
Andrew P. Moore, J. Eric Klinker and David M.

Mihelcic 1

How to Construct Formal Arguments

that Persuade Certi�ers

1.1 Introduction

Developers of a critical system must argue that the system satis�es its crit-
ical requirements { those that, if not satis�ed, could result in human injury
or death, substantial loss of capital, or the compromise of national secu-
rity. Documenting an explicit, persuasive assurance argument is especially
important when the system produced must be evaluated and approved by
an independent certi�er, as is often the case for safety- and security-critical
systems. Past experience developing independently evaluated systems using
formal methods [28, 38] demonstrates that the presentation of the assur-
ance argument is as important as the rigor of the assurance evidence on
which that argument is based. Formal speci�cations and analyses must be
presented coherently in the context of the overall system decomposition or
much of their power to persuade may be lost. This chapter describes and
illustrates a general framework that supports gathering, integrating, pre-
senting and reviewing the evidence that we can trust a system to conform
to its critical requirements.

Persuasive assurance arguments must be consistent and complete, both
internally (ignoring how the argument is being applied) and externally (with
respect to its particular application). Arguments that have these properties
must be understandable, coherent and relevant. Roughly, understandability
ensures an argument's internal consistency in the sense that an inconsistent
argument cannot be understood to be valid. Likewise, coherence ensures
an argument's internal completeness and relevance ensures its external con-
sistency and completeness. Of course, there is always the danger that a
persuasively presented but invalid argument will convince the certi�er (in-
correctly) that the argument is valid. In this case, the certi�er believes
the argument to be valid through a misunderstanding. Making arguments
easier to understand will reduce the chances of making such mistakes.

Our framework enables a developer to produce understandable, coherent
and relevant assurance arguments that use formal methods by

1. integrating formal speci�cation and veri�cation techniques into a sound
software engineering and documentation methodology,

2. maintaining the consistency of the assurance documentation with for-

1

mal speci�cations and code that are input to speci�cation, veri�cation
and compilation tools,

3. providing an overview of the assurance argument and the process by
which it is constructed that serves as an index into the more detailed
assurance evidence, and

4. automating and, when appropriate, enforcing the process of assurance
argument re�nement.

The framework is not a step-by-step guide, but a set of guidelines within
which individual organizations can customize or improve their existing soft-
ware development process to use formalmethods as an e�ective tool for con-
vincing an independent certi�er of a system's trustworthiness. The frame-
work is most cost-e�ective when the system architecture isolates critical
function in simple, well-de�ned and reusable components that are imple-
mented primarily in software.

We have applied the elements of our framework to three signi�cant ap-
plications: a network security device called the External COMSEC Adaptor
(ECA) [38], a software-controlled RS-232 character repeater [20, 29], and
a security-critical extension of a Navy command and control system called
the Joint Maritime Command Information System (JMCIS) [11]. The ECA
is a device that permits the secure communication between network sub-
scribers by cryptographically protecting the sensitive portions of messages
that traverse unprotected transmission media. The ECA development pro-
cess integrates formal speci�cations and proofs with structured software
documentation to maintain a clear relationship between the ECA's over-
all re�nement and the formal assurance evidence (item 1 above) [27]. The
character repeater application is a much smaller example that demonstrates
the utility of the literate programming paradigm and hypertext methods
for improving the readability of the assurance argument while maintain-
ing its consistency with formal speci�cations and code that are input to
tools (item 2) [28]. The JMCIS extension is an ongoing e�ort to securely
replicate SQL database updates from a Secret processing enclave to a Top
Secret processing enclave. This e�ort extends previous work by investigat-
ing the graphical depiction of assurance argument overviews [26] and the
automation and enforcement the development process (items 3 and 4).

The following sections describe our general framework, instantiate it
to use speci�c publicly-available tools, and demonstrate the instantiated
framework as applied to the ECA. We choose the ECA for demonstration
purposes since it exempli�es the most thoroughly developed application of
the techniques described in this chapter. The ECA assurance argument
includes a chain of formal reasoning that spans from a critical requirements
model to a low-level program design that was proven to conform to the
model. Thirty software modules were identi�ed and implemented resulting
in approximately 11,000 lines of Verdi speci�cations (including proof heuris-
tics), 4,000 lines of proven Verdi code, and 6,000 lines of Ada code mapped

2

from the Verdi. A total of 24 ECA devices were constructed by a contractor
from the software implementation and hardware speci�cation produced at
NRL during the early 1990s. The real-world examples provided are simple
enough to demonstrate concretely and concisely how to put into practice
the techniques on which our framework is based.

1.2 Framework

The quality of an organization's personnel, both technical and management,
and its system development process play a large role in determining that
organization's success in building quality products [1]. These factors are
even more important in the successful development of systems using formal
methods given the increased discipline that those methods require [6]. The
greatest bene�t of tools, whether based on formal or less rigorous methods,
can only be obtained if they are used in a well-de�ned development process
by well-trained personnel [8]. This section assumes that these are in place
and describes an approach for augmenting the process to include the devel-
opment of a persuasive and cost-e�ective assurance argument using tools of
varying rigor. A later section describes ongoing work to provide automated
support for an example assurance argument development process.

1.2.1 Integrating Formal Arguments into System Re�nement

The successful application of formal methods to engineer systems of inter-
est to industry or the military requires their balanced integration with less
rigorous methods. Figure 1.1 depicts a framework for re�ning an assurance
argument in the context of a simple, but typical, software development pro-
cess based on the Software Cost Reduction (SCR) Methodology [34, 35].
The primary levels of system re�nement and documentation are shown
along the left side of the �gure. Along the right side are classes of speci�-
cation languages and tools that contribute to the formal speci�cation and
analysis of the system. The result of integrating the use of the languages
and tools on the right into the production of the system documentation
on the left is the system's assurance argument, which corresponds to the
center of the �gure (the area between the arrows.) Slanted arrows indicate
a re�nement of a speci�cation to a more detailed speci�cation or imple-
mentation; vertical arrows indicate a translation of a speci�cation from
one semantic domain to another at a comparable abstraction level. The
increase in the area between the arrows from top to bottom represents
additional detail speci�ed and re
ected in the assurance argument at the
lower levels. For simplicity, the �gure abstracts away details regarding the
iterative improvement and feedback between levels that inevitably occurs
during system re�nement.

3

Specification
Level

Assurance
Argument

Languages,
Tools

Operational
Context

Critical
Requirements

Human Review,
Simulation

Critical Component
Requirements

Simulation, Formal
Requirements Decomposition

Critical Software
Requirements

Critical Access
Program Requirements

Access Program
Design

Access Program
Implementation

Human Review

Simulation, Formal Program
Specification and Proof

Testing, Coverage Analysis

System
Requirements

System
Architecture

Component
Design

Module Interface
Specification

Module
Internal Design

Module
Implementation

Process Algebra

Process Algebra,
Proof System

Model-based
Specification

Language

Model-based
Proof System

Testing Coverage
Analysis Tool

Simulation, Formal
Requirements Decomposition

Process Algebra,
Proof System

Figure 1.1: An Assurance Argument Framework

Figure 1.1 does not show methods or tools used to re�ne (informally)
the overall system speci�cation because of the wide range of speci�cation
paradigms on which existing technology is based. Nevertheless, CASE tools
that help trace functional requirements, graphically specify and simulate
designs, or record design rationale, for example, are an important part of
the development process especially during early design. The assurance ar-
gument must weave informal and formal lines of reasoning together into an
understandable, coherent and relevant whole. This requires resolving any
di�erences among the informal and formal semantic models on which the
argument is based, e.g., state machine versus process algebraic. Resolution
will likely be informal and dependent on how the models are used in the
context of the argument. In some cases it may be possible to use the less
rigorous methods and tools for early discovery, communication and design,
but then cast the results in a formal speci�cation language for analysis. This
permits using the less rigorous methods where they are most useful while
using formal methods to gain higher assurance that critical requirements
are satis�ed. The generality of this model of assurance argument re�ne-
ment promotes its customization to more complex industrial development
processes.

The rest of this section elaborates Figure 1.1. Throughout this descrip-
tion, we incrementally re�ne an example of how to customize the frame-

4

System
R

equirem
ents

Statemate

CSP

EVES

Verdi

Ada

VADS

System
A

rchitecture

C
om

ponent
D

esign

M
odule Interface
Specification

M
odule

Internal D
esign

M
odule

Im
plem

entation

✓
✓

✓
✓

✓

✓
✓

✓

✓

✓
✓

✓
✓

L
anguage,

T
ool

L
evel of

Specification

T
a
b
le
1
.1:

C
u
sto

m
izin

g
th
e
F
ram

ew
ork

:
A
n
E
x
am

p
le

w
o
rk

u
sin

g
sp
eci�

c
lan

gu
ag
es
an
d
to
ols.

T
h
is
ex
am

p
le
u
ses

th
e
S
tatem

ate
r

grap
h
ica

l
sp
eci�

cation
an
d
sim

u
lation

to
ols

[15],
th
e
C
om

m
u
n
icatin

g
S
e-

q
u
en
tial

P
ro
cesses

(C
S
P
)
p
ro
cess

algeb
ra

[16],
th
e
E
V
E
S
form

al
v
eri�

ca-
tion

sy
stem

[7]
an
d
V
erd

i
p
rogram

m
in
g
lan

gu
age

[5],
an
d
th
e
V
erd

ix
r
A
d
a

D
ev
elo

p
m
en
t
S
y
stem

(V
A
D
S
r
)
[47].

T
ab
le
1.1

in
d
icates

th
e
sp
eci�

cation
lev

el
in

w
h
ich

ea
ch

la
n
g
u
a
ge

an
d
to
ol

is
ap
p
lied

.

R
e
q
u
ir
e
m
e
n
ts
E
lic
ita

tio
n

T
h
e
o
p
eration

al
con

tex
t
d
escrib

es
in

E
n
glish

th
e
con

cep
t
of

op
eration

s
for

th
e
sy
stem

,
in
clu

d
in
g
th
ose

resp
on
sib

ilities
im

p
osed

b
y
th
e
sy
stem

in
w
h
ich

it
is
em

b
ed
d
ed
.
S
in
ce

sy
stem

s
often

in
volve

a
n
u
m
b
er

of
con

cu
rren

tly
ex
e-

cu
tin

g
p
ro
cesses,

th
e
req

u
irem

en
ts
sp
eci�

cation
lan

gu
age

of
an

ap
p
rop

riate
p
ro
cess

alg
eb
ra

[16
,
2
4,

45]
is
ch
osen

to
sp
ecify

th
e
critical

req
u
irem

en
ts

in
th
e
�
rst

lev
el

of
F
igu

re
1
.1
.
T
h
is
sp
eci�

cation
,
w
h
ich

form
s
th
e
b
asis

for
th
e
fo
rm

al
assu

ra
n
ce

a
rgu

m
en
t,
m
u
st

b
e
valid

ated
to

b
e
con

sisten
t
w
ith

its
resp

o
n
sib

ilities
d
escrib

ed
in

th
e
op
eration

al
con

tex
t
an
d
w
ith

th
e
over-

all
sy
stem

req
u
irem

en
ts.

T
h
e
form

al
sp
eci�

cation
of

critical
req

u
irem

en
ts

a
n
d
th
e
ov
erall

sy
stem

req
u
irem

en
ts

sp
eci�

cation
sh
ou
ld

sh
are

th
e
sam

e
stru

ctu
re

of
th
e
sy
stem

's
ex
tern

al
in
terface.

E
x
a
m
p
le
.

S
u
p
p
ose

w
e
u
se

S
tatem

ate
as

th
e
b
asis

for
d
escrib

in
g
th
e
over-

all
sy
stem

req
u
irem

en
ts

a
n
d
C
S
P

as
th
e
b
asis

for
sp
ecify

in
g
th
e
critical

req
u
irem

en
ts.

S
ta
tem

ate
h
a
s
a
grap

h
ical

lan
gu
age

called
activ

ity
ch
arts

th
at

p
erm

its
sp
ecify

in
g
th
e
ex
tern

al
in
terface

to
a
sy
stem

.
R
eq
u
irem

en
ts

for
a
sy
stem

can
b
e
stated

in
term

s
of
th
e
p
rim

itiv
es
set

u
p
b
y
th
at

sy
stem

's
a
ctiv

ity
ch
art.

A
C
S
P
p
ro
cess

can
b
e
d
e�
n
ed

to
re

ect
th
e
sy
stem

's
activ

ity
ch
art

sp
eci�

ca
tio

n
.
A
critica

l
req

u
irem

en
t
sp
eci�

ed
in

C
S
P
is
a
restriction

o
n
th
e
trace

o
f
co
m
m
u
n
ica

tion
s
in

w
h
ich

th
at

p
ro
cess

m
ay

en
gage.

If,
d
u
r-

5

ing later development, we �nd that the re�ned CSP process is restricted to
these traces, the process is said to satisfy the critical requirement.

System Design

The next two levels of speci�cation in Figure 1.1 involve the design of
the system including the derivation of the software requirements. This
process draws heavily on the experience of the development team with the
past development of similar systems. CASE technology helps capture the
developer's understanding of the problem domain in the form of graphical
speci�cations of the system's design [15, 30, 31]. Although not typically
amenable to formal proof, speci�cations produced by production-quality
CASE tools are valuable during the necessarily informal phase of discovery
characterized by early design. The graphical speci�cations provide a more
natural and comprehensible medium for communication among engineers.
Simulation helps ensure that this design conforms to the overall system
requirements speci�ed earlier.

More rigorous analysis requires re
ecting this design in the process alge-
bra used as the basis for the speci�cation of critical requirements. The for-
mal rules of that process algebra help decompose the critical requirements
onto requirements of the primary concurrently executing components of the
design; several model checkers [3, 10] and general-purpose theorem provers
[7, 12, 32] can help prove the correctness of this decomposition. Identifying
the components that are implemented in software allows re�nement of the
design and formal derivation of the software requirements.

Example. Extending the example from last section, we can use Statemate
to specify and verify the design and CSP to decompose the critical require-
ments onto the primary components of the design. In addition to activity
charts for re�ning the data
ow structure of a system, Statemate supports
state charts, which present a behavioral view akin to state machine dia-
grams. The design combines activity and state charts to re�ne the activity
chart that forms the basis of the requirements speci�cation. The formal de-
composition of the system-level critical requirements in CSP traces follows
the approach outlined in [25], using EVES to perform the proofs as in [29].
Derivation of the software requirements proceeds by re�ning the Statemate
and CSP speci�cations, in parallel, to distinguish those components imple-
mented in software from those implemented in hardware. CSP proof rules
permit deriving the critical software requirements from the system-level
critical requirements and the CSP process structure.

Module Re�nement

Further system re�nement requires the modularization of the system { the
mapping of the functions previously speci�ed into distinct and relatively
small modules based on the criteria of information hiding [33]. This map-
ping will not be direct, and probably not one-to-one, since the module

6

structure is very di�erent from the structure of system designs previously
speci�ed. An information hiding module is a logical grouping of system
functions that share (and hide) some secret. Secrets of a module include
those characteristics of the system most likely to change in future updates
of the system. Each such characteristic is hidden in some module so that
developers of other modules do not rely on it.

An e�ective modularization is extremely important for cost-e�ective
software development, particularly where formal methods are used. Struc-
turing the module decomposition hierarchically helps designers and main-
tainers quickly �nd the modules a�ected by a change. If the change is
among those recognized as likely during earlier phases of development, mod-
i�cation to the existing software will be con�ned to a minimal number of
modules. These bene�ts are magni�ed when formal methods are used since
changes to a formal argument due to changes in design or implementation
can be very expensive, perhaps resulting in changes to the overall structure
of the argument. Information hiding modularization also often protects the
formal argument from change during the iterative process of design and
implementation of the system.

The last three levels of speci�cation in Figure 1.1 involve the re�nement
of the modules identi�ed. Each module's interface consists of a set of access
programs, the behavioral speci�cation of which is restricted to externally
visible information. The critical requirements for the access programs de-
rive from the critical requirements of the process algebraic designs speci�ed
earlier. They are cast in terms of a model-based speci�cation language
that permits the design and veri�cation of individual software programs
[7, 14]. This speci�cation provides the oracle to which the implementa-
tion must conform. Veri�cation proceeds either through formal proof or
by structured testing. The type of veri�cation performed depends on the
complexity and type of the requirement and the complexity of the code.
Testing tools [41] can help analyze the coverage of tests conducted using
the module interface speci�cation as the oracle. If the model-based speci�-
cation language serves also as the implementation language for the system,
the last two levels of speci�cation of Figure 1.1 can be collapsed into one.

Example. Continuing the example, we map the functions of the Statemate
design into an information hiding module structure. The components that
are implemented in software should correspond to an access program on one
of the module's interfaces. We map each critical requirement of each such
component, represented as a CSP trace speci�cation, to a post-condition
(and invariant) of a Verdi (access) program as follows:

We de�ne Verdi Get and Put procedures that re
ect the se-
mantics of CSP input and output communication operators,
respectively. A Verdi program that communicates with other
concurrently executing Verdi programs using these procedures
builds up a trace of its execution that is recorded in a variable

7

used only for speci�cation purposes. CSP trace speci�cations
translate to Verdi program speci�cations as restrictions on this
speci�cation-only variable.

We derive the critical requirements for subroutines called by each Verdi
access program and re�ne the module interfaces appropriately. The module
internal design implements each access program in Verdi and veri�es that
it conforms to its critical requirements using EVES. The implementation
of the Verdi Get and Put procedures is below the CSP trace model of
abstraction and, as such, is not subject to EVES veri�cation. We translate
all programs to Ada and test their conformance to their speci�cation using
VADS.

1.2.2 Maintaining Documentation Consistency

The development of an assurance argument for a complex system involves
constructing speci�cations using disparate notations, both formal and infor-
mal, that must be interwoven in a comprehensible way. An approach called
Literate Programming (LP) [18] allows improving an assurance argument's
readability while maintaining consistency with speci�cations and code that
are input to speci�cation, veri�cation and compilation tools. Extending the
concept slightly, a literate speci�cation is a description of a system from
which both intuitive documentation and analyzable speci�cations can be ex-
tracted. LP tools typically process literate programs in two phases: a tangle

phase produces the tool-ready speci�cations and a weave phase produces
the human-ready documentation. As shown in Figure 1.2, language-generic
LP tools [40, 49] permit writing a literate speci�cation that tangles into a
set of speci�cations, each of which is processed by an appropriate analysis
tool. The weave phase produces cross-referenced documentation that can
be fed into a typesetter for hard- or soft-copy formatting. Developers must
incorporate veri�cation results into the documentation, extending the as-
surance evidence provided. Generating both the documentation and input
to analysis tools from a single source helps to ensure their consistency.

The LP paradigm �ts well with the example assurance argument re�ne-
ment process described in the last section. FunnelWeb [49] can be used
as the LP tool from which readable module interfaces, designs and imple-
mentations are generated. FunnelWeb tangles Verdi speci�cations and Ada
code from the literate speci�cation of the module re�nement, which can
then be processed using EVES and VADS, respectively. LATEX[19] serves
as the typesetter for FunnelWeb. The LaTeX2HTML HTML generator [9]
can be used to produce hypertext versions of the argument, in addition
to the hard copy, for ease of navigation. Although LP tools do not work
well with graphical speci�cations, intuitive documentation integrating the
most current Statemate speci�cations can be generated from a single source
using the Statemate Documentor. Generating FunnelWeb compliant liter-

8

tangle

weave

Literate
Spec.

Spec. 1

Xref.
Spec.
and
Doc.

...

Analysis
Tool

Spec. n

Typesetter

Assurance Argument

...

hardcopy hypertext

Verification
Results

Lang.
Generic
LP Tool

Analysis
Tool

Verification
Results

Figure 1.2: Flow of Literate Speci�cation

ate speci�cations permits including Statemate charts, Verdi and Ada code
all in the same document while maintaining their consistency with input
to tools. As an example, this chapter was generated using the Statemate
Documentor to maintain the consistency of Statemate charts that appear
later in the chapter with the ECA Statemate development database.

1.2.3 De�ning the Assurance Strategy

As seen above, an assurance argument is a complex chain of reasoning
that developers re�ne throughout system development. The detail inher-
ent in rigorous assurance evidence can obscure the logical structure of the
argument unless that structure is explicitly de�ned and central to its doc-
umentation. The assurance strategy documents this logical structure with
the goal of demonstrating coherence of the argument. It de�nes a \road-
map" into the assurance argument, tracing meaningful threads between
di�erent pieces of assurance evidence and helping certi�ers gain an accu-
rate and complete understanding of how the evidence contributes to the
overall argument.

The assurance strategy must also explain and motivate the process to
be used to develop the assurance evidence. It documents assumptions of
formal models used and resolves any con
icts between the assumptions or
between an assumption and the system being modeled. Because system re-
quirements often pull the design in di�erent directions, tradeo�s may have
to be made. The assurance strategy documents and justi�es the choices
made during the design process with a discussion of any residual risk that

9

remains, e.g., the vulnerability due to a covert channel through which clas-
si�ed information may leak but, for reasons of performance, is left in place.
An approach to de�ne information security-speci�c assurance strategies de-
scribed in [36] maps security assumptions in one security discipline (e.g.,
computer security, personnel security or physical security) to security as-
sertions in other disciplines; a gap in this mapping indicates a vulnerability.

Many notations and tools support certain aspects of the de�nition of
assurance strategies, such as tracing requirements [2, 13, 31] and recording
design rationale [22, 39]. CASE tools usually focus on a speci�c method
involving design decomposition or code analysis that is too narrow to doc-
ument a complete assurance strategy. They may support requirements
traceability, but not usually for non-functional requirements such as secu-
rity or performance. A graphical notation
exible enough to support many
classes of process- and product-oriented requirements and to record detailed
design rationale is essential to promote understanding of complex logical
arguments of non-trivial critical systems. Such notations often structure
arguments similar to that described in [44]. We focus on one in particular
called the Goal Structuring Notation (GSN) [50] that is having signi�cant
application.

GSN is a graphical notation originally designed to manage the com-
plexity of developing arguments about the safety of systems. GSN can be
used to represent the assurance strategy and its evolution into a full-scale
assurance argument for critical systems in general. Distinct graphical ele-
ments representing goals (requirements), assumptions (basis for su�ciency
of goals), strategies (means of achieving goals), justi�cations (basis for suf-
�ciency of strategies) and choices (alternative design options) combine to
form assurance strategies. The notation is
exible enough to represent as-
surance gained through the development process, e.g., the use of particular
veri�cation techniques, and design decomposition, e.g., the separation of
critical and non-critical aspects of the system. The notation leaves the
level of abstraction of the assurance strategy up to the user. Other graph-
ical elements representing solutions (that which satis�es a goal), models
(representations of the system) and contexts (other contextual information)
provide links to the assurance evidence, thus, re�ning the assurance argu-
ment. A tool called the Safety Argument Manager (SAM) [23] is available
for building GSN graphs.

1.3 Application

The detailed re�nement of the ECA's assurance argument makes it a good
example for demonstrating the techniques described in this chapter. This
section summarizes the ECA assurance strategy and argument in the con-
text of the overall system re�nement and documentation. A family of de-
vices, called the Selective Encryption Domain, provides a framework for

10

SEDS1 SED Si+1

SEDS2 SED Si+2

SEDSi SED Sn

Trans.
Media

�

�

�

�

�

�

Red
Domain

Red
DomainBlack

Domain

Figure 1.3: The SED's Environment

identifying the critical requirements for the ECA, which is a member of
that family. Details of particular portions of the ECA assurance strategy
and argument illustrate the application of the techniques. Although we
keep these illustrations relatively simple, understanding certain details of
the problem domain will make the examples more comprehensible. A de-
tailed description of the notations used can be found in [50] for GSN, [15]
for Statemate, [16] for CSP, and [5] for Verdi.

1.3.1 Characterizing the Problem

The Selective Encryption Domain contains applications responsible for pro-
viding cryptographic protection of information, based on rules that deter-
mine the sensitivity of that information. We refer to a particular member
of the domain as a Selective Encryption Device (SED). SEDs reside in a
network that supports secure communication between subscribers of the
network service. As shown in Figure 1.3, every subscriber (Si) is con-
nected to a unique SED, and all communication between subscribers must
pass through the subscribers' SEDs. Subscribers range from simple PCs to
multi-level secure systems and are accredited to process information up to
a particular classi�cation level. The SED encrypts the sensitive portions of
messages that traverse the transmission media between subscribers. The
rules for determining whether data is sensitive { and thus in need of en-
cryption { may, due to the complexity of the task, only coarsely determine
the actual sensitivity of the information, e.g., a dirty word check. The
policy for distributing cryptographic key enforces a network-wide commu-
nications plan de�ning which pairs of subscribers may communicate over
the transmission media.

11

Achieving information security as described above is most closely related
to Sutherland's de�nition of multi-level security based on non-deducibility
[42]: although low level users may be able to view encrypted data, they will
not be able to deduce its higher level meaning. We, therefore, de�ne an
interpretation of non-deducibility for members of the Selective Encryption
Domain:

SED NonDeducibility: It is not possible to deduce sensitive
information by analyzing communications over the transmission
media.

Unfortunately, in many environments, this \perfect" security would place
unnecessary processing burdens on the network as a whole, e.g., it would
require all messages be padded to a constant length, completely encrypted,
and transmitted at a constant rate. Since most operational environments
are willing to accept some minimal security risk to improve the function
and connectivity of their information systems, we consider SED NonDe-
ducibility to be an ideal, rather than a strict, requirement.

A paper on SED requirements modeling [38] describes a parameterized
framework for de�ning \less-than-perfect" security models for members of
the Selective Encryption Domain. The parameters characterize the range
of members of the domain, each of which enforces SED NonDeducibility
to a degree appropriate for that application. The framework also permits
delaying the de�nition of security-critical parameters until details of the
operating environment are known and a realistic risk assessment can be
made.

The ECA is a member of the Selective Encryption Domain since its
security requirements model is an instantiation of the SED parameterized
modeling framework. The environment in which the ECA operates, shown
in Figure 1.4, justi�es relaxing the constraints imposed by SED NonDe-
ducibility. Although the ECA's environment has the same structure as an
SED's environment generally, the transmission media are more complex
than Figure 1.3 suggests. A partially protected LAN and link encryptor
separates the ECA from the completely unprotected part of the media. The
LAN is physically protected only to a level that permits certain control data
to bypass encryption; all subscriber data must still be fully encrypted. Mes-
sages being sent to remote subscribers must pass through a link encryptor
which encrypts the entire message, resulting in doubly encrypted subscriber
data. This approach has the bene�t that communication over the LAN is
not slowed by requiring the router to decrypt and re-encrypt the routing
data; the router has all the information it needs in the clear to send the
message to its �nal destination, be it local or remote.

12

ECAS1 ECA Si+1

ECAS2 ECA Si+2

ECASi ECA Sn

Trans. Media

�

�

�

�

�

�

ECARouter ECA Router

Link
Encryptor

Protected
LAN

Protected
LAN

Unprotected
WAN

Red
Domain Black

Domain

Red
Domain

Link
Encryptor

Link
Encryptor

Link
Encryptor

Link
Encryptor

Link
Encryptor

Figure 1.4: The ECA's Environment

1.3.2 De�ning the Assurance Strategy

A segment of the assurance strategy that documents the derivation of the
ECA's critical requirements is shown in Figure 1.5 as a GSN graph pro-
duced using SAM. The top-level goal (Goal 0) requires that the ECA satisfy
SED NonDeducibility so that the derivation and justi�cation of the relaxed
requirements can be made explicit. As shown, Goal 0 can be re�ned into
three subgoals requiring padding of messages to constant length, encryption
of all data, and transmission at a constant rate. The protections provided
on the LAN obviate the need for the closing of covert channels provided
by Goal 1 and Goal 3, although the link encryptor may be required to
perform these functions over the unprotected WAN. Our strategy relaxes
the encryption requirement to apply only to subscriber data (Strategy 0);
we bypass header data containing routing data to improve throughput on
the protected LAN. Three sub-goals, Goal 4 through Goal 6, describe the
requirements for bypassing header data and encrypting non-header data.
As is generally the case with GSN graphs, goals are vague at the top of the
hierarchy and become increasingly detailed as they are elaborated at lower
levels.

Figure 1.6 elaborates the requirements that discharge the constraint
that certi�ers be convinced that the ECA implementation conforms to its
requirements (Constraint 1), shown in Figure 1.5. The general strategy
conforms to the example re�ned in Section 1.2. We re�ne the ECA re-
quirements and design using Statemate while formally tracing the critical

13

Goal 0

ECA satisfies SED
NonDeducibility

AddContext

Constraint 0

Good performance,
development time /cost

Goal 1

Pad messages transmitted
to same length

Goal 2

Encrypt all data contained
in a message

ConstrainedBy

Goal 3

Transmit messages at
constant rate

Justification 0

Protected LAN reduces risk
locally; allows bypassing
header to improve throughput

J

Goal 4

Encrypt non-header
portions of messages

Goal 5

Constrain format of
header data bypassed

Goal 6

Limit rate of data
bypassed

Constraint 1

Convince certifiers
that implementation
conforms to reqs

Context 0

 ECA environ.

Strategy 0

Bypass only header data
with constraints to limit
potential for compromise

JustifiedBy ConstrainedBy

Figure 1.5: Assurance Strategy Excerpt: Requirements Decomposition

Constraint 1

Convince certifiers
that implementation
conforms to reqs

Goal 7

External reqs in Stm,
critical reqs in CSP

traces

Goal 8

Top-level design in
Stm; decompose

critical reqs in CSP

Goal 9

Detailed design in
Stm; critical software

reqs in CSP traces

Solution 0

Stm reqs spec, CSP
trace spec, simulation
results

Solution 1

Stm design spec,
derived CSP reqs,
EVES decomp proofs

Solution 2

Stm detailed design,
simulation, CSP spec
w/ EVES proofs

Solution 3

 Module interface spec
w/ Verdi critical reqs

Solution 4

Module design spec
w/ EVES proofs,
simulation results

Goal1 10

Modularize software;
derive critical reqs of

interface in Verdi

Goal 11

Implement modules in
Verdi; prove critical

reqs using EVES

Goal 12

Translate module
design to Ada; test

conformance w/ reqs

Solution 5

Module implement-
ation spec w/ test
results

Strategy 1

Refine system through
successive levels, formally
tracing critical reqs

Discharges

Strategy 2

Refine system reqs/
design in Stm; trace
critical reqs in CSP

Strategy 3

Apply SCR software
module decomp; prove
critical reqs EVES

Figure 1.6: Assurance Strategy Excerpt: Process Decomposition

14

ECA

@ECA_REQS

RED_INT BLK_INT

OPERATOR

RED_OUT

RED_IN

BLK_RESET

BLK_OUT

POWER

RED_RESET

BLK_IN

Figure 1.7: The Core ECA External Interface

requirements through this design using CSP (Strategy 2). We identify and
re�ne the software modules using the SCRmethodology, map the CSP trace
requirements onto this module structure in Verdi, and formally re�ne the
module design and implementation using EVES (Strategy 3). The struc-
ture of the GSN graph in Figure 1.6, in particular Goal 7 through Goal 12,
illustrates use of the assurance strategy as a \road-map" to the assurance
argument and re
ects the structure of the rest of this section.

1.3.3 Elaborating the Requirements

We partition the ECA requirements to isolate behavior that is most likely
to change: the details of the protocol for exchanging data with the net-
work. The activity chart in Figure 1.7 and its controlling state chart in
Figure 1.8 construct a framework for stating the core functional require-
ments for the ECA, independent of its network interface.1 This interface is
abstracted away in Figure 1.7 by the external activities RedInt and BlkInt.
Figure 1.8 distinguishes between processing in the Red-to-Black direction
or the Black-to-Red direction with priorities set through an unspeci�ed al-
gorithm. Timeouts may occur during processing causing a hard fail. If the
ECA is ever reset or powered down, SysRdy becomes false.

We state requirements in a tabular format inspired by [46]. For example,
an entry in a table specifying requirements for values of the BlkOut queue
is shown in Table 1.2 where SET is the Selective Encryption Transform
applied to messages. This is read \If the ECA is in the state Processing-

1Activity charts distinguish two types of
ows between activities:
ows of data (rep-
resented by solid arrows) and
ows of control (represented by dashed arrows). Dashed
boxes represent activities external to the activity being re�ned. Arrows between
ows in
a state chart must be labeled with a trigger that has the general form E[C]/A, where E
is an (instantaneous) event, C is a (boolean) condition, and A is an action; any speci�c
trigger must have either an event or a condition and may not require any action.

15

ECA_REQS

FAILING_HARD

PROCESSING
_BLK_TO_RED

SENDING
BLK_STATUS

PROCESSING
_RED_TO_BLK

SENDING
RED_STATUS

WAITING_
BLK_PRIORITY

WAITING_
RED_PRIORITY

MSG_SENT
[SYS_RDY]

MSG_SENT
[SYS_RDY]

[q_length(BLK_IN)>0
 and SYS_RDY]

BLK_STS_SENT
[BLK_PRIORITY
 and SYS_RDY]

BLK_STS_TIMEOUT
[SYS_RDY]

BTR_TIMEOUT
[SYS_RDY]

[q_length(RED_IN)>0
 and q_length(BLK_IN)=0
 and SYS_RDY]

RED_STS_SENT
[BLK_PRIORITY
 and SYS_RDY]

RTB_TIMEOUT
[SYS_RDY]

RED_STS_TIMEOUT
[SYS_RDY]

BLK_STS_SENT
[RED_PRIORITY
 and SYS_RDY]

[q_length(BLK_IN)>0
 and q_length(RED_IN)=0
 and SYS_RDY]

RED_STS_SENT
[RED_PRIORITY
 and SYS_RDY]

[q_length(RED_IN)>0
 and SYS_RDY]

tr(SYS_RDY)

q_length(Q) - returns the length of queue Q
tr(C) - condition C becomes true

Notation:

Figure 1.8: The Core ECA Requirements Framework

RedToBlk, RedIn is not empty, BlkOut is not full, and the �rst element in
RedIn passes the format check, then the SET-transformed message must
be sent over BlkOut." Table 1.3 requires that status messages be sent over
RedOut whether the message format checks or not.

To facilitate formal analysis of lower levels of re�nement, we cast the
critical requirements as CSP trace speci�cations [37]. Using Figure 1.7
as the basis, the bypass format requirement, ProperFormat, requires that
the bypass portion of every message sent over BlkOut (that occurs in the
system trace tr) satisfy FmtOK:

ECA sat ProperFormat

ProperFormat
� 8m 2Message :

BlkOut:m in tr) FmtOK(Byp(m))

FmtOK requires that the value of each �eld of the bypass data must be
within a predetermined range; the length of each �eld must match a pre-
determined length for that �eld; and the overall length of the bypass data,

16

State Triggering Event BlkOut =

Processing-
RedToBlk

:Empty(RedIn)
^:Full(BlkOut)
^ FmtOK(Byp(Next(RedIn)))

EnQ(SET(Next(RedIn)),
BlkOut)

Table 1.2: Example BlkOut Requirement Assuming SysRdy

State Triggering Event RedOut =

Sending-
RedStatus

:Empty(RedIn)
^:Full(RedOut)
^ FmtOK(Byp(Next(RedIn)))

EnQ(StsMsg(Next(RedIn)),
TranSucc),

RedOut)

Processing-
RedToBlk

:Empty(RedIn)
^:Full(RedOut)
^:FmtOK(Byp(Next(RedIn)))

EnQ(StsMsg(Next(RedIn)),
FmtFail),

RedOut)

Table 1.3: Example RedOut Requirements Assuming SysRdy

as speci�ed by a �eld within the bypass data, must equal the sum of the
lengths of the �elds of the bypass data. The complex formal de�nition is
omitted here since it does not signi�cantly help demonstrate the techniques.

1.3.4 Decomposing the Design

The activity chart in Figure 1.9 depicts the top-level design of the ECA.
An existing NSA-endorsed cryptographic device is embedded between two
physically distinct components: RedSide and BlkSide. This physical sep-
aration centralizes the function responsible for controlling the bypass and
crypto to RedSide and provides a single channel through which all by-
passed data must
ow (RBBypass). Crypto is fed plaintext through the
PTxt channels and ciphertext through the CTxt channels. The purpose
of the remaining control channels will be elaborated in later re�nement.
Notice that the Power control
ow of Figure 1.7has been decomposed into
one control
ow for each component.

The following describes a typical scenario in which a message is trans-
mitted from a local subscriber to some remote subscriber. Let's assume
that the message passes all checks, e.g., format and bypass rate. The lo-
cal subscriber's ECA receives the message from the Red Domain. RedSide
splits it into the bypass data and crypto data portions, sends the crypto
data to Crypto and the bypass data to BlkSide. Crypto encrypts the crypto
data using the appropriate key and sends the result to BlkSide. BlkSide
then recombines the message and transmits the result over the message

17

ECA

@RED_SIDE

@CRYPTO

@BLK_SIDE

RED
_INT

BLK
_INT

OPERATOR

CTXT_IN

CTXT_OUT

BR_INTERRUPT

BLK_ALARMRED_ALARM

BR_RESET

RB_RESET

RB_BYPASS

BR_BYPASS

RB_INTERRUPT

PTXT_OUT

PTXT_IN

RED_POWER BLK_POWER

RED_OUT

RED_IN

BLK_IN

BLK_OUT

BLK_RESETRED_RESET

CRP_POWER

Figure 1.9: ECA Top-Level Internal Structure

interface to the Black Domain. The intended recipient's ECA must re-
verse this procedure using the corresponding decryption key to restore the
original message. The link encryption/decryption that occurs, as shown in
Figure 1.4, is transparent to the subscribers.

The CSP process speci�cation for the ECA top-level decomposition
shares the structure of the Statemate speci�cation in Figure 1.9. The al-
phabet of the process contains all possible communications over channels
shown. Communication over control channels are modeled as single-bit
transmissions. Applying the approach in [25] derives critical requirements
for RedSide and BlkSide as follows (Crypto has no responsibilities in this
case):

ProperFormatRedSide
� 8b 2 BypData :

RBBypass:b in tr) FmtOK(b)

ProperFormatBlkSide
� 8outm 2Message :

BlkOut:outm in tr

) 9inm 2Message :
(RBBypass:Byp(inm) in tr

^ outm = BlkSET(inm)
^ (FmtOK(Byp(inm))) FmtOK(Byp(outm))))

18

where BlkSET is the BlkSide transformation performed on messages sent
to the Black Domain. Conditions su�cient to verify this decomposition of
ProperFormat requires showing that

� the truth of ProperFormat depends only on the ECA's external com-
munications;

� the truth of ProperFormat
RedSide

and ProperFormat
BlkSide

depends
only on their respective alphabets; and

� the conjunction of ProperFormat
RedSide

and ProperFormat
BlkSide

im-
plies ProperFormat.

The �rst two conditions involve showing that the components do not in-
terfere with each other in regards to satisfying the requirements; they are
trivial to prove in this case. The last condition is proven easily as well
by recognizing that BlkSide's requirement simply ensures the format check
performed by the RedSide is maintained through any BlkSide transforma-
tion of the message.

Decomposing requirements in this manner does not always proceed so
smoothly. System-level requirements may exist that cannot be partitioned
completely into requirements on an individual component. Such require-
ments involve the synchronized behavior of two or more components. Since
these synchronization requirements are typically more di�cult to verify,
the decomposition method promotes reducing their number and complex-
ity as far as possible. The set of these requirements is minimal if, when
each requirement is described in conjunctive normal form, each conjunct
of each requirement depends on the behavior of two or more components.
The cost-e�ective veri�cation of synchronization requirements may involve
less rigorous methods such as human review and testing.

1.3.5 Deriving Software Requirements

Henceforth, we refer to as software only those parts of the ECA imple-
mented in Ada; the rest of the implementation we call the �rmware. We
derive the critical requirements of the software from a behavioral Statemate
speci�cation that describes the interactions between the software and the
�rmware. If the �rmware is consistent with the behavioral speci�cation
and the assumptions of the modeling and decomposition process, the crit-
ical software requirements derived will be su�cient to guarantee that the
ECA system satis�es its critical requirements.

The decomposition of RedSide illustrates this approach. Figure 1.10
shows the two primary software functions for RedSide: the initialization
procedure called RedInit and the message tra�c processing procedure called
RedMain. The controlling state chart RedCtl describes the �rmware con-
text in which these procedures operate. This context describes the e�ect

19

that power cycles, resets, interrupts and crypto alarms have on processing.
Of course, this context is in addition to the �rmware supporting execution
of the software. This �rmware is transparent to the logical level at which
we are currently working.

Figure 1.11 re�nes RedCtl. After power invocation and successful ini-
tialization, RedMain starts processing tra�c. Five events can suspend pro-
cessing: a power cycle, a reset from RedInt, a reset from BlkSide, an alarm
from Crypto, or an interrupt from BlkSide. Resets simply cause the ECA
to re-initialize. An alarm causes execution to be suspended until the alarm
goes o� and the ECA is re-initialized. An interrupt causes the ECA to halt
until it is power cycled or reset.

The speci�cation of RedSide is modeled in CSP as four processes:2

RedSide

� RedPower? ! �X.(RedOnline(AllOK) 4 RedResetMntr);X

RedOnline(status)
� if status=AllOK

then RedInit(status);
(if status=AllOK
then ((RedMain;(RBInterrupt! ! RedOut!HaltMsg

! status:=HardFail)
4 RedInterruptMntr)

else RedOut!HaltMsg ! status:=HardFail

end if);RedOnline(status)
else Stop
end if

RedResetMntr

� RedReset? ! RBReset! ! Skip

j BRReset? ! Skip

j RedPower? ! RedPower? ! Skip

RedInterruptMntr

� RedAlarm? ! RBInterrupt! ! RedOut!AlarmMsg

! RedAlarm? ! status:=AllOK
j BRInterrupt? ! RedOut!HaltMsg

! status:=HardFail

These processes describe the RedSide as a process that must �rst be
turned on. Once on, it iteratively behaves like RedOnline interruptable
by RedResetMntr. Just as in Figure 1.11, RedOnline processes message
tra�c. RedResetMntr can interrupt this process if the ECA is reset {

2We use the abbreviation \ch?" and \ch!" to represent an input and output, respec-
tively, of any value over channel ch.

20

CRYPTO

BLK_SIDE

RED_SIDE

@RED_MAIN

@RED_CTL

@RED_INIT @CLOCK

RED_INT

CRYPTO

BLK_SIDE

OPERATOR

TIME

CLK_INIT

STATUS

RED_OUT

RB_BYPASS

BR_BYPASS

PTXT_OUT

PTXT_IN

RB_INTERRUPT

RED_ALARM

RED_POWER

RB_RESET

RED_IN

BR_RESET

BR_INTERRUPT

RED_RESET

Figure 1.10: Data Flow of RedSide

RED_CTL

RED_ONLINE

RED_INTERRUPTED

CRYPTO
_ALARM

CHECK_STATE

ECA
_HALT

RED_MAIN
_PROCESSING

RED_INIT
_PROCESSING

RED_DOWN

[not RED_ALARM]
/put!(RED_OUT,
 HALT_MSG)

[RED_ALARM]
/put!(RED_OUT,
 ALRM_MSG)

[STATUS/=’AllOK’]

[STATUS=’AllOK’]

fs(RED_ALARM)

[RED_MAIN_DONE
 or RED_ALARM
 or BR_INTERRUPT]
/tr!(RB_INTERRUPT)

[RED_INIT_DONE]

BR_RESET
RED_RESET
/RB_RESET[RED_POWER]

[not RED_POWER]

put!(Q,M) - put message M onto queue Q
fs(C) - condition C becomes false
tr!(C) - set condition C to true

Notation:

C

Figure 1.11: Behavior of RedSide

21

either external to the ECA or from the Black Side { or powered down. If an
external reset occurs RedResetMntr signals the Black Side and terminates.
Turning the power o� simply causes it to wait for it to be toggled on before
proceeding.

Upon successful initialization, RedOnline behaves like RedMain inter-
ruptable by RedInterruptMntr. Just as the exit transition from the state
RedMainProcessing in Figure 1.11, interrupts include an alarm signal from
the crypto { in which case the Black Side and the external Red Domain
are alerted { or an interrupt signal from the Black Side { in which case the
Red Domain is alerted. If RedMain stops for any reason, an interrupt is
sent to the Black Side, the Red Domain is noti�ed, and the process hangs
until RedResetMntr responds to a reset or power cycle. The Red Side can
be re-initialized if a crypto alarm caused the interrupt; otherwise, it hangs
until a reset or power cycle.

Showing that RedSide satis�es its critical requirements requires showing
that the �rmware context in which the software runs does not violate these
requirements. To do this we need some idea of what the software compo-
nents are supposed to do. We state their required behavior as axioms below
since they are assumptions of the argument that the �rmware context does
not violate the critical requirements.

Axiom 1: RedMain sat ProperFormatRedSide

Axiom 2: RedInit(status) sat ProperInitRedSide
where ProperInitRedSide � (tr � RBBypass) = hi

Axiom 1 is straightforward; RedMain must satisfy the same requirements
as RedSide. Axiom 2 simply states that RedInit cannot send any data over
the RBBypass channel.

While there are many details of the formalization that RedSide satis�es
ProperFormatRedSide given Axioms 1 and 2, the argument is fairly straight-
forward and easy to prove using EVES. Intuitively, ProperFormatRedSide
depends only on the presence (or absence) of certain events in the trace,
namely outputs over RBBypass. The only arguments needed are that the
following processes satisfy ProperFormat

RedSide
:

� RedInit,

� the sequential composition of RedInit and RedMain, and

� the iteration of the composition of RedInit and RedMain.

These requirements are derived by analyzing the de�nition of RedSide and
noticing that RedResetMntr and RedInterruptMntr involve no communi-
cations over RBBypass. Axiom 2 implies that no bypass of data occurs
in the Red-to-Black direction during initialization. Thus, RedInit satis�es
ProperFormatRedSide, as does the sequential composition of RedInit with

22

1 Hardware Hiding Module (HwHd)
1.1 Machine Interface Module (MchInt)
1.2 Red Side Interface Module (RSInt)
1.3 Red/Black Interface Module (RBInt)
1.4 Red/Crypto Interface Module (RCInt)
...

2 Control Flow Module (CntlFlw)
2.1 Red Master Control Module (RedMstrCntl)
2.2 Red Black Crypto Decomposition Module (RBCDecomp)
2.3 Flow Direction Module (FlwDir)
2.4 Error Handler Module (ErrHndlr)
...

3 Object Processing Module (ObjProc)
3.1 Global Utilities Module (GlobUt)
3.2 Message Processing Module (MsgProc)

3.2.1 Message Partition Utilities Module (MsgPrtUt)
3.2.2 Message Format Requirements Module (MsgFmtReq)

3.2.2.1 Format Requirement Storage Module (FmtReqStr)
3.2.2.2 Format Checker Module (FmtChkr)

3.2.3 Bypass Crypto Partition Module (BypCrpPrt)
3.3 Bypass Rate Checker Module (BypRtChkr)
...

Table 1.4: Software Modularization Excerpt

RedMain by Axiom 1. The argument that the iteration of the composition
of RedInit and RedMain also satis�es the critical requirement proceeds by
induction on the trace of the composition.

1.3.6 Modularizing the Software

Table 1.4 shows selected portions of the ECA software module structure. At
the top of the hierarchy are three modules. The Hardware Hiding Module
(HwHd) contains modules that hide the details of the primary ECA inter-
faces. The Control Flow Module (CntlFlw) contains modules that hide
the sequencing of major activities and the algorithm for establishing the
direction of tra�c
ow. The Object Processing Module (ObjProc) con-
tains modules that hide the algorithms used to process the primary data
objects { e.g., messages (and parts thereof), format check and bypass rate
parameters { and the internal representation of those objects.

23

HwHd contains programs that implement the interface between the ECA
and the network in which it is embedded, and the interfaces among the
three primary components of the ECA { RedSide, BlkSide and Crypto.
This module provides the basis for stating the ECA's critical requirements
by setting up the framework by which the trace of the system is generated.
For example, RBInt presents an abstract view of the internal data channels
used for the bypass of data. The Verdi access program RBBypassPut on this
interface transmits bypass data over the RBBypass channel if it returns a
successful status code:

type RqstSts = (AllOK,SoftFail,HardFail);

procedure RBBypassPut(mvar mstate : MchInt!MState,

lvar byp_data : MsgPrtUt!BypData,

pvar rqst_sts : GlobUt!RqstSts) =

initial mstate'0=mstate

pre true

post if rqst_sts = AllOK then

MchInt!Hist(mstate) = MchInt!Hist(mstate'0)

^ RBBypass.byp_data

else MchInt!Hist(mstate) = MchInt!Hist(mstate'0)

end if

The post-condition re
ects success by appending the corresponding com-
munication event to the end of the system trace. Notice that objects called
from other modules are prepended with the module name.

The speci�ed behavior of the access programs in HwHd permit specifying
the CSP software requirements in CntlFlw. This module contains programs
that sequence the major activities performed in the ECA, such as message
tra�c
ow in the Red-to-Black or Black-to-Red direction. RedMstrCntl

contains the primary RedSide software programs, RedInit and RedMain,
speci�ed as follows:

procedure RedMain(mvar mstate : MchInt!MState) =

pre RSProperFormat(MchInt!Hist(mstate))

post RSProperFormat(MchInt!Hist(mstate));

procedure RedInit(mvar mstate : MchInt!MState) =

pre true

post (MchInt!Hist(mstate) |^ RBBypass) = <>

These program speci�cations are the Verdi counterparts to the CSP speci-
�cations given in Axioms 1 and 2 previously. The derived requirements for
RedMain reside in the RBCDecomp module:

24

function RSProperFormat(tr) =

begin

all byp_data:

RBBypass.byp_data in tr

-> FmtChkr!FmtOK(byp_data)

end;

1.3.7 Designing the Modules

The design of RedMstrCntl and its counterpart BlkMstrCntl drive the
elaboration of the requirements of the access programs of other module
interfaces [4], particularly those in ObjProc. For example, an overview of a
segment of RedMain for processing messages in the Red-to-Black direction
follows:

procedure RedMain(mvar mstate : MchInt!MState) =

pre RSProperFormat(mstate)

post RSProperFormat(mstate)

begin

loop

invariant RSProperFormat(mstate)

FlwDir!RedFlowCntl(mstate,flw_dir)

if flw_dir = RedToBlk then

RSInt!RedInGet(mstate,msg_data,rqst_sts)

BypCrpPrt!BypCrpSplit(msg_data,byp_data,crp_data)

FmtChkr!FmtChk(byp_data,fmt_chk_sts)

if fmt_chk_sts=ValidMsg then

BypRtChkr!BypRtChk(mstate,byp_data,rate_sts)

if rate_sts=AllOK then

RCInt!PTxtInPut(mstate,crp_data,rqst_sts)

RBInt!RBBypassPut(mstate,byp_data,rqst_sts)

else ErrHndlr!RedHndlErr(mstate,RateFail)

end if

else ErrHndlr!RedHndlErr(mstate,FmtFail)

end if

else ...

end loop

end RedMain

By abstracting away much of the internal structure, error handling, and
handshaking protocol, we can trivially see that, in the Red-to-Black direc-
tion, bypass data is only sent over RBBypass if the format check returns
valid message. RSProperFormat requires that FmtChk satisfy the following
speci�cation:

25

procedure FmtChk(lvar byp_data : MsgPrtUt!BypData,

pvar fmt_chk_sts : FmtChkSts) =

pre true

post fmt_chk_sts = ValidMsg

-> FmtOK(byp_data)

Of course, the di�cult part is specifying the details of FmtOK and showing
that the implementation of FmtChk satis�es this speci�cation. Once done,
however, FmtOK can be used to determine the actual security provided by
quantifying the leakage of sensitive information possible.

1.3.8 Implementing the Modules

We translate the (executable) Verdi module design into a relatively small
subset of Ada (a Verdi analog) using strict coding standards. This approach
avoids many of the problematic portions of Ada; tasking, for example is not
needed since the concurrently executing components are implemented on
distinct processors. Access programs below the CSP trace model of abstrac-
tion, which are not implemented in Verdi, are implemented independently
in Ada. Compiler optimizations performed by VADS are disabled since
their correctness is di�cult to assess in general. The software undergoes
several levels of testing for conformance to the module speci�cation. Unit
and integration testing takes place on a Unix workstation that emulates the
ultimate hardware con�guration. Finally, integration testing takes place on
the hardware platform constructed by E-Systems.

At the time that we applied our framework to the ECA, there was no
strong basis for deciding how to combine software assurance techniques in
an e�ective and a�ordable manner. A recently developed technique called
testabilitity [48] provides a foundation for deciding how to combine the use
of testing and formal veri�cation to achieve the desired assurance at lowest
cost. A fault in a program may or may not lead to a failure of the program
when executed with a given set of inputs. Testability measures the prob-
ability that a failure will occur if the program contains a fault. Knowing
the testability of a program permits signi�cantly reducing the amount of
random testing (based on an assumed input distribution) required to meet
a speci�ed reliability goal. Testing is an e�ective assurance technique for
highly testable programs since, by de�nition, testing is likely to �nd any
existing faults. However, formal veri�cation (or other less rigorous methods
such as human review) is needed for lowly testable programs since testing is
unlikely to reveal certain problems. Testability thus permits developers to
use testing and formal veri�cation in proportion to the bene�ts that accrue
from their application.

26

1.4 Automation

Creating and maintaining an assurance argument requires an organized
means to update and access diverse speci�cations and analyses. Develop-
ers need to be able to construct and evolve assurance evidence as the system
re�nement progresses with concurrency control for simultaneous updates;
certi�ers need to be able to access and review the evidence and make sug-
gestions on the coherence of the assurance argument. Although a partic-
ular tool may provide some of this function for the products of that tool,
an application-independent database is needed to store and coordinate the
diverse assurance artifacts generated during development of a system assur-
ance argument. This assurance database provides a common and consistent
interface to store, update and review speci�cations, proofs, and simulation,
model-checking and test results, for example. The artifacts captured in the
database re
ect the current development status of the assurance argument,
providing a window into the process for both developers and certi�ers.

Certi�able assurance arguments require the management of the devel-
opment process as well as the assurance evidence. A well-de�ned process
permits a focused view of system re�nement in which certi�ers and devel-
opers can track the evolution of the system and assess when, where and
why progress is hampered. Many tools can help de�ne, (partially) auto-
mate, and, when appropriate, enforce the development process [21, 43].
Primarily, developers bene�t from process automation, through the inte-
gration/federation of development tools, and certi�ers bene�t from pro-
cess enforcement, by ensuring that the process is applied completely and
consistently. However, certi�ers also gain from process automation when
application of their assessment and analysis tools can be automated, and
developers also gain from prudent process enforcement when their progress
can be guided in proper directions.

We are building support for developing and evaluating an assurance ar-
gument using Columbia University's OzWeb tool [17]. In general, OzWeb
is a tool for constructing development environments that automate and
enforce a particular development process within a WWW-based context.
OzWeb requires de�ning three models to characterize this environment: a
data model, which de�nes the structure and relationship between the de-
velopment artifacts, a process model, which de�nes a set of user-invokable
operations that manipulate the development artifacts, and a coordina-
tion model, which controls access to the development artifacts. Opera-
tions of the process model are de�ned in terms of a set of rules; forward-
and backward-chaining enable customizing process automation and enforce-
ment. Ozweb organizes the development artifacts associated with a project
as a sub-web of the WWW. The data can be accessed using standard Web
browsers with all the advantages of distributed access and sub-web search
that the browser provides. Documenting the assurance argument in hyper-
text improves its navigability and ultimate certi�ability.

27

Operations

Assurance
Objectbase

Development
& Certification

Tools

Invoke Status Update

SESAME
Specifications
Proofs
Simulations
Tests
Documents
Code

...
...

Statemate
EVES

FunnelWeb
Netscape

SAM
LaTeX

Edit, Prove, Simulate, Format,
Browse, Search, Compile, Archive,
Execute, Debug, Generate Tests, . . .

.
Developer Certifier End User Other Stakeholders

Status

Figure 1.12: SESAME Environment using OzWeb

We are using OzWeb to construct the Support Environment for Secu-
rity Assurance Management and Evaluation (SESAME). As shown in Fig-
ure 1.12, SESAME maintains an object-oriented database containing the
assurance artifacts (e.g., speci�cations, proofs, test suites and coverage re-
sults) and the status of the validation and veri�cation e�ort (as attributes
of the assurance artifacts). A user's role determines that user's view of
SESAME. Developers can construct and modify assurance artifacts. Certi-
�ers can assess their status through detailed examination, as appropriate.
Users can execute system speci�cations to determine their appropriate-
ness. These operations invoke various development and certi�cation tools,
which return some execution status. SESAME then updates the assurance
database and modi�es object attributes appropriately. Although we are in
the early phases of this work, initial application of SESAME technology to
the JMCIS extension described in the introduction appears promising.

1.5 Conclusions

This chapter describes a general framework that integrates existing formal
methods with less rigorous methods to develop an understandable, coherent
and relevant assurance argument as a basis for the independent certi�ca-
tion of critical systems. The framework enables a developer to produce
persuasive assurance arguments that use formal methods by

28

� integrating formal speci�cation and veri�cation techniques into a sound
software engineering and documentation methodology,

� maintaining the consistency of the assurance documentation with for-
mal speci�cations and code that are input to speci�cation, veri�cation
and compilation tools,

� providing an overview of the assurance argument and the process by
which it is constructed that serves as an index into the more detailed
assurance evidence, and

� automating and, when appropriate, enforcing the process of assurance
argument re�nement.

The generality of this approach to assurance argument re�nement promotes
its customization to more complex industrial processes. We demonstrated
how to apply the framework using speci�c, publicly available tools by for-
mally tracing a critical requirement through the re�nement of an assurance
argument for an operational network security device. The examples pro-
vided show how to put the techniques into practice and can help readers
decide how to apply the approach in other contexts. Future evolution of
the SESAME environment will facilitate the development and certi�cation
of assurance arguments using the framework.

Acknowledgments

We wish to thank Charles Payne, Jr. for insights on applying literate pro-
gramming to formal speci�cations; Carl Landwehr for valuable comments
on earlier drafts; and the other ECA development team members { Eather
Chapman, Ken Hayman, David Kim, Charles Payne, Jr. and Maria Voreh
{ for their contribution to the ECA development.

References

1. B.W. Boehm. Software Engineering Economics. Prentice Hall, Englewood
Cli�s, New Jersey, 1981.

2. L. Chung and B.A. Nixon. Dealing with non-functional requirements: Three
experimental studies of a process-oriented approach. In Proc. of International
Conference on Software Engineering, pages 25{37, Seattle, Washington, 1995.
ACM.

3. R. Cleaveland, J. Parrow, and B. Ste�en. A semantics-based veri�cation tool
for �nite-state systems. In E. Brinksma, G. Scollo, and C.A. Vissers, editors,
Protocol Speci�cation, Testing, and Veri�cation, pages 287{302. Elsevier Sci-
ence (North-Holland), 1990.

29

4. Paul C. Clements. Using information-hiding as a design discipline: Tech-
niques and lessons. In Proc. Structured Development Forum VIII, Seattle,
WA, August 1986.

5. D. Craigen. Reference manual for the language Verdi. Technical Report
TR-91-5429-09a, ORA Canada, Ottawa, Ontario, September 1991.

6. D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial
applications of formal methods. NRL Formal Report 5546{93-9582, Naval
Research Laboratory, Washington, D.C., September 1993.

7. D. Craigen, S. Kromodimoeljo, I. Meisels, Bill Pase, and Mark Saaltink.
EVES: An overview. In Lecture Notes in Computer Science: Proc. of VDM'91
(Formal Software Development Methods), volume 551, Nordwijkerhout, The
Netherlands, October 1991. Springer Verlag.

8. B. Curtis. The case for process. In K.E. Kendall, editor, The Impact of Com-
puter Supported Technologies on Information Systems Development, pages
333{343. Elsevier Science (North-Holland), 1992.

9. N. Drakos. Text to hypertext conversion with LaTeX2HTML. Baskerville,
3(2):12{15, December 1993.

10. Formal Systems (Europe) Ltd. Failures Divergence Re�nement: User Manual
and Tutorial, January 1994.

11. J.N. Froscher, D.M. Goldschlag, M.H. Kang, C.E. Landwehr, A.P.
Moore, I.S. Moskowitz, and C.N. Payne. Improving inter-enclave in-
formation
ow for a secure strike planning application. In Proc. 11th
Annual Computer Security Applications Conference, pages 89{98, New
Orleans, LA, December 1995. IEEE Computer Society Press. See
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

12. M.J.C Gordon and J.F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press,
Cambridge, 1993.

13. O.C.Z. Gotel and A.C.W. Finkelstein. An analysis of the requirements trace-
ability problem. In Proc. International Conference on Requirements Engi-
neering, pages 94{101, Colorado Springs, CO, May 1994.

14. D. Guaspari, C. Marceau, and W. Polak. Formal veri�cation of Ada pro-
grams. Transactions on Software Engineering, 16(9):1058{1075, September
1990.

15. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working environ-
ment for the development of complex reactive systems. IEEE Transactions
on Software Engineering, 16(4):403{414, April 1990.

16. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall Inter-
national Series in Computer Science, Hemel Hempstead, 1985.

17. G.E. Kaiser, S.E. Dossick, W. Jiang, and J.J. Yang. An architecture for
WWW-based hypercode environments. In Proc. of 1997 International Con-
ference on Software Engineering, May 1997.

18. D.E. Knuth. Literate programming. The Computer Journal, 27(2):97{111,
May 1984.

30

19. Leslie Lamport. A Document Preparation System LATEX: User's Guide and
Reference Manual. Addison-Wesley, 1994.

20. C.E. Landwehr. The RS-232 software repeater problem. Cipher Newsletter
of the Technical Committee on Security and Privacy, Summer 1989.

21. J. Lonchamp, K. Benali, C. Godart, and J.C. Derniame. Modeling and en-
acting software processes: an analysis. In Proc. of 14th Annual International
Computer Software and Applications Conference, pages 727{736, Chicago,
IL, October 1990. IEEE Computer Society Press.

22. A. MacLean, R.M. Young, and T.P. Moran. Design rationale: The argument
behind the artifact. In Proc. of CHI'89, pages 247{252, Austin, Texas, May
1989. ACM.

23. J.A. McDermid. Support for safety cases and safety arguments using SAM.
Reliability Engineering and System Safety, 43:111{127, 1994.

24. R. Milner. Communication and Concurrency. Prentice Hall international
Series in Computer Science, Hemel, Hempstead, 1989.

25. A.P. Moore. The speci�cation and
veri�ed decomposition of system requirements using CSP. IEEE Transac-
tions on Software Engineering, 16(9):932{948, September 1990. Preferrably
see http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

26. A.P. Moore. The JMCIS Information Flow Improvement (JIFI)
assurance strategy. NRL Technical Memorandum 5540{272a:apm,
Naval Research Laboratory, Washington, D.C., September 1996. See
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

27. A.P. Moore, E. Chapman, D. Kim, J.E. Klinker, D.M. Mihel-
cic, C.N. Payne, M. Voreh, and K. Hayman. External COMSEC
adaptor software engineering methodology. NRL Memorandum Re-
port 5542{95-7768, Naval Research Laboratory, August 1995. See
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

28. A.P. Moore and C.N. Payne. Increasing assurance with literate programming
techniques. In Proc. 11th Annual Conference on Computer Assurance, pages
187{198, Gaithersburg, MD, June 1996. IEEE Computer Society Press. See
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

29. A.P. Moore and C.N. Payne. The RS-232 character repeater re�ne-
ment and assurance argument. NRL Memorandum Report 5540{96-
7872, Naval Research Laboratory, Washington, D.C., July 1996. See
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

30. Nu Thena Systems, Inc., 2720 Chain Bridge Road, Vienna, VA 22182. Fore-
sight: Modeling, Simulation, and Prototyping, 1993.

31. J. O'Rourke. RDD-100: A system engineering support tool. Technical report,
Ascent Logic Corporation, 180 Rose Orchard Way, San Jose, CA 95134, 1992.

32. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype veri�cation system.
In Lecture Notes in Arti�cial Intelligence: Proc. CADE 11, volume 607, pages
748{752, Saratoga, NY, 1992. Springer Verlag.

33. D.L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053{1058, December 1972.

31

34. D.L. Parnas and P.C. Clements. A rational design process: How and why to
fake it. IEEE Transactions on Software Engineering, 12(2):251{257, February
1986.

35. D.L. Parnas and J. Madey. Functional documentation for computer systems
engineering. CRL Report 237, Communications Research Laboratory, Mc-
Master University, Ontario, Canada, 1992.

36. C.N. Payne, J.N. Froscher, and C.E. Landwehr. Toward a comprehensive IN-
FOSEC certi�cation methodology. In Proc. 16th National Computer Security
Conference, pages 165{172, Baltimore, MD, September 1993.

37. C.N. Payne, D.M. Mihelcic, A.P. Moore, and K.J. Hayman. The ECA critical
requirements model. NRL Formal Report 9528, Naval Research Laboratory,
Washington, D.C., December 1992.

38. C.N. Payne, Jr., A.P. Moore, and D.M. Mihelcic. An experience modeling
critical requirements. In Proc. 11th Annual Conference on Computer Assur-
ance (COMPASS 94), pages 245{255, Gaithersburg, MD, June 1994. IEEE.
See http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS.

39. C. Potts and G. Bruns. Recording the reasons for design decisions. MCC
Technical Report STP-304-87, MCC, 1987.

40. N. Ramsey. Literate programming simpli�ed. IEEE Software, 11(5):97{105,
September 1994.

41. Reliable Software Technologies., 21515 Ridgetop Circle, Suite 250, Sterling,
Virginia 20166. WhiteBox DeepCover: User Reference Manual, 1996.

42. D. Sutherland. A model of information. In Proc. 9th National Computer
Security Conference, pages 175{183, September 1986.

43. S.M. Sutton, Jr., P.L. Tarr, and L.J. Osterweil. An analysis of process lan-
guages. CMPSCI Technical Report 95-78, University of Massachusetts, Au-
gust 1995.

44. S. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge,
UK, 1957.

45. P. van Eijk, C. Vissers, and M. Diaz, editors. The Formal Description Tech-
nique LOTOS. Elsevier Science Publishing Company B.V. (North Holland),
Amsterdam, The Netherlands, 1989.

46. A. John van Schouwen, David Lorge Parnas, and Jan Madey. Documentation
of requirements for computer systems. In Proc. International Symposium on
Requirements Engineering, San Diego, CA, January 1993. IEEE.

47. Verdix Corporation. Verdix Ada Development System (VADS) Version 6.0
Manual Set, 1990.

48. J.M. Voas and K.W. Miller. Software testability: The new veri�cation. IEEE
Software, 12(3):17{28, May 1995.

49. R. Williams. FunnelWeb user's manual. Technical report, University of
Adelaide, Adelaide, South Australia, Australia, May 1992. Available via
anonymous ftp to ftp.adelaide.edu.au in /pub/funnelweb.

50. S.P. Wilson and J.A. McDermid. Safety case development: Current practice,
future prospects. In Proc. of 1st Annual European Network of Clubs for
Reliability and Safety of Software (ENCRESS) Conference, Bruges, Belgium,
September 1995.

32

