; kB) ��
�A(kA; k

�1
A ; kB)
 Q(q0)
 (

Q(q0) �� N(fkA; nAgkB)
 Q(q1)
 (
Q(q1)
 N(fnA; nBgkA) �� Q(q2)
 (

Q(q2) �� N(fnBgkB)
 stop)))

9q00; q
0
1; q

0
2: 9nB : 8kB; k

�1
B ; kA; nA:
�B(kB; k

�1
B ; kA) ��
�B(kB; k

�1
B ; kA)
 Q(q00)
 (

Q(q00)
 N(fkA; nAgkB) �� Q(q01)
 (
Q(q01) �� Q(q02)
 N(fnA; nBgkA)
 (

Q(q02)
 N(fnBgkB) �� stop)))

Figure 4: Linear Logic Translation of the Needham-Schroeder Protocol

We will make the encoding we have just presented more
concrete by means of an example. The upper part of Fig-
ure 5 shows a con�guration (�; �]) representing an initial
stage of Lowe's attack [26] on the Needham-Schroeder pro-
tocol in Figure 2. It contains six strands: an initiator, a
responder, and one instance of each of the four penetrator
strands M 0 (access to the intruder's initial knowledge), D
(decryption), M (access to public information) and E (en-
cryption). A detailed discussion of penetrator strands can
be found in [7]. Constants are indicated using a di�erent
font than variables (e.g. nA as opposed to nA). In this con-
�guration, the initiator has executed its �rst action, strands
M 0 and D have been completed, strands M and E are fully
instantiated but still have to execute their �rst action, while
the responder strand has been only partially instantiated.
The only message in transit (the fringe) is (nA; kA).

The second box in �gure 5 shows the encoding of (�; �])
in linear logic. Observe that, whenever the border between
� and �] n � crosses an active strand, the atomic formula
Q(u�i) corresponding to the intersected =)-edge appears as

a conjunct in p�] n �q. Similarly, each terminated strand
contributes an occurrence of stop. The residual of every
active strand yields a formula with implications. Finally,
notice that the representation of the partially instantiated
responder strand accounts for the only quanti�ers appearing
in p(�; �])q.

5 Soundness and Completeness

We will now show that, given the above encoding, reach-
ability among con�gurations is mapped to the derivability
of their representation in linear logic, and vice versa. Con-
structing a derivation that mimics a sequence of moves in
the strand world, formally stated in the following theorem,
is fairly simple.

Theorem 5.1 (Soundness)

Let S be a set of parametric strands and (�1; �
]
1)� ,

(�2; �
]
2)�;~n two con�gurations over S. If there is a move

sequence ~o such that

(�1; �
]
1)�

~o7�!�
S;�[�

0=~n](�2; �
]
2)�;�0

for some instantiation of variables ~n with fresh distinct con-
stants �0, then there exists a linear logic derivation D of the
sequent

pSq; �; p(�1; �
]
1)�q `� 9~n: p(�2; �

]
2)�;~nq
 �:

Proof: By induction on the structure of ~o. If the move se-
quence is processed right-to-left, we obtain a cut-free deriva-
tion. Operating forward (left-to-right) requires the use of
the cut rule (which can subsequentially be eliminated). 2

In the above proof, each move is simulated by the appli-
cation of a number of linear logic rules. This �ner granular-
ity is a hindrance when considering a derivation that relates
the encoding of two con�gurations, and trying to read o�
the move sequences that have actually been applied: these
micro-steps can be intermingled in arbitrary ways. This
forces us to break our completeness proof into a number of
stages aimed at disentangling the given linear logic deriva-
tion. First we reduce ourselves to a purely multiplicative
setting by pushing dl and the quanti�er rules at the bottom
of the given derivation.

Lemma 5.2 Let S be a set of parametric strands and
(�1; �

]
1)� , (�2; �

]
2)�;~n two con�gurations over S. If there

is a cut-free derivation D of the sequent

pSq; �; p(�1; �
]
1)�q `� 9~n: p(�2; �

]
2)�;~nq
 �

then there exists an instantiation of variables ~n with fresh

distinct constants �0, a con�guration (�0; �
]
0)�;�0 , and a cut-

free derivation D� of the sequent

pSq; � `
�;�0

p[�0=~n](�2; �
]
2)�;�0 q
 �

where � = �; p(�1; �
]
1)�q; p(�0; �

]
0)�;�0 q, that does use nei-

ther dl nor any of the quanti�er rules 8l, 9l, 9r.

Proof: We exploit the relative permutability of these infer-
ence rules, as described in [25]. More precisely, we apply the
following four steps:

1. We permute rule dl below every other rule. The re-
sulting derivation consists then of a sequence of appli-
cations of dl followed by a subderivation D0 that does
not use this rule. The applications of dl correspond to
committing to the parametric strands that will be used
to produce (�2; �

]
2)�;~n (once instantiated, they will cor-

respond to (�0; �
]
0)�;�0).

2. We permute rule 9l to the bottom of D0, which enables
us to consider a subderivation D00 that does not contain
these rules. These uses of 9l correspond to picking the
new constants that appear in �0 beforehand.

6

Initiator
(kA; k

�1

A
; kI; nA; nB)

M 0

(k�1

I
)

D
((nA; kA); kI; k

�1

I
)

M
(kB)

E
((nA; kA); kB)

Responder
(kB ; k

�1
B ; kA; nB; nA)

> > > > > >

fnA; kAgkI fnA; kAgkI

k
�1

I
k
�1

I

(nA; kA) (nA; kA)

kB kB

fnA; kAgkB fkA; nAgkB

fnA; nBgkA fnA; nBgkA

fnBgkI fnBgkB

? ? ? ? ? ?

_ Q(qA
0
)

_

Q(qA
1
)

_ Q(qA
2
)

_ stop

_

Q(qM
0

0
)

_

stop

_ Q(qD
0
)

_ Q(qD
1
)

_ Q(qD
2
)

_

stop

_

Q(qM
0
)

_

stop

_

Q(qE
0
)

_ Q(qE
1
)

_ Q(qE
2
)

_

stop

_

Q(qB
0
)

_ Q(qB
1
)

_ Q(qB
2
)

_ stop

>

>

>

pFr(�)q =

p�] n �q =

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

N((nA; kA))

Q(uA
1
)
 (
Q(uA

1
)
 N(fnA; nBgkA)��Q(uA

2
)
 (

Q(uA
2
)��N(fnBgkI)
 stop))

 stop

 stop

 Q(uM
0
)
 (Q(qM

0
)��N(kB)
 stop)

 Q(uE
0
)
 (
Q(uE

0
)
 N((nA; kA))��Q(uE

1
)
 (

Q(uE
1
)
 N(kB)��Q(uE

2
)
 (

Q(uE
2
)��N(fnA; kAgkB)
 stop)))

 (8kB; k
�1
B ; kA; nA:

�B(kB; k
�1
B ; kA)��
 �B(kB ; k

�1
B ; kA)
 Q(uB

0
)
 (

Q(uB
0
)
 N(fkA; nAgkB)��Q(uB

1
)
 (

Q(uB
1
)��Q(uB

2
)
 N(fnA; nBgkA)
 (

Q(uB
2
)
 N(fnBgkB)�� stop))))

9=
; Initiator(kA; k

�1

A
; kI; nA; nB)

M 0(k�1

I
)

D((nA; kA); kI; k
�1

I
)

M(kB)9>=
>;
E((nA; kA); kB)

9>>>=
>>>;

Responder(kB ; k
�1
B ; kA; nB; nA)

where pM 0
q = 9q0:8x: P0(x)��P0(x)
 Q(q0)
 (

Q(q0)��N(x)
 stop)
pDq = 9q0; q1; q2:8m;k; k0: PrivK(k; k0)��PrivK(k; k0)
 Q(q0)
 (

Q(q0)
 N(fmgk)��Q(q1)
 (
Q(q1)
 N(k0)��Q(q2)
 (

Q(q2)��N(m)
 stop)))
pMq = 9q0:8k: PubK(k)��PubK(k)
 Q(q0)
 (

Q(q0)��N(k)
 stop)
pEq = 9q0; q1; q2:8m;k: PubK(k)��PubK(k)
 Q(q0)
 (

Q(q0)
 N(m)��Q(q1)
 (
Q(q1)
 N(k)��Q(q2)
 (

Q(q2)��N(fmgk)
 stop)))

Figure 5: A Translation: Lowe's attack on the Needham-Schroeder Protocol

7

3. We permute rules 9r to the end of D00, obtaining a
subderivation D000 that does not mention these rules.
The applications of 9r correspond to hiding �0 in the
overall derivation.

4. Finally, we permute every use of 8r down past every
other rule, making explicit a subderivation D� with the
required characteristics. The applications of 8l com-
plete the instantiation of (�0; �

]
0)�;�0 . 2

When interpreted at the strand level, Lemma 5.2 speci�es
that a move sequence can be rearranged so that parametric
strands are chosen and instantiated before any message is
exchanged. More speci�cally, all uses of Cf happen �rst,
followed by all applications of Ci. Only then, can S- and
R-moves take place.

The next step consists in grouping together the rule ap-
plications that correspond to each move in the multiplicative
part of the given derivation. This provides a simple way of
identifying moves S and R.

Lemma 5.3 Let S be a set of parametric strands and

(�1; �
]
1)� , (�2; �

]
2)� two con�gurations over S. If there is

a cut-free derivation D� of the sequent

pSq; �; p(�1; �
]
1)�q `� p(�2; �

]
2)�q
 �

that uses only rules from the left half of Figure 3, then there
exists a cut-free derivation D�� of this sequent such that

� Every use of
r appear just below id, 1r or
r;

� Rules 1l and
l are applied eagerly.

Proof: Again, we take advantage of the permutability re-
sults in [25]. Rule
r can be pushed up past any other
rule (except id and 1r). On the other hand,
l and 1l can
always be permuted down, as long as the nesting of sub-
formulas is respected (clearly if the left-hand side contains
a formula (A
 B)��C, a proof fragment that dismantles
this formula must apply
l above ��l). 2

At this point, we have the means to extract a sequence of
moves from a linear logic derivation that relates the encoding
of two con�gurations.

Theorem 5.4 (Completeness)

Let S be a set of parametric strands and (�1; �
]
1)� ,

(�2; �
]
2)�;~n two con�gurations over S. If there is a linear

logic derivation D of the sequent

pSq; �; p(�1; �
]
1)�q `� 9~n: p(�2; �

]
2)�;~nq
 �

then there exists an instantiation of variables ~n with fresh
distinct constants �0 and a move sequence ~o such that

(�1; �
]
1)�

~o7�!�
S;�[�

0=~n](�2; �
]
2)�;�0 :

Proof: The use of Lemma 5.2 followed by Lemma 5.3 to
D yields a derivation structured as in Figure 6, from which
moves over con�guration can easily be read o� (shown on
the right of the schematic derivation). 2

dl

9l

9r

8l

l;:::;
l;��l

:::

l;:::;
l;��l

l

r

id

o

o

9>>=
>>;

; Cf

; Ci

; S=R

Figure 6: Completeness Argument

A �ne analysis of this proof reveals that linear logic
derivations enable a form of abstraction that move sequences
do not achieve. Indeed, the tree structure of a derivation
does not always impose a total order on independent transi-
tions. This is a very mild form of non-determinism compared
with the explicit concurrency present in bundles [7]. We ex-
pect to get a model closer to bundles by considering graph-
based formulations of linear logic such as proof nets [16].
Furthermore, game-theoretic investigations of linear logic [2]
have produced methods for obtaining very strong forms of
completeness which could be relevant in this setting.

6 Interpreting Multiset Rewriting in Linear Logic

In this section, we brie
y describe how multiset rewriting
techniques can be conveniently used to express security pro-
tocols (Section 6.1). We then show how the resulting speci-
�cation is translated into linear logic and state the expected
correctness results (Section 6.2). Finally, we compare the
linear logic expressions we derive from the strand and mul-
tiset rewriting speci�cations of a protocol (Section 6.3).

6.1 Multiset Rewriting for Cryptoprotocols

A multiset M is an unordered collection of objects or ele-
ments, possibly with repetitions. The empty multiset does
not contain any object and will be written \�". We accu-
mulate the elements of two multisets M and N by taking
their multiset union, denoted \M;N". The elements we will
consider here will be �rst-order atomic formulas A(~t) over
some signature.

In its simplest form, a multiset rewrite rule r is a pair
of multisets F and G, respectively called its antecedent and
consequent. We will consider a slightly more elaborate no-
tion in which F and G are multisets of �rst-order atomic
formulas with variables among ~x. We emphasize this aspect
by writing them as F (~x) and G(~x). Furthermore, we shall
be able to mark variables in the consequent so that they are
instantiated to \fresh" constants, that have not previously
been encountered, even if the rule is used repeatedly. A rule
assumes then the form

r : F (~x) �! 9~n:G(~x; ~n)

8

Initiator

rA0 : �A0(KA;K
�1
A) �! A0(KA;K

�1
A); �A0(KA;K

�1
A)

rA1 : A0(KA;K
�1
A); �A1(KB) �! 9NA:A1(KA;K

�1
A ;KB ;NA);N(fNA;KAgKB

); �A1(KB)

rA2 : A1(KA;K
�1
A

;KB;NA);N(fNA;NBgKA
) �! A2(KA;K

�1
A

;KB ;NA; NB)

rA3 : A2(KA;K
�1
A ;KB;NA;NB) �! A3(KA;K

�1
A ;KB ;NA; NB);N(fNBgKB

)

Responder

rB0 : �B0(KB ;K
�1
B) �! B0(KB ;K

�1
B); �B0(KB ;K

�1
B)

rB1 : B0(KB ;K
�1
B);N(fNA;KAgKB

); �B1(KA) �! B1(KA;KB;K
�1
B ;NA); �B1(A)

rB2 : B1(KA;KB;K
�1
B ;NA) �! 9NB :B2(KA;KB;K

�1
B ;NA; NB);N(fNA;NBgKA

)

rB3 : B2(KA;KB;K
�1
B ; NA;NB);N(fNBgKB

) �! B3(KA;KB;K
�1
B ;NA; NB)

where �A0(KA;K
�1
A

) = PubK(KA);PrvK (KA; K
�1
A

) �B0(KB;K
�1
B

) = PubK(KB);PrvK (KB;K
�1
B

)
�A1(KB) = PubK(KB) �B1(KA) = PubK(KA)

Figure 7: Multiset Rewriting Speci�cation of the Needham-Schroeder Protocol

where r is a label and 9~n indicates that the constants that
instantiate ~n ought to be fresh. A multiset rewriting system
R is a set of rewrite rules.

Rewrite rules allow transforming a multiset into another
multiset by making localized changes to the elements that
appear in it. Given a multiset of ground facts M over a
signature �, a rule r : F (~x) �! 9~n:G(~x; ~n) is applicable if

M = F (~t);M 0, for terms ~t. Then, applying r to M yields

the multiset N = G(~t;~c);M 0 where the constants ~c are fresh
(in particular, they do not appear in M), ~x and ~n have been

instantiated with ~t and ~c respectively, and the facts F (~t) in

M have been replaced with G(~t;~c) to produce N . The new
signature is �; ~c. We denote the application of a single rule
and of zero or more rewrite rules by means of the one-step
and multistep transition judgments:

M�

r�!RN�0
M�

~r�!�
RN�0

respectively, where � and �0 are the signatures over which
M and N are respectively de�ned. The labels r and ~r iden-
tify which rule(s) have been applied and the terms ~t used
to instantiate ~x. Thus, ~r acts as a complete trace of the
execution.

We model protocols by means of speci�cally tailored mul-
tiset rewriting systems. We call this approach MSR. With-
out loss of generality, we consider here a slightly simpli�ed
version of the model introduced in [6, 12]. We rely upon the
following atomic formulas:

Network messages: Network messages are modeled by
the predicate N(m), where m is a message being trans-
mitted.

Role states: We �rst choose a set of role identi�ers
�1; : : : ; �n for the di�erent roles constituting the pro-
tocol. Then, for each role �, we have a �nite family of
role state predicates fA�i(~m) j i = 0 : : : l�g. They are
intended to hold the internal state of a principal in role
� during the successive steps of the protocol.

Intruder knowledge: The adversary's knowledge is held
in a distributed way in facts of the form I(m), where m
is some piece of information captured or fabricated by
the intruder.

Persistent information: We express persistent informa-
tion exactly as we did in the case of strands in Section 2,
i.e. by means of a multiset � of ground facts.

We represent each role � in a protocol by means of a single
role generation rule and a �nite number of protocol execu-
tion rules. The purpose of the former is to prepare for the
execution of an instance of role �. It has the form

r�0 : �(~x) �! A�0(~x); �(~x):

where, as in previous sections, �(~x) denotes a multiset
of persistent atomic formulas that may mention variables
among ~x. Notice how persistent information is preserved.
The execution rules describe the messages sent and expected
by the principal acting in this role. For i = 0 : : : l� � 1, we
have a rule r�i+1 of either of the following two forms:

send: A�i(~x); �(~x; ~z)
�! 9~n:A�i+1(~x; ~z; ~n);N(m(~x; ~z; ~n)); �(~x; ~z)

receive: A�i(~x);N(m(~x; ~y)); �(~x; ~y; ~z)
�! A�i+1(~x; ~y; ~z); �(~x; ~y; ~z)

where m(~v) stands for a message pattern with variables
among ~v. In the �rst type of rules, we rely on the exis-
tential operator 9~n to model the ability of a principal to
create nonces when sending a message. This principal can
also include some persistent data ~z (e.g. the name and pub-
lic key of an interlocutor), possibly related to information
it already possesses (~x). In the second rule template, the
principal should be able to access persistent information ~z
related to data in the received message ~y (e.g. the sender's
public key) or previously known information ~x. Situations
where a principal both sends and receive a message, or sends
multiple messages, can easily be expressed by these rules.

A protocol is speci�ed as a set R of such roles. As an ex-
ample, Figure 7 shows the encoding of our running example
in the MLR notation.

The behavior of the intruder according to the Dolev-
Yao model [11, 34] is similarly speci�ed as a set of rewrite
rules [6]. We will refer to them as I. A state is then a mul-
tiset of ground facts S = �; A;N; I, where A is a multiset of
role states A�i(~t), N is multiset of messages N(m) currently
in transit, and I summarizes the intruder's knowledge I(m).
In particular the initial state is just �; I0, where I0 contains
the information (e.g. keys) initially known to the intruder.

9

6.2 Mapping to Linear Logic

The close a�nity between multiset rewriting and sim-
ple fragments of linear logic has been known for a long
time [3, 30, 15, 19, 5]. We extend this standard correspon-
dence to take parameters and existentially quanti�ed vari-
ables into consideration. A generic multiset M is mapped
to the tensor product

N
M of its constituents, or 1 if M is

empty. A multiset rewrite rule

r : F (~x) �! 9~n:G(~x; ~n)

is translated into the following linear logic formula, that we
call prq:

8~x:
N

F (~x)�� 9~n:
N

G(~x; ~n):

The encoding pRq of a set R of multiset rewriting rules is
the union of the translation of its elements.

Given this simple encoding, multiset rewriting transi-
tions correspond to linear logic derivations and reachability
is mapped to derivability.

Theorem 6.1 (Soundness and Completeness)
Let R be a set of multiset rewriting rules, let S be a state

over signature �, and let S0 be a state over � and variables
~n = (n1:::nk). If there is a transition sequence ~r such that

S�
~r�!�

R[~c=~n]S
0
�;~c

for some instantiation with distinct fresh constants ~c =
(c1:::ck), there exist a linear logic derivation D of the se-
quent

pRq;
N

S `� 9~n:
N

S0;

and vice versa. 2

The proof of this result follows the pattern of theo-
rems 5.1 and 5.4. In particular, the soundness part relies
on a simple induction on the structure of the transition se-
quence ~r. The completeness direction requires transforming
the derivation D to a suitable normal form before extracting
multiset rewriting rule applications.

6.3 Comparison

Strands were originally aimed at analyzing completed proto-
col runs in term of the observed causal interactions among
the participants. Parametric strands, brie
y described in
Section 2 and fully investigated in [7], extend this frame-
work with the possibility of giving executable speci�cations
of security protocols. This same objective guided the design
of MSR.

In [7], we established a substantial equivalence of these
two formalisms: we devised a suitable abstraction of strand
con�gurations that corresponds to MSR states, and showed
that related pairs of states and con�gurations are equi-
reachable. (Indeed, strand and MSR transitions induce an
approximate bisimulation upon them. Were we to collapse
the predicate symbols N and I and eliminate the MSR in-
truder rules that relate them, we would obtain an exact
bisimulation.) This is relevant for security analysis because
several properties of security protocols (e.g. secrecy) can be
phrased as reachability problems.

Our results in Sections 5 and 6.2 show that both strand
constructions and MSR can be expressed in linear logic in
such a way that reachability corresponds to derivability. A
close inspection of our translations reveals however substan-
tial di�erences in the resulting formulas. First, a parametric

strand is mapped to a single reusable linear logic formula,
while the corresponding notion of role in MSR yields a sep-
arate multi-use clause for each message transmission or re-
ception, plus one to account for role generation. Second,
all quanti�ers appear at the head of the translation of a
parametric strand, while they are distributed among sev-
eral clauses and possibly nested within connectives in the
case of MSR. Standard linear logic equalities are insu�-
cient to prove the equivalences of these mappings. In fact,
these translations, although faithfully capturing correspond-
ing behaviors, are not logically equivalent. This leaves us
with following partially completed diagram:

LL

MSR Strands

LL

6

?

� -[7]

?

6

-�
?

Although MSR and strands agree on basic secrecy, they
might possibly di�er on more re�ned security properties such
as perhaps Lowe's notion of agreement [27, 28] or Schneider's
de�nition of precedence [37, 36]. We suspect that a �ne
analysis of the relationship between MSR and strands in
the framework of linear logic may expose such di�erences.

7 Conclusions

This paper may be seen as a companion to [7], where we
showed that as far as the basic secrecy property is concerned
(more precisely, reachability), strand spaces [13] and mul-
tiset rewriting with existential quanti�cation, MSR [6, 12]
are equivalent settings for the Dolev-Yao model of security
protocol analysis Multiset rewriting is known to be closely
related to certain fragments of linear logic [3, 30, 15, 19, 5].

Another, direct representation of strand spaces in linear
logic is introduced in this paper and shown to be sound and
complete. Linear logic theories obtained by this encoding
are not to logically equivalent to the linear logic theories
related to MSR, in general. This raises the possibility that
strand spaces and MSR might di�er on complex properties
of protocols beyond basic secrecy. We propose linear logic
as an appropriate logical setting for expressing properties of
protocols, motivated by a natural way in which linear logic
deals with computational state.

References

[1] Abadi, M., and Gordon, A. A calculus for crypto-
graphic protocols: the spi calculus. Information and
Computation 148, 1 (1999), 1{70.

[2] Abramsky, S., Jagadeesan, R., and Malacaria,
P. Full abstraction for PCF. In Proc. TACS '94 (1994),
Springer-Verlag, LNCS 789, pp. 1{15.

[3] Asperti, A. A logic for concurrency. Manuscript, Nov.
1978.

[4] Burrows, M., Abadi, M., and Needham, R. A logic
of authentication. Proceedings of the Royal Society, Se-
ries A 426, 1871 (1989), 233{271.

10

[5] Cervesato, I. Petri nets and linear logic: a case
study for logic programming. In Proceedings of the
1995 Joint Conference on Declarative Programming
| GULP-PRODE'95 (Marina di Vietri, Italy, 11{14
September 1995), M. Alpuente and M. I. Sessa, Eds.,
Palladio Press, pp. 313{318.

[6] Cervesato, I., Durgin, N. A., Lincoln, P. D.,
Mitchell, J. C., and Scedrov, A. A meta-notation
for protocol analysis. In Proceedings of the 12th
IEEE Computer Security Foundations Workshop |
CSFW'99 (Mordano, Italy, June 1999), P. Syverson,
Ed., IEEE Computer Society Press, pp. 55{69.

[7] Cervesato, I., Durgin, N. A., Lincoln, P. D.,
Mitchell, J. C., and Scedrov, A. Relat-
ing strands and multiset rewriting for security pro-
tocol analysis. In 13th IEEE Computer Security
Foundations Workshop | CSFW'00 (Cambrige, UK,
3{5 July 2000), P. Syverson, Ed., IEEE Com-
puter Society Press. To appear; available at
www.cs.stanford.edu/~iliano/papers/csfw00.ps.gz.

[8] Cervesato, I., and Pfenning, F. A linear logical
framework. In Proceedings of the Eleventh Annual Sym-
posium on Logic in Computer Science | LICS'96 (New
Brunswick, NJ, July 1996), E. Clarke, Ed., IEEE Com-
puter Society Press, pp. 264{275.

[9] Chirimar, J. L. Proof Theoretic Approach to Speci�ca-
tion Languages. PhD thesis, Department of Computer
and Information Science, University of Pennsylvania,
1995.

[10] Denker, G., and Millen, J. K. CAPSL Intermedi-
ate Language. In Proceedings of the Workshop on For-
mal Methods and Security Protocols | FMSP (Trento,
Italy, July 1999), N. Heintze and E. Clarke, Eds.

[11] Dolev, D., and Yao, A. C. On the security of public-
key protocols. IEEE Transactions on Information The-
ory 2, 29 (1983), 198{208.

[12] Durgin, N., Lincoln, P., Mitchell, J., and Sce-
drov, A. Undecidability of bounded security protocols.
In Proceedings of the Workshop on Formal Methods and
Security Protocols | FMSP (Trento, Italy, July 1999),
N. Heintze and E. Clarke, Eds.

[13] F�abrega, F. J. T., Herzog, J. C., and Guttman,
J. D. Strand spaces: Why is a security protocol cor-
rect? In Proceedings of the 1998 IEEE Symposium on
Security and Privacy (Oakland, CA, May 1998), IEEE
Computer Society Press, pp. 160{171.

[14] F�abrega, F. J. T., Herzog, J. C., and Guttman,
J. D. Mixed strand spaces. In Proceedings of the
12th IEEE Computer Security Foundations Workshop
| CSFW'99 (Mordano, Italy, June 1999), P. Syverson,
Ed., IEEE Computer Society Press, pp. 72{82.

[15] Gehlot, V., and Gunter, C. Normal process rep-
resentatives. In Proc. 5-th IEEE Symp. on Logic in
Computer Science (Philadelphia, June 1990).

[16] Girard, J.-Y. Linear logic. Theoretical Computer Sci-
ence 50 (1987), 1{102.

[17] Hodas, J., and Miller, D. Logic programming in a
fragment of intuitionistic linear logic. Information and
Computation 110 (1994), 327{365.

[18] Kanovich, M., Okada, M., and Scedrov, A. Spec-
ifying real-time �nite-state systems in linear logic. In
Proc. COTIC '98 (Nice, France, 1998), Electronic
Notes in Theoretical Computer Science 16(1).

[19] Kanovich, M. I. Linear logic as a logic of computa-
tion. Annals of Pure and Applied Logic 67, 1{3 (May
1994), 183{212.

[20] Kobayashi, N., Shimizu, T., and Yonezawa, A. Dis-
tributed concurrent linear logic programming. Theoret-
ical Computer Science 227 (1999), 185{220.

[21] Lamport, L. Time, clocks and the ordering of events
in a distributed system. Communications of the ACM
21, 7 (July 1978), 558{565.

[22] Lincoln, P., Mitchell, J., and Scedrov, A. Opti-
mization complexity of linear logic proof games. Theo-
retical Computer Science 227 (1999), 299{331.

[23] Lincoln, P., Mitchell, J., Scedrov, A., and
Shankar, N. Decision problems for propositional lin-
ear logic. Annals of Pure and Applied Logic 56 (1992),
239{311.

[24] Lincoln, P., Scedrov, A., and Shankar, N. Lin-
earizing intuitionistic implication. Annals of Pure and
Applied Logic 60 (1993), 151{177.

[25] Lincoln, P., and Shankar, N. Proof search in �rst-
order linear logic and other cut-free sequent calculi. In
Ninth Annual Symposium on Logic in Computer Sci-
ence (Paris, France, 1994), S. Abramsky, Ed., IEEE
Computer Society Press, pp. 282{291.

[26] Lowe, G. An attack on the Needham-Schroeder
public-key protocol. Info. Proc. Letters 56 (1995), 131{
133.

[27] Lowe, G. A hierarchy of authentication speci�cations.
In Proceedings of 10th IEEE Computer Security Foun-
dations Workshop (Rockport, MA, June 1997), IEEE
Computer Society Press, pp. 31{43.

[28] Lowe, G. Casper: A compiler for the analysis of secu-
rity protocols. Journal of Computer Security 6 (1998),
53{84.

[29] Marrero, W., Clarke, E. M., and Jha, S. Model
checking for security protocols. In Proceedings of the
1997 DIMACS Workshop on Design and Formal Veri-
�cation of Security Protocols (1997).

[30] Mart��-Oliet, N., and Meseguer, J. From Petri nets
to linear logic. In Conference on Category Theory and
Computer Science (1989), Springer-Verlag LNCS 389,
pp. 313{337.

[31] Mazurkiewicz, A. Trace theory. In Advances in Petri
nets. Springer-Verlag LNCS 255, 1986, pp. 279{324.

[32] McDowell, R., and Miller, D. A logic for reason-
ing with higher-order abstract syntax and induction.
In Proc. LICS'97 (Warsaw, Poland, 1997), IEEE Com-
puter Society Press, pp. 434{445.

11

[33] Meadows, C. The NRL protocol analyzer: an
overview. J. Logic Programming 26, 2 (1996), 113{131.

[34] Needham, R., and Schroeder, M. Using encryp-
tion for authentication in large networks of computers.
Communications of the ACM 21, 12 (1978), 993{999.

[35] Paulson, L. Proving properties of security protocols
by induction. In 10th IEEE Computer Security Foun-
dations Workshop (1997), pp. 70{83.

[36] Schneider, S. Modelling security properties with
CSP. Technical Report CSD-TR-96-04, Royal Hol-
loway, University of London, 1996.

[37] Schneider, S. Verifying authentication protocols with
CSP. In Proceedings of 10th IEEE Computer Security
Foundations Workshop (Rockport, MA, June 1997),
IEEE Computer Society Press, pp. 3{17.

[38] Shmatikov, V., and Stern, U. E�cient �nite-state
analysis for large security protocols. In Proceedings
of the 11th Computer Security Foundations Workshop
(Rockport, MA, 1998), IEEE Computer Society Press,
pp. 106{115.

[39] Song, D. Athena: a new e�cient automatic checker for
security protocol analysis. In Proceedings of the Twelth
IEEE Computer Security Foundations Workshop (Mor-
dano, Italy, June 1999), IEEE Computer Society Press,
pp. 192{202.

[40] Stal, D., Tavares, S., and Meijer, H. Backward
state analysis of cryptographic protocols using coloured
Petri nets. In Proceedings of the 1994 Workshop on
Selected Areas in Cryptography | SAC'94 (Kingston,
Ontario, Canada, May 1994), pp. 107{118.

12

