
A Strategy for an MLS Workflow Management System

Myong H. Kang, Judith N. Froscher, Brian J. Eppinger, and Ira S. Moskowitz
Information Technology Division

Naval Research Laboratory

{mkang, froscher, eppinger, moskowitz}@itd.nrl.navy.mil

Abstract
Current DoD information systems need to support many different missions through cooperation with
different organizations and allies. In today’s fast paced and dynamic environment, it is almost impossible to
design and implement a different information system for each mission. Therefore, DoD needs MLS
workflow management systems (WFMS) to enable globally distributed users and existing applications to
cooperate across classification domains to achieve mission critical goals. An MLS WFMS that allows users
to program multilevel mission logic, securely coordinate widely distributed tasks, and monitor the progress
of the workflow across classification domains is required. In this paper, we present requirements for MLS
workflow and a strategy for implementing it, especially the method for decomposing an MLS workflow
into multiple single-level workflows

1. Introduction

The streamlining of today’s business processes has brought about significant increases in productivity and
the ability for US companies to compete in the global market place. These re-engineering activities have as
their basis an even greater reliance on information technology and automation. As a result, software
developers have been challenged to streamline the software development process and to produce software
that can be reused, that separates concerns, that supports autonomy and heterogeneity in a distributed
computing environment, that allows extensibility, etc. The information technology (IT) community has
developed distributed object computing standards, like CORBA and DCOM, that provide a basic level of
interoperability among distributed applications. The next step is to build application specific software
architectures that encode business logic for coordinating widely distributed manual and automated tasks in
achieving enterprise level objectives. To assist business process modeling, vendors have developed several
automated tools that help manage dependence among activities and users. A WFMS makes these tools
available to users and allows them to monitor the business processes. This technology manages activities
within a distributed computing environment comprising of loosely coupled, heterogeneous, autonomous,
new (and legacy) components which may include transactional systems (i.e., DBMS). It provides a
capability for defining the:

♦ Business logic,
♦ Tasks that make up business processes, and
♦ Control flow and data dependence among those tasks.

The potential benefits of this technology are enormous because of its broad reach to manage business
process productivity. Industry is beginning to turn to workflow technology in order to minimize its
manpower needs, optimize IT investment, achieve good performance, use legacy systems, gain flexibility
for supporting evolving business goals, as well as to capitalize on advanced technology. However,
commercial WFMS do not support distributed mission critical applications. They do not ensure mission
critical properties, such as recoverability nor do they enforce access control policies, and certainly not
multilevel secure (MLS) access control policies. Even though there is a great need for this technology in
DoD, DoD cannot rely on commercial WFMS to protect national security information and perform mission
critical business processes.

 2

The constant aspect of the military challenge is change. The challenge is to respond to new threats in
completely different environments. For example, today’s military supports disaster relief, drug interdiction,
peace-keeping missions in worldwide regional skirmishes, treaty enforcement, as well as the traditional role
of national defense against aggression and weapons of mass destruction. At no other time in the nation’s
history has the military relied so heavily on IT systems for all of its operations, including command and
control, logistics, surveillance and reconnaissance, personnel management, finances, etc. Challenging
requirements of those systems include,
♦ The organizations that participate in a dynamic coalition may be located in different classification

domains.
♦ The guidelines for sharing and exchanging information among organizations in different classification

domains are stricter than those for organizations in the same classification domain.

To address those problems, the Naval Research Laboratory (NRL) has embarked upon a research project to
build an MLS WFMS. The goal of the project is to develop tools and security critical components that
allow enterprises to harvest emerging commercial off-the-shelf (COTS) technology and still rely on legacy
resources with reduced risk.

In short, MLS WFMS should support:

♦ Secure interoperability among tasks that reside in different classification domains, and
♦ Maximum use of commercial software/hardware.

The need for a WFMS that can manage MLS workflows is immediate and imposes an implementation
strategy that allows operational users to exploit advances in COTS technology and also to satisfy their
mission critical requirements. The multiple single-level architecture, described in [6,7,12], provides the
foundation for enforcing information flow requirements. A WFMS comprises several tools and runtime
enactment services. This paper examines what properties these components must satisfy in a multiple
single-level distributed computing environment. The MLS workflow design tool is of particular interest
because the commercial tool must be significantly changed to represent classification domains. While this
does not fit the paradigm of using unmodified COTS products with high assurance security devices, finding
a research team that is developing a WFMS that supports mission critical workflows makes it possible to
develop an MLS WFMS.

In this paper, we present requirements for MLS workflows, tools for supporting MLS workflows, and a
strategy for implementing them. We also examine an MLS workflow model that supports MLS
cooperation, and describe the decomposition of an MLS workflow into multiple single-level workflows.

2. Tools to Support MLS Workflow

A WFMS consists of, in general, three components:

♦ Workflow design (build-time) tool,
♦ Workflow enactment (runtime) service, and
♦ Monitoring tool.

A workflow design tool is a distributed programming tool with a graphical user interface. Users can express
data dependence and control flow among tasks using this tool. Once a user specifies the mission logic (i.e.,
distributed programming logic), code for workflow enactment can be generated. A workflow enactment
service is responsible for task scheduling, enforcing dependence among tasks, passing data from one task to
another, and error recovery based on the generated code. The workflow monitoring tool, in general, tracks
and monitors the progress of execution.

DoD needs all the tools that single-level WFMS provides. However, DoD requires extra capabilities in
those tools to support MLS workflow. We will examine the extra requirements for each tool.

 3

Design Tool for MLS Workflow

A workflow design tool is a distributed programming tool with a graphical user interface that provides the
global picture of the whole mission. MLS workflow designers should be able to specify (1) tasks in
different classification domains and (2) data and control dependence (flow) among them. Based on this
workflow design, a specification for workflow runtime can be generated. Final runtime code that will be
securely executed on an MLS distributed architecture is generated, based on this specification. The runtime
specification and code generation processes, in general, depend on the underlying MLS distributed
architecture.

In MLS applications, each subtask may be located in a different classification domain. The design tools for
single-level workflow do not provide a capability to specify classification domains or compartments. In
other words, the whole drawing area of the workflow design tool belongs to one classification domain. It
also does not generate runtime code that can be executed on the underlying MLS distributed architecture.
What is needed is a design tool for MLS workflow that:

♦ Allows MLS workflow designers to divide a design area into multiple domains,
♦ Allows MLS workflow designers to specify information flow and dependence among tasks that are in

the same or different domains, and
♦ Allows MLS workflow designers to specify dominance relationships among domains (e.g., Top Secret

> Secret > Unclassified).

For example, a workflow designer should be able to specify an MLS workflow as in Figure 1 where ovals
represent tasks and arrows represent control and data flow. In the figure, B (begin), S (success), and F
(failure) represent special tasks.

TSA_H

TSA

Logistics

Ops Ops1B

S

F

Domain L

Domain H

Domain M

l-1 l-2

Figure 1: An Example of an MLS Workflow Design

Even though this tool allows workflow designers to specify information and control flow among tasks in
different domains, the operational environment of the tool will be system-high (i.e., the workflow design
tool neither accesses sensitive data in multiple domains nor passes it around). Hence, although this tool has
to be trusted in the sense that it does what it is supposed to do, it can be run on a single-level system.

MLS workflow has another functional requirement. When an MLS workflow is designed, it must often
interact with tasks in other domains about which the designer is not allowed to know the details. For
example, when a secret workflow designer designs a workflow, the secret workflow may need to send a
request to a top secret task. The secret designer is not allowed to know how the top secret task gets the

 4

answer, but he knows how to send a request and how to receive an answer. Hence, the top-secret task, in
this case, is a task foreign to the secret designer (i.e., the top secret task does not belong to his workflow).
In fact, the H workflow in figure 1 may be designed in a completely different organization from the M
workflow and the L workflow. A workflow design tool for MLS workflow should be equipped with the
capability to model interactions with a task for which only its interface specification is known. We believe
this capability to model foreign tasks has broader application, even for single-level workflows (e.g., two
cooperative workflows run by two different organizations).

Enactment Service for MLS Workflow

An MLS workflow enactment service is responsible for executing a workflow in a correct and secure
manner. Hence, it depends on services in the underlying MLS distributed architecture to coordinate
information and control flow among tasks in different classification domains. What we need is to make
secure use of single-level COTS workflow enactment services with or without modifications. As we will
explain in section 3, we plan to use multiple single-level workflow enactment services to execute an MLS
workflow. Since there will be no direct communication among workflow enactment services at different
classification domains, there are no special MLS requirements for a workflow enactment service itself. On
the other hand, the underlying MLS distributed architecture and its security devices must provide the
necessary assurance for multilevel security.

Monitoring Tool for MLS Workflow

When MLS workflow is executed, there are many automatic and human computer tasks that are executed in
different classification domains. Workflow managers in different classification domains (there may be a
workflow manager per classification domain) may have knowledge about tasks in their classification
domain and other domains they are authorized to access. In other words, users of MLS workflow in
different classification domains may have different views of the workflow they are running. Hence, an
MLS WFMS should provide the ability to monitor activities in all domains the workflow manager is
authorized to access. Monitoring may include when, where, and who performs the tasks in the case of
human tasks. Because the expected, legal behavior of a workflow is specified, the workflow monitor can be
designed to detect security critical events as well as unexpected behavior. Additionally, responses for
security exceptions can be specified as part of the workflow design.

3. A Strategy for MLS Workflow

An MLS WFMS should support functionality equivalent to a single-level WFMS from the perspective of
MLS users who design and use multilevel workflows. Tasks that may be single-level individually but
located in different classification domains, have to cooperate to achieve a higher level MLS mission.

To provide MLS services in a distributed and heterogeneous computing environment, the following
information flow requirements must be enforced:

♦ High users must have access to low data and low resources,
♦ High processes must have access to low data, and
♦ High data must not leak to low systems or users.

An MLS WFMS should obey this MLS policy. Atluri et. al. investigated MLS workflow in general [13,
14]. There are two basic ways to enforce the MLS policy in MLS workflow systems:

♦ Build high-assurance MLS WFMS that will run on an MLS platform, or
♦ Build an MLS workflow by integrating multiple single-level workflows with an MLS distributed

architecture.

 5

The development of high-assurance software, necessary to provide separation between unclassified and
TS/SCI information, such as MLS workflow systems, has proven to be both technically challenging and
expensive. Today’s fast paced advances in technology and the need to use COTS products make the
traditional MLS approach untenable. Therefore, we have chosen the second approach for building MLS
WFMS. It is more in line with the modern distributed computing paradigm than the first approach in terms
of supporting autonomy and heterogeneity.

To implement an MLS WFMS using the architectural method, the following technical approach has been
established:

♦ Choose an MLS distributed architecture where multiple single-level workflows can be executed.
♦ Choose a strategy for dividing an MLS workflow into multiple single-level workflows.
♦ Choose a single-level WFMS to execute single-level workflow in each classification domain.
♦ Implement the necessary tools for supporting MLS workflow.
♦ Extend the workflow interoperability model to accommodate the communication among workflows at

different classification domains.
♦ Extend the single-level workflow enactment service to accommodate communication among tasks in

different classification domains.

MLS Distributed Architecture

Composing an MLS workflow from multiple single-level workflows is the only practical way to construct a
high-assurance MLS WFMS today. In this approach, the multilevel security of our MLS workflow does not
depend on single-level WFMS but rather on the underlying MLS distributed architecture. Thomas and
Sandhu have proposed task-based authorization for single-level workflows [15]. The MLS distributed
architecture will:

♦ Host multiple single-level workflows to be executed and
♦ Provide conduits for passing information among tasks in different classification domains.

Our MLS distributed architecture is based on a security engineering philosophy: a few trusted devices in
conjunction with information release and receive policy servers enforce the information flow policy of the
classification domains, and single-level systems and single-level engineering solutions provide other
functionality. A generic MLS distributed architecture is shown in Figure 2.

Pump

Switched
workstation

High Network
(High WFMS)

Low Network
(Low WFMS)

Downgrader

Figure 2: An MLS Distributed Architecture

In this architecture, switched workstations (e.g., “Starlight” [1]) enable a user to access resources in
multiple classification domains and create information in domains that the user is authorized to access.
One-way devices (e.g., a flow controller such as “A Network Pump” [5]) together with information release
and receive policy servers provide a secure way to pass information from one classification domain to
another. An information release policy server resides in a classification domain where the information is

 6

released, and an information receive policy server provides a secure way to pass information from one
classification domain to another as shown in Figure 3.

Release
policy
server

Sanitize
information

Flow
controller

Receive
policy
server

Information
receiver makes

decision

Enforcing
flow direction

Enforcing
authentication,

integrity, labeling,
…, policy

Enforcing
Non-bypassability

Information
custodian

(organization)
makes decision

Enforces organization
or application specific
release policy

Optional process
(remove source,

fuzz image)

Domain A Domain B

Figure 3: Information Release and Receive Policies in
Conjunction with a Flow Controller

In general, when COTS software passes data to a flow controller a wrapper translates the protocol of COTS
software to that of the flow controller because COTS software and flow controllers communicate with other
software through their own protocols. Hence, a wrapper can be considered a protocol translator. The
detailed description of the architecture and the MLS services are in [7].

Workflow Interoperability

As we mentioned earlier, our strategy for implementing an MLS workflow is through combining single-
level workflows on an MLS distributed architecture. Workflows in different domains may be
heterogeneous and autonomous. Hence workflow interoperability is an important requirement for the
approach that we have taken to implement an MLS workflow. Two important aspects of workflow
interoperability are:

♦ Interoperability protocol among independent WMFS.
♦ The ability to model interoperability in a workflow process definition tool (i.e., workflow designer).

A standard body such as Object Management Group (OMG) can handle the first aspect (e.g., jFlow [4]).
However, the second aspect should be handled by each WFMS.

OMG’s jFlow introduces two models of interoperability. They are nested sub-process and chained
processes as shown in Figure 4-a and 4-b respectively.

In nested sub-process workflow structures, a task in workflow A may invoke workflow B as the performer
of a task and then wait for it to finish. Hence, the task in workflow A is a requester, and the task that is
realized by the sub-processes can serve as the synchronization point [11] for interaction of the two
workflows.

 7

Workflow A

Workflow B

Figure 4-a: Nested Sub-Process

In chained workflow structures, one task may invoke another, then carry on with its own business logic.
The workflows terminate independently of each other; in this case, the task registered with the sub-process
would be another entity that is interested in the results of the sub-process.

Workflow A

 Workflow B

Figure 4-b: Chained Processes

The above two models provide powerful mechanisms for interoperability. However, we would like to
extend these models to support an additional interoperability model, cooperative processes. Consider two
independent autonomous workflows that need to cooperate. Let us assume that there are two cooperating
organizations. Organization A is in charge of workflow A and Organization B is in charge of workflow B.
Tasks in workflow A and workflow B can communicate and synchronize with each other as shown in
Figure 5. In this example, two workflows may have independent starting and ending points.

Workflow A

 Workflow B

Figure 5: Cooperative Processes

There is another situation that we want to support in the context of cooperative processes. In general, the
designer of workflow A does not need to know the structure of workflow B and vice versa. In conjunction
with MLS principles, the designer of a workflow may not be allowed to know the detailed workflow
structure of a higher level workflow. For example, in Figure 1, the designer of the workflow, whose
classification domain is M, may not be allowed to know the workflow structure that contains the TSA_H
task.

However, there is a minimal set of information that is required for communication and synchronization
among tasks in cooperating autonomous workflows. This includes:

♦ Where and how to send/receive requests (i.e., the location and invocation method of tasks) and
♦ How and where to receive replies (i.e., expected output and the return location).

Therefore, the above specification has to appear in the workflow design so that the proper runtime code can
be generated. Hence, we need a primitive that represents this situation in the design tool. This is the reason
that we have introduced foreign tasks in the workflow model (section 4).

 8

4. An MLS Workflow Model

Our strategy for implementing an MLS workflow is to combine single-level workflows on an MLS
distributed architecture. We have chosen the METEOR WFMS [2, 3, 8, 10] as our single-level WFMS
because it is a CORBA compliant, recoverable, and distributed WFMS (i.e., ORBWork [10] is a specific
version of METEOR). METEOR also supports legacy tasks. It is an important feature for DoD because
DoD has legacy applications that are costly to replace all at once. Hence, METEOR is a good starting point
for extending capabilities to support MLS workflow.

To accommodate MLS workflow, the METEOR model has been modified. We summarize only the small
subset of the new MLS METEOR model necessary for understanding this paper. A detailed description of
the METEOR model can be found in [11].

In the METEOR model, a task represents an abstraction of an activity. A task can be regarded as a unit of
work which is performed by a variety of processing entities, depending on the nature of the task. A task can
be performed by (realized by) a human or by a computerized activity that executes a computer program, a
database transaction, or possibly a network (workflow or subworkflow) of interconnected tasks. Hence, a
task provides one level of abstraction (view) and its realization provides a lower level of abstraction (view).
This also directly maps to the nested sub-process concept of jFlow. Since the realization of a task may
contain many tasks at different levels of abstraction, a task is a recursive reference in the METEOR model.

In this paper, we categorize tasks into two types:

♦ Foreign task: A task whose realization (i.e., strategy for implementation) is unknown to the workflow

designer. It represents a task that is a part of cooperating independent autonomous workflow. It is
required for a designer to declare a foreign task explicitly to provide a hint to the METEOR runtime
code generator. A foreign task should have a minimal information set that we specified in section 3
(e.g., invocation, output, where to send the request).

♦ Native task: A task for which the realization is known or the realization will be provided before the
runtime code generation (i.e., all other tasks except the foreign tasks).

A network task represents the core of the workflow activity specification. Since a network task is one of the
realizations of a task, it is always associated with a task called its parent task. A single network of tasks
defines a relationship among workflow tasks, transferred data, exception handling, and other relevant
information. It is a collection of either foreign or native tasks and transitions from one task to another.
Figure 6 shows a simplified version of two levels of abstractions (views) where Task2 is the parent task of
the projected workflow Wi which contains tasks 4, 5, 6, and 7, and transition tj represents a transition from
Task1 to Task2. In Figure 6, Task1, Task2, and Task3 may belong to different classification domains.
Hence, the MLS METEOR model can be thought of as follows: along the xy-plane, there are tasks in
different domains and along the z-axis, there are different levels of abstraction.

Task6

Task2
Realized by

Task1 Task3

Transition tj

Task7

Task4

Task5
Workflow Wi

Abstraction level 1

Abstraction level 2
x

y

z

Figure 6: MLS METEOR Model

 9

A task may play the role of a source task or a destination task (e.g., Task1 is the source task and Task2 is
the destination task of the transition tj in Figure 6) for a number of transitions. All of the transitions for
which a task is the destination task are called the input transitions for that task (e.g., transition tj is an input
transition for Task2). Likewise, all the transitions for which a task is the source task are called its output
transitions (e.g., transition tj is an output transition of Task1). A transition may have an associated Boolean
condition called its guard. A transition may be activated only if its guard is true. When there is a transition
from task Ti to task Tj, where Ti and Tj are in different classification domains, we call this an MLS
transition from Ti to Tj .

An external transition is a special type of a transition in which the two participating tasks (source and
destination) are not in the same workflow (i.e., transition to and from a foreign task). An implied external
transition may lead to a start task of another workflow. Similarly, an implied transition leads from the final
task and is used to notify the external entity that the network has terminated. Note that an MLS transition is
turned into an external transition when an MLS design is divided into multiple single-level workflows for
runtime.

External transitions are also used to specify synchronization points with some external events. Typically,
external transitions may be used to specify communication and synchronization between two independent
workflows. Here, an external transition leading into a task in the workflow is assumed to have an implied
source task (outside the workflow). Similarly, an external transition leading out of a task in the workflow is
considered to have an implied destination task (outside the workflow). External transition is a cornerstone
of our strategy to support MLS workflow.

The classes (i.e., types of objects) that are associated with an input transition to a task are called the task’s
input classes, and those appearing on an output transition are called output classes of that task. A task's
output class, which is not its input class, is created by the task. Specifically, an object instance of the
specified class is created by the workflow runtime. A task's input class, which is not its output class, is
dropped (consumed). When input classes are unused by the task, they are transferred to the task’s
successor(s).

A group of input transitions is called an AND-join if all of the participating transitions must be activated for
the task to be enabled for execution. An AND-join is called enabled if all of its transitions have been
activated. All the input transitions of a task may be partitioned into a number of AND-joins. A group of
input transitions is called an OR-join if the activation of one of the participating transitions enables the task.

A group of transitions is said to have a common source if they have the same source task and all lead either
from:

♦ Its success state or
♦ Its fail state.

A group of common source transitions may form either:

♦ AND-split: Each of the transitions in the group has the condition set to true. This means that all of

the transitions in the group are activated once the task is completed.
♦ OR-split (selection): An ordered list of transitions where all but the last transition may have arbitrary

conditions (i.e., the last transition on the list has the condition set to true). The first transition whose
condition is satisfied will be activated.

♦ Loop: A special case of an OR-split, where the list is composed of exactly two transitions: loopback
and continue. Loopback implies branch taken and continue implies branch not taken (i.e., fall through).

All tasks that we define in this paper are single-level tasks. What we mean by single-level is that the task
receives input from one classification domain and produces output at the same classification domain. There
are four special tasks: begin, success, failure, and synchronization. The synchronization tasks represent

 10

external transitions to and from other workflows. In general, workflow designers do not manipulate
synchronization nodes directly. They are automatically generated by the system based on the specification
of foreign tasks and input and output transitions to and from the foreign tasks.

An MLS workflow is a network of interconnected single-level (foreign or native) tasks from more than one
classification domain. Note that we call a task single-level from one particular level of abstraction (view).
Since a single-level task may be realized by an MLS workflow at a lower level of abstraction, it may have
side-effects on different classification domains at lower abstraction levels. Hence, our distinction between
single-level and multilevel is purely from the perspective of a specific abstraction level.

Let CL(Ti) represent the classification domain of task Ti. An MLS workflow that is the realization of task
Ti where CL(Ti) = Sa must obey the following constraints:

♦ The begin, success, and fail nodes of the MLS workflow must be CL(begin) = CL(success) =

CL(failure) = Sa.
♦ It may have tasks in other classification domains; however, if the CL(Tj) = Sb where Sa does not

dominate Sb, then Tj must be a foreign task. In other words, only tasks in Sc where Sa ≥ Sc may have
realizations.

For example, the workflow in Figure 1 is designed at domain M; thus special nodes are located in domain
M. If the workflow designer creates an MLS workflow from the highest classification domain with a
complete view of the workflow being designed, then the complete MLS workflow with realization of all its
tasks can be specified. However, if the workflow designer creates an MLS workflow that requires input
from (output to) higher classification domains, then he may only know the interfaces to the tasks at the
higher levels but not the detailed workflow process at those levels. In such cases, foreign tasks can be used
to define communication and synchronization with a task at higher classification domains.

5. MLS Dependence and MLS Workflow Decomposition

As we mentioned briefly in section 2, an MLS workflow design tool allows MLS workflow designers to:

♦ Divide a design area into multiple domains,
♦ Drop tasks in different domains, and
♦ Specify data and control flow among them.

Once the design of an MLS workflow is completed, the MLS workflow has to be divided into multiple
single-level workflows to be executed on the underlying MLS distributed architecture that was described in
section 3.

MLS Dependence

An MLS workflow design tool should allow the same kind of intertask dependence as a single-level
workflow design tool (e.g., guards, input and output classes). However, some dependence in an MLS
workflow may be specified across classification boundaries (i.e., MLS dependence). In other words,
workflow state information and some values may have to move across classification boundaries during
workflow execution. Hence, it is important to understand what the vulnerability is, whether it is easily
exploitable and how to reduce it.

In our MLS WFMS, all information that has to move across classification domains must go though
information release and receive policy servers and a high-assurance flow controller (e.g., Pump or
downgrader [9,16]). We divide a transition between two tasks in different classification domains into a
series of transitions. For example, if there is a transition from a task in domain 1 (TD1) to a task in domain 2
(TD2) as in Figure 7, then

 11

Classification

boundary

TD1 TD2

Figure 7: MLS Transition Across a Classification Boundary

this transition will be divided into transitions from TD1 to PD1, PD1 to PD2, and PD2 to TD2 as shown in Figure
8. Note that there is the flow controller between PD1

 and PD2 where PD1
 and PD2 are proxies that combine

flow controller wrappers and policy servers (i.e., PD1 combines a flow controller wrapper and information
release policy server, and PD2 combines a flow controller wrapper and information receive policy server).

TD1 TD2PD1 PD2

Flow
Controller

Figure 8: Indirect Transition Through a Flow Controller and Policy Servers

Note that domain policies may not allow combining flow controller wrappers and information policy
servers. In that case, we have to break down transitions further. Also note that since TD1 and TD2 belongs to
two different workflows, the PDi serve as synchronization points that we discusses in section 4.

Decomposition of an MLS Workflow

Using the method that we described above, an MLS workflow will be separated into multiple single-level
workflows. The single-level workflows neither communicate directly nor recognize single-level workflows
from other classification domains. The number of single-level workflows that will be generated is equal to
the number of classification domains in the MLS workflow (except the domains that contain only foreign
tasks). When the breakdown is performed, direct transition (see Figure 7) becomes indirect transition as in
Figure 8, and security depends on the underlying MLS architecture. Before we show an example of the
division from an MLS workflow to multiple single-level workflows, we will formalize the MLS workflow
model and the decomposition of an MLS workflow.

Formalism

An abstraction represents how we view a workflow. At the highest level of abstraction a workflow should
be just one network task. However, as we traverse down the hierarchy of abstractions, workflows become
more and more concrete with both network and simple tasks making up connected components via the
flows. At the bottom of this hierarchy of abstractions, there should be only simple tasks.

There exists a partially ordered set of classification domains {Di,�} and a function CL:{Tasks}∪ {W} �
{Di} .

There exists a set Tasks. (To distinguish the elements from the set itself, we capitalize the set name.) The
set Tasks can be distinguished into the disjoint union of Network Tasks and Simple Tasks. The set of

Simple Tasks can be further decomposed into TT NT �HT. A simple task can be thought of as the

 12

smallest unit of work from the workflow’s point of view because it is only associated with only one level of
abstraction. TT represents transactional tasks, NT are non-transactional tasks, and HT are human tasks. One
can think of a network task as a convenient way to group tasks that are associated with multiple levels of
abstractions.

There also exists a set Flows. A flow can be thought of as the order of program execution (control and data
flows). We are interested in tasks and flows that can be formed into directed graphs with tasks being the
vertices and flows being the edges.

A workflow W is a directed graph made up of tasks and flows. {W} is the set of workflows. The goal of
this section is to formalize the ideas about what workflows represent in the rest of this paper, thus ensuring
rigor. In this section the concept of “MLS” is implicit in a workflow or tasks. We express this by the
following definition.

There exists a set of Abstractions {z1,z2, …, zn}, the abstraction levels, with an ordering ���such that z1��

z2 ��… ��zn.

A workflow is always associated with an abstraction level zj. The notation Wj signifies this association. The
tasks of Wj are {Nj

1, N
j
2,…, Nj

α1, S
j
1, S

j
2,…, Sj

β1} where Nj
i is a network task of Wj and Sj

k is a simple task
of Wj. For j = n, Wn consists of a single network task Nn

1 and For j = 1, W1 consists only of simple tasks.

For each abstraction zj, j > 1 there is a projection function �j-1 which takes an Nj

i of some Wj and gives a
workflow Wj-1 (associated with zj-1). Furthermore we have the following:

Non-Increasing Security Projection Condition: CL(�j-1(N
j
i)) ��CL(Nj

i), and this comparison is well-
defined.

In other words the projection of a network task of a workflow will never give a workflow of a higher
classification domain. Note that there is no concept of projection of a simple task because there is no lower
level of abstraction for the simple task.

Starting with a workflow Wj (associated with zj) we may form the family of Wj, �(Wj). The family of Wj
gives a view of the workflow at its present, and all lower, levels of abstraction. Before making this
definition precise we first discuss some other concepts.

Given Wj we define Pj-1(W

j) as
Pj-1(W

j) = {�j-1(N
j
i), � Nj

i � W
j}, we may then form Pj-2(W

j) as
Pj-2(W

j) = {�j-2(N
j-1

i), � Nj-1
i � Pj-1(W

j)}; thus we may recursively define
Pj-3(W

j),…, P1(W
j). Now we are ready to define the family of Wj.

�(Wj) = {Wj, Pj-1(W

j),…, P1(W
j)}

Given any classification domain Dk we may form the filter function FDk

 as:

FDk
(� (Wj)) = {� Nj

i � W
j ∋ : CL (Nj

i) = Dk}∪ { � Nj-1
i � Pj-1(W

j) ∋ : CL (Nj-1
i) = Dk}∪ …

∪ {� N1
i � P1(W

j) ∋ : CL (N1
i) = Dk}

We may also view the filter as a vector FDk

(� (Wj)) where the (j-h)-component is

{� Nj-h
i � Pj-h(W

j) ∋ : CL (Nj-h
i) = Dk}.

We have the following obvious result: Uk FDk

(� (Wj)) = � (Wj) .

Similarly, we may also form FbDk

 and FbDk
 by using network tasks whose classification is equal to or

below Dk, instead of simply equal to Dk. Note that it is possible that some components are empty. The

 13

filter function provides a way to decompose multilevel workflow into single-level workflows, or a specified
classification domain and below. Hence, the filter function provides a different view of multilevel
workflows for users at different classification domains. For example, the view of a multilevel workflow at
the unclassified level and the view of the same multilevel workflow at the secret level are different.

An Example Decomposition

Let us consider the simple MLS workflow shown in Figure 1 with classification domains L < M < H. Since
this particular workflow is designed at domain M (special nodes, B, S, and F signify where the particular
workflow was designed), all tasks in domain M and L, which is dominated by domain M, may be native
tasks. Since the designer of the workflow in domain M may not know the detailed structure of the
workflow in domain H, which dominates M, he can declare the TSA_H a foreign task. The specification of
foreign task expresses interfaces (i.e., invocation methods and outputs) and where to send requests. The
transitions, TSA to TSA_H, TSA_H to Ops1, Logistics to l-1, and l-2 to Ops1, and input and output classes
that are associated with each transition define when and what kind of data will be passed to other
workflows at different classification domains. After applying filter functions FM and FL, the runtime code
generator generates the two workflows as shown in Figures 9-a and 9-b. The shaded proxies in Figure 9
represent the combination of policy server, flow controller wrapper and synchronization nodes that
represent external transitions.

P4

TSA

Logistics

Ops Ops1B

S

P1 P2

P3

F

Domain M

Figure 9-a: An Outcome of the M workflow after applying filter functions FM

P4P3Domain L

l-1 l-2

Figure 9-b: An Outcome of the L workflow after applying filter functions FL

Note that workflows in domains M and L are two independent workflows after the filter function has been
applied. The concept of cooperative processes and the synchronization node that we defined in sections 3
and 4 are useful for interoperability between these two independent workflows. Also note that applying the
filter function to the original MLS workflow does not generate the workflow in domain H because there is
only a foreign task in domain H.

 14

6. Conclusion

Today’s military is required to respond to constantly changing threats and cooperate with allies and
different organizations. This dynamic environment and the military’s dependence on IT systems require an
MLS WFMS that allows
♦ Rapid specification and construction of mission specific IT systems,
♦ Maximum use of existing or commercial software/hardware, and
♦ Secure sharing and exchanging information among organizations in different classification domains.

In this paper, we presented requirements for an MLS workflow and tools needed to support an MLS
WFMS. An MLS workflow designer should be able to specify different classification domains and tasks in
those domains. He also should be able to specify control and data flows among tasks in different
classification domains. To accommodate this need, we introduced an MLS workflow model and an MLS
workflow design tool.

MLS workflow may be realized in many different ways. However, composing an MLS workflow from
multiple single-level workflows is the only practical way to construct a high-assurance MLS WFMS today.
Hence, we presented a strategy for implementing an MLS workflow by composing multiple single-level
workflows on a multiple single-level architecture. When independent multiple single-level workflows work
together to achieve a higher mission, workflow interoperability is a vital element. We introduced an
extended workflow interoperability model for that purpose. We then presented a method for decomposing
an MLS workflow design into multiple single-level workflows for runtime.

References

1. M. Anderson, C. North, J. Griffin, R. Milner, J. Yesberg, and K. Yiu, “Starlight: Interactive link,” 12th

Annual Computer Security Applications Conference, San Diego, CA, 1996.

2. N. Krishnakumar and A. Sheth, “Managing Heterogeneous Multi-System Tasks to Support Enterprise-

Wide Operations,” Distributed and Parallel Database Journal, 3 (2), April 1995.

3. METEOR project home page, http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

4. OMG jFlow submission, ftp:///fpt.omg.org/pub/bom/98-06-07.pdf.

5. M. Kang , I. Moskowitz, and D. Lee, “A Network Pump,” IEEE Transactions on Software

Engineering, Vol. 22, No. 5, pp. 329 - 338, 1996.
6. M. H. Kang, J. N. Froscher, and I. S. Moskowitz, "An Architecture for Multilevel Secure

Interoperability," 13th Annual Computer Security Applications Conference, IEEE Computer Society,
San Diego, CA, 1997

7. M. H. Kang, J. Froscher, and B. Eppinger, “Toward an Infrastructure for MLS Distributed

Computing,” 14th Annual Computer Security Applications Conference, Scottsdale, AZ, 1998.

8. J. Miller, D. Palaniswani, A. Sheth, K. Kochut, H. Singh, “WebWork: METEOR’s Web-based

Workflow Management System,” Journal of Intelligent Information Systems, Vol 10 (2), March/April
1998.

9. L.W. Chang and I.S. Moskowitz “Bayesian Methods Applied to the Database Inference Problem,” 12th

IFIP WG 11.3 Working Conference on Database Security, Chalkidiki, Greece, July 15-17, 1998.

10. K. Kochut, A. Sheth, and J. Miller “ORBWork: A CORBA-Based Fully Distributed, Scalable and

Dynamic Workflow Enactment Service for METEOR,” UGA-CS-TR-98-006, Technical Report,
Department of Computer Science, University of Georgia, 1998.

 15

11. M. Reichert M. and P. Dadam, "ADEPTflex - Supporting Dynamic Changes of Workflows Without

Losing Control,” Journal of Intelligent Information Systems, Vol 10 (2), March/April 1998.

12. Security Architecture for the AITS Reference Architecture, http://web-

ext2.darpa.mil/iso/ia/Arch/SecArch1/SecArch1.htm

13. V. Atluri, W-K. Huang and E. Bertino, ``An Execution Model for Multilevel Secure Workflows'' 11th

IFIP Working Conference on Database Security, August 1997.

14. V. Atluri, W-K. Huang and E. Bertino, ``A Semantic Based Execution Model for Multilevel Secure

Workflows,'' Journal of Computer Security, To appear.

15. R. Thomas & R. Sandhu “Task-based Authorization Controls (TBAC): A Family of Models for Active

and Enterprise-oriented Authorization Management” 11th IFIP Working Conference on Database
Security, August 1997.

16. I. S. Moskowitz and L. Chang, The Rational Downgrader, Proc. PADD'99, London, UK, April 1999.

