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Abstract 
Current DoD information systems need to support many different missions through cooperation with 
different organizations and allies. In today’s fast paced and dynamic environment, it is almost impossible to 
design and implement a different information system for each mission. Therefore, DoD needs MLS 
workflow management systems (WFMS) to enable globally distributed users and existing applications to 
cooperate across classification domains to achieve mission critical goals. An MLS WFMS that allows users 
to program multilevel mission logic, securely coordinate widely distributed tasks, and monitor the progress 
of the workflow across classification domains is required. In this paper, we present requirements for MLS 
workflow and a strategy for implementing it, especially the method for decomposing an MLS workflow 
into multiple single-level workflows 
 

1. Introduction 
 
The streamlining of today’s business processes has brought about significant increases in productivity and 
the ability for US companies to compete in the global market place.  These re-engineering activities have as 
their basis an even greater reliance on information technology and automation. As a result, software 
developers have been challenged to streamline the software development process and to produce software 
that can be reused, that separates concerns, that supports autonomy and heterogeneity in a distributed 
computing environment, that allows extensibility, etc. The information technology (IT) community has 
developed distributed object computing standards, like CORBA and DCOM, that provide a basic level of 
interoperability among distributed applications.  The next step is to build application specific software 
architectures that encode business logic for coordinating widely distributed manual and automated tasks in 
achieving enterprise level objectives. To assist business process modeling, vendors have developed several 
automated tools that help manage dependence among activities and users.  A WFMS makes these tools 
available to users and allows them to monitor the business processes. This technology manages activities 
within a distributed computing environment comprising of loosely coupled, heterogeneous, autonomous, 
new (and legacy) components which may include transactional systems (i.e., DBMS). It provides a 
capability for defining the: 
 
♦ Business logic,  
♦ Tasks that make up business processes, and  
♦ Control flow and data dependence among those tasks.  
 
The potential benefits of this technology are enormous because of its broad reach to manage business 
process productivity. Industry is beginning to turn to workflow technology in order to minimize its 
manpower needs, optimize IT investment, achieve good performance, use legacy systems, gain flexibility 
for supporting evolving business goals, as well as to capitalize on advanced technology. However, 
commercial WFMS do not support distributed mission critical applications. They do not ensure mission 
critical properties, such as recoverability nor do they enforce access control policies, and certainly not 
multilevel secure (MLS) access control policies. Even though there is a great need for this technology in 
DoD, DoD cannot rely on commercial WFMS to protect national security information and perform mission 
critical business processes.  
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The constant aspect of the military challenge is change. The challenge is to respond to new threats in 
completely different environments. For example, today’s military supports disaster relief, drug interdiction, 
peace-keeping missions in worldwide regional skirmishes, treaty enforcement, as well as the traditional role 
of national defense against aggression and weapons of mass destruction.  At no other time in the nation’s 
history has the military relied so heavily on IT systems for all of its operations, including command and 
control, logistics, surveillance and reconnaissance, personnel management, finances, etc.  Challenging 
requirements of those systems include, 
♦ The organizations that participate in a dynamic coalition may be located in different classification 

domains.  
♦ The guidelines for sharing and exchanging information among organizations in different classification 

domains are stricter than those for organizations in the same classification domain. 
 
To address those problems, the Naval Research Laboratory (NRL) has embarked upon a research project to 
build an MLS WFMS. The goal of the project is to develop tools and security critical components that 
allow enterprises to harvest emerging commercial off-the-shelf (COTS) technology and still rely on legacy 
resources with reduced risk.  
 
In short, MLS WFMS should support: 
 
♦ Secure interoperability among tasks that reside in different classification domains, and   
♦ Maximum use of commercial software/hardware. 
 
The need for a WFMS that can manage MLS workflows is immediate and imposes an implementation 
strategy that allows operational users to exploit advances in COTS technology and also to satisfy their 
mission critical requirements. The multiple single-level architecture, described in [6,7,12], provides the 
foundation for enforcing information flow requirements. A WFMS comprises several tools and runtime 
enactment services. This paper examines what properties these components must satisfy in a multiple 
single-level distributed computing environment.  The MLS workflow design tool is of particular interest 
because the commercial tool must be significantly changed to represent classification domains.  While this 
does not fit the paradigm of using unmodified COTS products with high assurance security devices, finding 
a research team that is developing a WFMS that supports mission critical workflows makes it possible to 
develop an MLS WFMS.  
 
In this paper, we present requirements for MLS workflows, tools for supporting MLS workflows, and a 
strategy for implementing them. We also examine an MLS workflow model that supports MLS 
cooperation, and describe the decomposition of an MLS workflow into multiple single-level workflows. 

2. Tools to Support MLS Workflow 
 
A WFMS consists of, in general, three components: 
 
♦ Workflow design (build-time) tool,  
♦ Workflow enactment (runtime) service, and  
♦ Monitoring tool.  
 
A workflow design tool is a distributed programming tool with a graphical user interface. Users can express 
data dependence and control flow among tasks using this tool. Once a user specifies the mission logic (i.e., 
distributed programming logic), code for workflow enactment can be generated. A workflow enactment 
service is responsible for task scheduling, enforcing dependence among tasks, passing data from one task to 
another, and error recovery based on the generated code. The workflow monitoring tool, in general, tracks 
and monitors the progress of execution. 
 
DoD needs all the tools that single-level WFMS provides. However, DoD requires extra capabilities in 
those tools to support MLS workflow. We will examine the extra requirements for each tool. 
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Design Tool for MLS Workflow 
 
A workflow design tool is a distributed programming tool with a graphical user interface that provides the 
global picture of the whole mission. MLS workflow designers should be able to specify (1) tasks in 
different classification domains and (2) data and control dependence (flow) among them. Based on this 
workflow design, a specification for workflow runtime can be generated. Final runtime code that will be 
securely executed on an MLS distributed architecture is generated, based on this specification. The runtime 
specification and code generation processes, in general, depend on the underlying MLS distributed 
architecture. 
 
In MLS applications, each subtask may be located in a different classification domain. The design tools for 
single-level workflow do not provide a capability to specify classification domains or compartments. In 
other words, the whole drawing area of the workflow design tool belongs to one classification domain. It 
also does not generate runtime code that can be executed on the underlying MLS distributed architecture. 
What is needed is a design tool for MLS workflow that: 
 
♦ Allows MLS workflow designers to divide a design area into multiple domains, 
♦ Allows MLS workflow designers to specify information flow and dependence among tasks that are in 

the same or different domains, and  
♦ Allows MLS workflow designers to specify dominance relationships among domains (e.g., Top Secret 

> Secret > Unclassified). 
 
For example, a workflow designer should be able to specify an MLS workflow as in Figure 1 where ovals 
represent tasks and arrows represent control and data flow. In the figure, B (begin), S (success), and F 
(failure) represent special tasks. 

TSA_H
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Domain L
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l-1 l-2

 
Figure 1:  An Example of an MLS Workflow Design 

 
Even though this tool allows workflow designers to specify information and control flow among tasks in 
different domains, the operational environment of the tool will be system-high (i.e., the workflow design 
tool neither accesses sensitive data in multiple domains nor passes it around). Hence, although this tool has 
to be trusted in the sense that it does what it is supposed to do, it can be run on a single-level system. 
 
MLS workflow has another functional requirement. When an MLS workflow is designed, it must often 
interact with tasks in other domains about which the designer is not allowed to know the details. For 
example, when a secret workflow designer designs a workflow, the secret workflow may need to send a 
request to a top secret task. The secret designer is not allowed to know how the top secret task gets the 
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answer, but he knows how to send a request and how to receive an answer. Hence, the top-secret task, in 
this case, is a task foreign to the secret designer (i.e., the top secret task does not belong to his workflow). 
In fact, the H workflow in figure 1 may be designed in a completely different organization from the M 
workflow and the L workflow.  A workflow design tool for MLS workflow should be equipped with the 
capability to model interactions with a task for which only its interface specification is known. We believe 
this capability to model foreign tasks has broader application, even for single-level workflows (e.g., two 
cooperative workflows run by two different organizations).  

Enactment Service for MLS Workflow 
 
An MLS workflow enactment service is responsible for executing a workflow in a correct and secure 
manner. Hence, it depends on services in the underlying MLS distributed architecture to coordinate 
information and control flow among tasks in different classification domains. What we need is to make 
secure use of single-level COTS workflow enactment services with or without modifications. As we will 
explain in section 3, we plan to use multiple single-level workflow enactment services to execute an MLS 
workflow. Since there will be no direct communication among workflow enactment services at different 
classification domains, there are no special MLS requirements for a workflow enactment service itself. On 
the other hand, the underlying MLS distributed architecture and its security devices must provide the 
necessary assurance for multilevel security.  
 

Monitoring Tool for MLS Workflow 
 
When MLS workflow is executed, there are many automatic and human computer tasks that are executed in 
different classification domains. Workflow managers in different classification domains (there may be a 
workflow manager per classification domain) may have knowledge about tasks in their classification 
domain and other domains they are authorized to access. In other words, users of MLS workflow in 
different classification domains may have different views of the workflow they are running. Hence, an 
MLS WFMS should provide the ability to monitor activities in all domains the workflow manager is 
authorized to access. Monitoring may include when, where, and who performs the tasks in the case of 
human tasks. Because the expected, legal behavior of a workflow is specified, the workflow monitor can be 
designed to detect security critical events as well as unexpected behavior. Additionally, responses for 
security exceptions can be specified as part of the workflow design. 
 

3. A Strategy for MLS Workflow  
 
An MLS WFMS should support functionality equivalent to a single-level WFMS from the perspective of 
MLS users who design and use multilevel workflows. Tasks that may be single-level individually but 
located in different classification domains, have to cooperate to achieve a higher level MLS mission.  
 
To provide MLS services in a distributed and heterogeneous computing environment, the following 
information flow requirements must be enforced: 
 
♦ High users must have access to low data and low resources, 
♦ High processes must have access to low data, and 
♦ High data must not leak to low systems or users. 
 
An MLS WFMS should obey this MLS policy. Atluri et. al. investigated MLS workflow in general [13, 
14]. There are two basic ways to enforce the MLS policy in MLS workflow systems: 
 
♦ Build high-assurance MLS WFMS that will run on an MLS platform, or 
♦ Build an MLS workflow by integrating multiple single-level workflows with an MLS distributed 

architecture. 



 5

 
The development of high-assurance software, necessary to provide separation between unclassified and 
TS/SCI information, such as MLS workflow systems, has proven to be both technically challenging and 
expensive. Today’s fast paced advances in technology and the need to use COTS products make the 
traditional MLS approach untenable. Therefore, we have chosen the second approach for building MLS 
WFMS. It is more in line with the modern distributed computing paradigm than the first approach in terms 
of supporting autonomy and heterogeneity.  
 
To implement an MLS WFMS using the architectural method, the following technical approach has been 
established:  
 
♦ Choose an MLS distributed architecture where multiple single-level workflows can be executed. 
♦ Choose a strategy for dividing an MLS workflow into multiple single-level workflows. 
♦ Choose a single-level WFMS to execute single-level workflow in each classification domain. 
♦ Implement the necessary tools for supporting MLS workflow. 
♦ Extend the workflow interoperability model to accommodate the communication among workflows at 

different classification domains. 
♦ Extend the single-level workflow enactment service to accommodate communication among tasks in 

different classification domains. 
 

MLS Distributed Architecture 
 
Composing an MLS workflow from multiple single-level workflows is the only practical way to construct a 
high-assurance MLS WFMS today. In this approach, the multilevel security of our MLS workflow does not 
depend on single-level WFMS but rather on the underlying MLS distributed architecture. Thomas and 
Sandhu have proposed task-based authorization for single-level workflows [15]. The MLS distributed 
architecture will: 
 
♦ Host multiple single-level workflows to be executed and  
♦ Provide conduits for passing information among tasks in different classification domains.  
 
Our MLS distributed architecture is based on a security engineering philosophy: a few trusted devices in 
conjunction with information release and receive policy servers enforce the information flow policy of the 
classification domains, and single-level systems and single-level engineering solutions provide other 
functionality. A generic MLS distributed architecture is shown in Figure 2. 
 

Pump

Switched
workstation

High Network
(High WFMS)

Low Network
(Low WFMS)

Downgrader

 
Figure  2: An MLS Distributed Architecture 

 
In this architecture, switched workstations (e.g., “Starlight” [1]) enable a user to access resources in 
multiple classification domains and create information in domains that the user is authorized to access. 
One-way devices (e.g., a flow controller such as “A Network Pump” [5]) together with information release 
and receive policy servers provide a secure way to pass information from one classification domain to 
another. An information release policy server resides in a classification domain where the information is 
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released, and an information receive policy server provides a secure way to pass information from one 
classification domain to another as shown in Figure 3. 
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Figure 3: Information Release and Receive Policies in 
Conjunction with a Flow Controller 

 
In general, when COTS software passes data to a flow controller a wrapper translates the protocol of COTS 
software to that of the flow controller because COTS software and flow controllers communicate with other 
software through their own protocols. Hence, a wrapper can be considered a protocol translator. The 
detailed description of the architecture and the MLS services are in  [7]. 
 

Workflow Interoperability 
 
As we mentioned earlier, our strategy for implementing an MLS workflow is through combining single-
level workflows on an MLS distributed architecture.  Workflows in different domains may be 
heterogeneous and autonomous. Hence workflow interoperability is an important requirement for the 
approach that we have taken to implement an MLS workflow. Two important aspects of workflow 
interoperability are: 
 
♦ Interoperability protocol among independent WMFS. 
♦ The ability to model interoperability in a workflow process definition tool (i.e., workflow designer). 
 
A standard body such as Object Management Group (OMG) can handle the first aspect (e.g., jFlow [4]). 
However, the second aspect should be handled by each WFMS.  
 
OMG’s jFlow introduces two models of interoperability. They are nested sub-process and chained 
processes as shown in Figure 4-a and 4-b respectively. 
 
In nested sub-process workflow structures, a task in workflow A may invoke workflow B as the performer 
of a task and then wait for it to finish. Hence, the task in workflow A is a requester, and the task that is 
realized by the sub-processes can serve as the synchronization point [11] for interaction of the two 
workflows. 
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Workflow A

Workflow B
 

Figure 4-a: Nested Sub-Process 
 

In chained workflow structures, one task may invoke another, then carry on with its own business logic. 
The workflows terminate independently of each other; in this case, the task registered with the sub-process 
would be another entity that is interested in the results of the sub-process. 

 

Workflow A

 Workflow B
 

Figure 4-b: Chained Processes 
 
The above two models provide powerful mechanisms for interoperability. However, we would like to 
extend these models to support an additional interoperability model, cooperative processes. Consider two 
independent autonomous workflows that need to cooperate. Let us assume that there are two cooperating 
organizations. Organization A is in charge of workflow A and Organization B is in charge of workflow B. 
Tasks in workflow A and workflow B can communicate and synchronize with each other as shown in 
Figure 5. In this example, two workflows may have independent starting and ending points. 
 

Workflow A

 Workflow B
 

Figure 5: Cooperative Processes 
 

There is another situation that we want to support in the context of cooperative processes. In general, the 
designer of workflow A does not need to know the structure of workflow B and vice versa. In conjunction 
with MLS principles, the designer of a workflow may not be allowed to know the detailed workflow 
structure of a higher level workflow. For example, in Figure 1, the designer of the workflow, whose 
classification domain is M, may not be allowed to know the workflow structure that contains the TSA_H 
task. 
 
However, there is a minimal set of information that is required for communication and synchronization 
among tasks in cooperating autonomous workflows. This includes: 
 
♦ Where and how to send/receive requests (i.e., the location and invocation method of tasks) and 
♦ How and where to receive replies (i.e., expected output and the return location). 
 
Therefore, the above specification has to appear in the workflow design so that the proper runtime code can 
be generated. Hence, we need a primitive that represents this situation in the design tool. This is the reason 
that we have introduced foreign tasks in the workflow model (section 4). 
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4. An MLS Workflow Model 
 
Our strategy for implementing an MLS workflow is to combine single-level workflows on an MLS 
distributed architecture. We have chosen the METEOR WFMS [2, 3, 8, 10] as our single-level WFMS 
because it is a CORBA compliant, recoverable, and distributed WFMS (i.e., ORBWork [10] is a specific 
version of METEOR). METEOR also supports legacy tasks. It is an important feature for DoD because 
DoD has legacy applications that are costly to replace all at once. Hence, METEOR is a good starting point 
for extending capabilities to support MLS workflow.  
 

To accommodate MLS workflow, the METEOR model has been modified. We summarize only the small 
subset of the new MLS METEOR model necessary for understanding this paper. A detailed description of 
the METEOR model can be found in [11]. 
 
In the METEOR model, a task represents an abstraction of an activity. A task can be regarded as a unit of 
work which is performed by a variety of processing entities, depending on the nature of the task. A task can 
be performed by (realized by) a human or by a computerized activity that executes a computer program, a 
database transaction, or possibly a network (workflow or subworkflow) of interconnected tasks. Hence, a 
task provides one level of abstraction (view) and its realization provides a lower level of abstraction (view). 
This also directly maps to the nested sub-process concept of jFlow. Since the realization of a task may 
contain many tasks at different levels of abstraction, a task is a recursive reference in the METEOR model. 
 
In this paper, we categorize tasks into two types: 
 
♦ Foreign task: A task whose realization (i.e., strategy for implementation) is unknown to the workflow 

designer. It represents a task that is a part of cooperating independent autonomous workflow. It is 
required for a designer to declare a foreign task explicitly to provide a hint to the METEOR runtime 
code generator. A foreign task should have a minimal information set that we specified in section 3 
(e.g., invocation, output, where to send the request).  

♦ Native task: A task for which the realization is known or the realization will be provided before the 
runtime code generation (i.e., all other tasks except the foreign tasks). 

 
A network task represents the core of the workflow activity specification. Since a network task is one of the 
realizations of a task, it is always associated with a task called its parent task. A single network of tasks 
defines a relationship among workflow tasks, transferred data, exception handling, and other relevant 
information. It is a collection of either foreign or native tasks and transitions from one task to another. 
Figure 6 shows a simplified version of two levels of abstractions (views) where Task2 is the parent task of 
the projected workflow Wi which contains tasks 4, 5, 6, and 7, and transition tj represents a transition from 
Task1 to Task2. In Figure 6, Task1, Task2, and Task3 may belong to different classification domains. 
Hence, the MLS METEOR model can be thought of as follows: along the xy-plane, there are tasks in 
different domains and along the z-axis, there are different levels of abstraction. 
 

Task6

Task2
Realized by

Task1 Task3

Transition tj

Task7

Task4

Task5
Workflow Wi

Abstraction level 1

Abstraction level 2
x

y

z

 
Figure 6: MLS METEOR Model 
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A task may play the role of a source task or a destination task (e.g., Task1 is the source task and Task2 is 
the destination task of the transition tj in Figure 6) for a number of transitions. All of the transitions for 
which a task is the destination task are called the input transitions for that task (e.g., transition tj is an input 
transition for Task2). Likewise, all the transitions for which a task is the source task are called its output 
transitions (e.g., transition tj is an output transition of Task1). A transition may have an associated Boolean 
condition called its guard. A transition may be activated only if its guard is true. When there is a transition 
from task Ti to task Tj, where Ti and Tj are in different classification domains, we call this an MLS 
transition from Ti  to Tj . 
 
An external transition is a special type of a transition in which the two participating tasks (source and 
destination) are not in the same workflow (i.e., transition to and from a foreign task). An implied external 
transition may lead to a start task of another workflow. Similarly, an implied transition leads from the final 
task and is used to notify the external entity that the network has terminated. Note that an MLS transition is 
turned into an external transition when an MLS design is divided into multiple single-level workflows for 
runtime.  
 
External transitions are also used to specify synchronization points with some external events. Typically, 
external transitions may be used to specify communication and synchronization between two independent 
workflows. Here, an external transition leading into a task in the workflow is assumed to have an implied 
source task (outside the workflow). Similarly, an external transition leading out of a task in the workflow is 
considered to have an implied destination task (outside the workflow). External transition is a cornerstone 
of our strategy to support MLS workflow.  
 
The classes (i.e., types of objects) that are associated with an input transition to a task are called the task’s 
input classes, and those appearing on an output transition are called output classes of that task. A task's 
output class, which is not its input class, is created by the task. Specifically, an object instance of the 
specified class is created by the workflow runtime. A task's input class, which is not its output class, is 
dropped (consumed). When input classes are unused by the task, they are transferred to the task’s 
successor(s). 
 
A group of input transitions is called an AND-join if all of the participating transitions must be activated for 
the task to be enabled for execution. An AND-join is called enabled if all of its transitions have been 
activated. All the input transitions of a task may be partitioned into a number of AND-joins. A group of 
input transitions is called an OR-join if the activation of one of the participating transitions enables the task. 
 
A group of transitions is said to have a common source if they have the same source task and all lead either 
from: 
 
♦ Its success state or 
♦ Its fail state. 
 
A group of common source transitions may form either: 
 
♦ AND-split: Each of the transitions in the group has the condition set to true.  This means that all of 

the transitions in the group are activated once the task is completed. 
♦ OR-split (selection): An ordered list of transitions where all but the last transition may have arbitrary 

conditions (i.e., the last transition on the list has the condition set to true).  The first transition whose 
condition is satisfied will be activated. 

♦ Loop: A special case of an OR-split, where the list is composed of exactly two transitions: loopback 
and continue. Loopback implies branch taken and continue implies branch not taken (i.e., fall through). 

 
All tasks that we define in this paper are single-level tasks. What we mean by single-level is that the task 
receives input from one classification domain and produces output at the same classification domain. There 
are four special tasks: begin, success, failure, and synchronization. The synchronization tasks represent 
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external transitions to and from other workflows. In general, workflow designers do not manipulate 
synchronization nodes directly. They are automatically generated by the system based on the specification 
of foreign tasks and input and output transitions to and from the foreign tasks.  
 
An MLS workflow is a network of interconnected single-level (foreign or native) tasks from more than one 
classification domain. Note that we call a task single-level from one particular level of abstraction (view). 
Since a single-level task may be realized by an MLS workflow at a lower level of abstraction, it may have 
side-effects on different classification domains at lower abstraction levels. Hence, our distinction between 
single-level and multilevel is purely from the perspective of a specific abstraction level. 
 
Let CL(Ti) represent the classification domain of task Ti. An MLS workflow that is the realization of task 
Ti where CL(Ti) = Sa must obey the following constraints: 
 
♦  The begin, success, and fail nodes of the MLS workflow must be CL(begin) = CL(success) = 

CL(failure) = Sa. 
♦ It may have tasks in other classification domains; however, if the CL(Tj) = Sb where Sa does not 

dominate Sb, then Tj must be a foreign task. In other words, only tasks in Sc where Sa ≥ Sc  may have 
realizations. 

 
For example, the workflow in Figure 1 is designed at domain M; thus special nodes are located in domain 
M. If the workflow designer creates an MLS workflow from the highest classification domain with a 
complete view of the workflow being designed, then the complete MLS workflow with realization of all its 
tasks can be specified. However, if the workflow designer creates an MLS workflow that requires input 
from (output to) higher classification domains, then he may only know the interfaces to the tasks at the 
higher levels but not the detailed workflow process at those levels. In such cases, foreign tasks can be used 
to define communication and synchronization with a task at higher classification domains. 
 

5. MLS Dependence and MLS Workflow Decomposition 
 
As we mentioned briefly in section 2, an MLS workflow design tool allows MLS workflow designers to: 
 
♦ Divide a design area into multiple domains,  
♦ Drop tasks in different domains, and 
♦ Specify data and control flow among them. 
  
Once the design of an MLS workflow is completed, the MLS workflow has to be divided into multiple 
single-level workflows to be executed on the underlying MLS distributed architecture that was described in 
section 3.  
 

MLS Dependence 
 
An MLS workflow design tool should allow the same kind of intertask dependence as a single-level 
workflow design tool (e.g., guards, input and output classes). However, some dependence in an MLS 
workflow may be specified across classification boundaries (i.e., MLS dependence). In other words, 
workflow state information and some values may have to move across classification boundaries during 
workflow execution. Hence, it is important to understand what the vulnerability is, whether it is easily 
exploitable and how to reduce it. 
 
In our MLS WFMS, all information that has to move across classification domains must go though 
information release and receive policy servers and a high-assurance flow controller (e.g., Pump or 
downgrader [9,16]). We divide a transition between two tasks in different classification domains into a 
series of transitions. For example, if there is a transition from a task in domain 1 (TD1) to a task in domain 2 
(TD2) as in Figure 7, then 
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Figure 7: MLS Transition Across a Classification Boundary 

 
this transition will be divided into transitions from TD1 to PD1, PD1 to PD2, and PD2  to TD2  as shown in Figure 
8. Note that there is the flow controller between PD1 

 and PD2 where PD1 
 and PD2 are proxies that combine 

flow controller wrappers and policy servers (i.e., PD1 combines a flow controller wrapper and information 
release policy server, and PD2 combines a flow controller wrapper and information receive policy server).  
 

TD1 TD2PD1 PD2

Flow
Controller

 
Figure 8: Indirect Transition Through a Flow Controller and Policy Servers 

 
Note that domain policies may not allow combining flow controller wrappers and information policy 
servers. In that case, we have to break down transitions further. Also note that since TD1 and TD2 belongs to 
two different workflows, the PDi serve as synchronization points that we discusses in section 4. 
 

Decomposition of an MLS Workflow  
 
Using the method that we described above, an MLS workflow will be separated into multiple single-level 
workflows. The single-level workflows neither communicate directly nor recognize single-level workflows 
from other classification domains. The number of single-level workflows that will be generated is equal to 
the number of classification domains in the MLS workflow (except the domains that contain only foreign 
tasks). When the breakdown is performed, direct transition (see Figure 7) becomes indirect transition as in 
Figure 8, and security depends on the underlying MLS architecture. Before we show an example of the 
division from an MLS workflow to multiple single-level workflows, we will formalize the MLS workflow 
model and the decomposition of an MLS workflow. 
 
 

Formalism 
 
An abstraction represents how we view a workflow. At the highest level of abstraction a workflow should 
be just one network task. However, as we traverse down the hierarchy of abstractions, workflows become 
more and more concrete with both network and simple tasks making up connected components via the 
flows.  At the bottom of this hierarchy of abstractions, there should be only simple tasks. 
 

There exists a partially ordered set of classification domains {Di,�} and a function CL:{Tasks}∪ {W} � 
{Di} . 
 
There exists a set Tasks. (To distinguish the elements from the set itself, we capitalize the set name.) The 
set Tasks can be distinguished into the disjoint union of Network Tasks and Simple Tasks.  The set of 

Simple Tasks can be further decomposed into TT  NT �HT. A simple task can be thought of as the 
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smallest unit of work from the workflow’s point of view because it is only associated with only one level of 
abstraction. TT represents transactional tasks, NT are non-transactional tasks, and HT are human tasks. One 
can think of a network task as a convenient way to group tasks that are associated with multiple levels of 
abstractions. 
 
There also exists a set Flows. A flow can be thought of as the order of program execution (control and data 
flows). We are interested in tasks and flows that can be formed into directed graphs with tasks being the 
vertices and flows being the edges. 
 
A workflow W is a directed graph made up of tasks and flows. {W} is the set of workflows. The goal of 
this section is to formalize the ideas about what workflows represent in the rest of this paper, thus ensuring 
rigor. In this section the concept of “MLS” is implicit in a workflow or tasks. We express this by the 
following definition.  
 
There exists a set of  Abstractions {z1,z2, …, zn}, the abstraction levels, with an ordering ���such that  z1��

z2 ��… ��zn.  
 
A workflow is always associated with an abstraction level zj. The notation Wj signifies this association. The 
tasks of Wj are {Nj

1, N
j
2,…, Nj

α1, S
j
1, S

j
2,…, Sj

β1} where Nj
i is a network task of Wj and Sj

k is a simple task 
of Wj. For j = n, Wn consists of a single network task Nn

1 and For j = 1, W1 consists only of simple tasks.  
 
For each abstraction zj, j > 1 there is a projection function �j-1 which takes an Nj

i of some Wj and gives a 
workflow Wj-1 (associated with zj-1). Furthermore we have the following: 
 

Non-Increasing Security Projection Condition: CL(�j-1(N
j
i)) ��CL(Nj

i), and this comparison is well-
defined.   
 
In other words the projection of a network task of a workflow will never give a workflow of a higher 
classification domain.  Note that there is no concept of projection of a simple task because there is no lower 
level of abstraction for the simple task.  
 
Starting with a workflow Wj (associated with zj) we may form the family of Wj, �(Wj). The family of Wj 
gives a view of the workflow at its present, and all lower, levels of abstraction. Before making this 
definition precise we first discuss some other concepts.  
 
Given Wj  we define  Pj-1(W

j) as  
Pj-1(W

j) = {�j-1(N
j
i), � Nj

i  � W
j}, we may then form Pj-2(W

j) as 
Pj-2(W

j) = {�j-2(N
j-1

i), � Nj-1
i  � Pj-1(W

j)}; thus we may recursively define 
Pj-3(W

j),…, P1(W
j).   Now we are ready to define the family of Wj. 

 
�(Wj)  = {Wj, Pj-1(W

j),…, P1(W
j)}  

 
Given any classification domain Dk we may form the filter function FDk

 as: 

FDk
(� (Wj)) = {� Nj

i  � W
j ∋ : CL (Nj

i) = Dk}∪ { � Nj-1
i  � Pj-1(W

j) ∋ : CL (Nj-1
i) = Dk}∪ … 

∪  {� N1
i  � P1(W

j) ∋ : CL (N1
i) = Dk} 

 
We may also view the filter as a vector FDk

(� (Wj)) where the (j-h)-component is  

{� Nj-h
i  � Pj-h(W

j) ∋ : CL (Nj-h
i) = Dk}.  

 
We have the following obvious result:  Uk FDk

(� (Wj)) = � (Wj) . 

 
Similarly, we may also form FbDk

 and FbDk
 by using network tasks whose classification is equal to or 

below Dk, instead of simply equal to Dk. Note that it is possible that some components are empty.  The 
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filter function provides a way to decompose multilevel workflow into single-level workflows, or a specified 
classification domain and below. Hence, the filter function provides a different view of multilevel 
workflows for users at different classification domains. For example, the view of a multilevel workflow at 
the unclassified level and the view of the same multilevel workflow at the secret level are different. 
 

An Example Decomposition 
 
Let us consider the simple MLS workflow shown in Figure 1 with classification domains L < M < H. Since 
this particular workflow is designed at domain M (special nodes, B, S, and F signify where the particular 
workflow was designed), all tasks in domain M and L, which is dominated by domain M, may be native 
tasks. Since the designer of the workflow in domain M may not know the detailed structure of the 
workflow in domain H, which dominates M, he can declare the TSA_H a foreign task. The specification of 
foreign task expresses interfaces (i.e., invocation methods and outputs) and where to send requests. The 
transitions, TSA to TSA_H, TSA_H to Ops1, Logistics to l-1, and l-2 to Ops1, and input and output classes 
that are associated with each transition define when and what kind of data will be passed to other 
workflows at different classification domains. After applying filter functions FM and FL, the runtime code 
generator generates the two workflows as shown in Figures 9-a and 9-b. The shaded proxies in Figure 9 
represent the combination of policy server, flow controller wrapper and synchronization nodes that 
represent external transitions. 
 

P4

TSA

Logistics

Ops Ops1B

S

P1 P2

P3

F

Domain M
 

 
Figure 9-a: An Outcome of the M workflow after applying filter functions FM 

 
 

P4P3Domain L

l-1 l-2  
  

Figure 9-b: An Outcome of the L workflow after applying filter functions FL  
 

Note that workflows in domains M and L are two independent workflows after the filter function has been 
applied. The concept of cooperative processes and the synchronization node that we defined in sections 3 
and 4 are useful for interoperability between these two independent workflows. Also note that applying the 
filter function to the original MLS workflow does not generate the workflow in domain H because there is 
only a foreign task in domain H.    
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6. Conclusion 
 
Today’s military is required to respond to constantly changing threats and cooperate with allies and 
different organizations. This dynamic environment and the military’s dependence on IT systems require an 
MLS WFMS that allows  
♦ Rapid specification and construction of mission specific IT systems, 
♦ Maximum use of existing or commercial software/hardware, and 
♦ Secure sharing and exchanging information among organizations in different classification domains. 
 
In this paper, we presented requirements for an MLS workflow and tools needed to support an MLS 
WFMS. An MLS workflow designer should be able to specify different classification domains and tasks in 
those domains. He also should be able to specify control and data flows among tasks in different 
classification domains. To accommodate this need, we introduced an MLS workflow model and an MLS 
workflow design tool.  
 
MLS workflow may be realized in many different ways. However, composing an MLS workflow from 
multiple single-level workflows is the only practical way to construct a high-assurance MLS WFMS today.  
Hence, we presented a strategy for implementing an MLS workflow by composing multiple single-level 
workflows on a multiple single-level architecture. When independent multiple single-level workflows work 
together to achieve a higher mission, workflow interoperability is a vital element. We introduced an 
extended workflow interoperability model for that purpose. We then presented a method for decomposing 
an MLS workflow design into multiple single-level workflows for runtime. 
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