

A Multilevel Secure Workflow Management System

Myong H. Kang,1 Judith N. Froscher,1 Amit P. Sheth,2 Krys J. Kochut,2
and John A. Miller2

1Information Technology Division
Naval Research Laboratory

2LSDIS Lab, Department of Computer Science

University of Georgia
http://lsdis.cs.uga.edu

Abstract. The Department of Defense (DoD) needs multilevel secure (MLS)
workflow management systems to enable globally distributed users and
applications to cooperate across classification levels to achieve mission critical
goals. An MLS workflow management system that allows a user to program
multilevel mission logic, to securely coordinate widely distributed tasks, and to
monitor the progress of the workflow across classification levels is required. In
this paper, we present a roadmap for implementing MLS workflows and focus
on a workflow builder that is a graphical design tool for specifying such
workflows.

1 Introduction

The constant aspect of today’s military challenge is change due to the need for
operational response to new threats in completely different environments. For
example, today’s military supports disaster relief, drug interdiction, peace-keeping
missions in worldwide regional skirmishes, treaty enforcement, as well as the
traditional role of national defense against weapons of mass destruction and
aggression against the United States. At no other time in the nation’s history has the
military relied so heavily on information technology (IT) for all of its operations,
including command and control, logistics, surveillance and reconnaissance, personnel
management, finances, etc. This dependence means that these systems must be easily
configurable and secure.

The operational requirement for DoD is to pull together coalitions quickly and use
US military systems as well as coalition partners’ systems to achieve a common goal.
Each mission has different mission logic and deals with different data sets. For
example, the data for disaster relief are different from the data for biological weapons
attack. To achieve the needed flexibility, the military should be able to react to
different situations quickly and without procuring new IT resources for each crisis.
Hence, there is a need to be able to specify the mission logic in terms of existing DoD

and coalition resources and applications, and enact that logic with the applications to
achieve the mission. A workflow management system (WFMS) is a key enabler for
such a capability.

A WFMS enables the automated coordination, control, and communication of
tasks performed by people and/or computers. Although a majority of commercial off-
the-shelf (COTS) WFMSs use a client server model, our requirements call for a
WFMS that runs in a distributed, heterogeneous computing environment spanning
one or more enterprises, as well as supporting integration with independent (legacy)
software. We can view such a WFMS as a software layer above the user interface or
application layer in the open systems model. For the commercial world, this is the
business logic layer; for DoD, it is the mission logic layer.

However, current WFMSs lack capabilities that stem from the following unique
operational requirements for DoD:

− The organizations that participate in dynamic coalition may be located in different
security classification domains.

− The guidelines for sharing and exchanging information among organizations in
different classification domains are stricter than those for organizations in the same
classification domain.

To address those problems, the Naval Research Laboratory (NRL), in cooperation
with the Large Scale Distributed Systems Lab at the University of Georgia, has
embarked upon an R&D project to build a multilevel secure (MLS) workflow
management system [1]. The goal of the project is to develop tools and security
critical components that allow enterprises to harvest emerging COTS technology and
still rely on legacy resources with reduced risk. Since our approach to solving the
MLS workflow problem requires workflow interoperability, we have introduced
extended workflow interoperability capabilities to our MLS WFMS. They are:

− A new workflow interoperability model (i.e., cooperative model),
− A mechanism to communicate to other independent worflows (i.e., synchronization

nodes), and
− A new way to model workflow interoperability in a workflow design environment

(i.e., foreign task).

This paper presents an approach for developing an MLS WFMS. In section 2, we
briefly describe the overview of our 5-step strategy to implement an MLS WFMS.
The detailed plan for the first two steps—choosing an MLS architecture and a
strategy for dividing an MLS workflow into multiple single-level workflows are
presented in section 3. Section 4 discusses the third step that involves executing single
level workflows and reconstructing an MLS workflow from multiple single-level
workflows. The tools that support building an MLS workflow using our approach are
discussed in section 5. We conclude this paper by describing future work in section 6.

2 Technical Approach for an MLS WFMS

An MLS WFMS should support functionality equivalent to a single-level WFMS for
users with different clearances but prevent unauthorized access to resources. Tasks
that may be single-level individually but operate in different classification domains
have to cooperate to achieve a higher-level mission.

Multilevel secure domains can be defined as follows. There is a lattice S of
classification domains with ordering relation <. A classification domain Si dominates
a domain Sj if Si ≥ Sj. There is a labeling function L that maps each user, session, task,
and data (object) to a classification domain. The classification levels a user can access
are determined by his clearance and enforced by the underlying MLS architecture.

To provide MLS services in a distributed and heterogeneous computing environ-
ment, the following information flow requirements must be enforced:

− High1 users must have access to low data and low resources,
− High processes must have access to low data, and
− High data must not leak to low systems or users.

The development of high-assurance software necessary to provide separation
between the lowest security level (unclassified) and the highest security level (Top
Secret) information has proven to be both technically challenging and very expensive
through 20 years of computer security history. Today’s fast paced advances in
technology and the need to use COTS products make the traditional MLS approach
untenable.

To implement an MLS workflow management system using the architectural
approach, the following technical approach has been established:

1. Choose an MLS distributed architecture where multiple single-level workflows can
be executed.

2. Choose a strategy for dividing an MLS workflow into multiple single-level
workflows.

3. Select a single-level workflow management system to execute single-level
workflow in each classification domain and devise a way to glue together single-
level workflows to provide multilevel functionality.

4. Implement the necessary tools to support MLS workflow.
5. Extend the single-level workflow enactment service to accommodate commun-

ication among tasks in different classification domains.

1 The term high[low] user/process/data stands for high[low]-level cleared/classified user/

process/data.

3 MLS WFMS through Multiple Single-level WFMSs

In this section, we explain in detail the approach, outlined in section 2, for imple-
menting the first two steps of our strategy for supporting MLS workflow.

3.1 MLS Distributed Architecture

Our approach depends on an MLS architecture to separate multiple single-level
WFMS to achieve a multilevel secure WFMS. Therefore, multilevel security does not
depend on individual WFMS but rather on the underlying MLS distributed
architecture.

The MLS distributed architecture:

− Consists of physically or logically separated multiple single-level networks, each
containing information at a given level and below.

− Hosts single-level applications and workflows that access information at that level
and below, and

− Provides conduits to pass information among tasks in different classification
domains.

The MLS distributed architecture is based on a security engineering philosophy: A
few trusted devices in conjunction with information release and receive policy servers
to enforce the information flow policy among the classification domains, and single-
level systems and single-level engineering solutions to provide other functionality,
including single-level security services.

In this architecture, switched workstations (e.g., Starlight [2]) enable a user to
access resources in multiple classification domains and create information in domains
that the user is authorized to access. One-way devices (e.g., a flow controller such as
an NRL Pump [7]) together with information release and receive policy servers
provide a secure way to pass information from one classification domain to another
domain. A detailed description of the multilevel infrastructure and services can be
found in Towards an Infrastructure for MLS Distributed Computing [8].

The workflow specification at each classification level is derived from the MLS
workflow specification that a workflow designer provides through an MLS workflow
builder. The next subsection describes how an MLS workflow specification can be
decomposed into multiple single-level workflow specifications.

3.2 MLS Dependency and MLS Workflow Decomposition Strategy

An MLS WFMS should support the same kind of intertask dependencies as in a
single-level WFMS.2 However, some dependencies in an MLS workflow may be

2 To enable the use of different WFMS products at different classification levels, restricted

communication along the line of SWAP or OMG/jFlow standards may be adopted.

specified across classification boundaries; these are called MLS dependencies. In
other words, state information and some values may have to move across
classification boundaries during workflow execution. Hence, it is important to
understand what the vulnerability is, whether it is easily exploitable, and how to
reduce it.

In our MLS WFMS, all information that has to move across classification domains
must go though information release and receive policy servers, and high-assurance
flow controllers (e.g., Pump or downgrader). We can decompose a transition between
two tasks in different classification domains into many transitions. Consider a
transition from a task in domain 1 (TD1) to a task in domain 2 (TD2). This transition
will be decomposed into transitions from TD1 to PD1, PD1 to PD2, and PD2 to TD2 as in
Figure 1. Note that there is a flow controller between PD1

 and PD2 where PD1
 and PD2

are proxies that combine the function of flow controller wrappers and policy servers.
Flow controller wrappers take care of any protocol translation between an application
and a flow controller, and policy servers determine whether the information should be
released to or received from another domain. For example, PD1 combines a flow
controller wrapper and information release policy server, and PD2 combines a flow
controller wrapper and information receive policy server. Note that domain policies
may not allow flow controller wrappers and information policy servers to be
combined. In that case, we can decompose transitions further.

TD1 TD2PD1 PD2

Flow
Controller

Fig. 1. Indirect transition through a flow controller and policy servers

In this way, an MLS workflow will be transformed into multiple single-level
workflows. The single-level workflows neither communicate directly nor recognize
single-level workflows from other classification domains. The minimum number of
single-level workflows that will be generated is equal to the number of classification
domains in the MLS workflow. An example of an MLS workflow design and its
decomposition are illustrated in section 5.1.

4 A Single-level WFMS and an MLS Workflow Model

A centerpiece of our strategy for implementing an MLS workflow is to coordinate
single-level workflows in the MLS distributed architecture that we described in
section 3.1. Therefore, achieving MLS functionality largely depends on interoper-

ability among single-level workflows. In this section, we present an interoperability
model that we plan to support as well as an MLS workflow model and primitives that
we are implementing to support MLS workflow. In this section, we focus on the third
item of our technical approach.

4.1 An MLS Workflow Model

We have chosen the METEOR system [4] as a starting point to build our MLS
WFMS. The METEOR Enterprise Application Suite (EAppS) consists of four
components: EApp�Builder, EApp�Repository, EApp�Enactment,
and EApp�Manager. EApp�Enactment includes two services: ORBWork
and WebWork. Both ORBWork and WebWork use a fully distributed open archi-
tecture. WebWork [9] is a comparatively light-weight implementation that is well-
suited for traditional workflow, help-desk, and data exchange applications. ORBWork
[10] is better suited for more demanding, mission-critical enterprise applications
requiring integration with legacy applications and data, high scalability, robustness
and dynamic modifications. These features make the METEOR system with
ORBWork enactment service a good starting point for extending capabilities to
support MLS workflow.

To accommodate MLS workflow and other capabilities such as adaptive workflow,
the earlier METEOR model [3] has been significantly modified. Some of the revised
features have been influenced by our experience with building realistic workflows
with our industry partners, while others have been influenced by other relevant
research, including ADEPT [11]. We summarize only the small subset of the new
METEOR model that is necessary for understanding the rest of the paper.

In the METEOR model, a task represents an abstraction of an activity. A task can
be regarded as a unit of work, which is performed by a variety of processing entities,
depending on the nature of the task. A task can be performed by (realized by) a
human, or by performing a computerized activity through executing a computer
program, a database transaction, or possibly by a network (workflow or subworkflow)
of interconnected tasks. Hence, a task provides one level of abstraction (view) and its
realization provides a lower level of abstraction (view). This also directly maps to the
nested sub-process concept of jFlow (see section 4.2). Since the realization of a task
may contain many tasks at different levels of abstraction, a task is a recursive
reference in the METEOR model.

In this paper, we categorize tasks into two types:

• Foreign task: A task whose realization (i.e., strategy for implementation) is
unknown to the workflow designer. It represents a task that is a part of cooperating
independent autonomous workflow. It is required for a designer to declare a
foreign task explicitly and provide a hint to the METEOR runtime code generator.
A foreign task should have a minimal information set that we will specify in
section 4.2 (e.g., invocation, output, where to send the request).

• Native task: A task for which the realization is known or the realization will be
provided before the runtime-code generation (i.e., all other tasks except the foreign
tasks).
A network task represents the core of the workflow activity specification. Since a

network task is one of the realizations of a task, it is always associated with a task,
called its parent task. A single network defines a relationship among workflow tasks,
transferred data, exception handling, and other relevant information. It is a collection
of either foreign or native tasks and transitions from one task to another.

Figure 2 shows a simplified version of two levels of abstractions (views) where
Task2 is the parent task of the workflow Wi which contains tasks 4, 5, 6, and 7, and
transition tj represents a transition from Task1 to Task2. In Figure 2, Task1, Taks2,
and Task3 may belong to different classification domains. Hence, the MLS METEOR
model can be thought of as follows: along the xy-surface, there are tasks in different
domains and along the z-axis, there are different levels of abstraction.

Task6

Task2
Realized by

Task1 Task3

Transition tj

Task7

Task4

Task5
Workflow Wi

Abstraction level 1

Abstraction level 2
x

y

z

Fig. 2. MLS METEOR model

A task may play the role of a source task or a destination task (e.g., Task1 is the
source task and Task2 is the destination task of the transition tj in Figure 2) for a
number of transitions. All of the transitions for which a task is the destination task are
called the input transitions for that task (e.g., transition tj is an input transition for
Task2). Likewise, all of the transitions for which a task is the source task are called its
output transitions (e.g., transition tj is an output transition of Task1). A transition may
have an associated Boolean condition, called its guard. A transition may be activated
only if its guard is true. When there is a transition from task Ti to task Tj where Ti and
Tj are in different classification domains, we call this an MLS transition from Ti to Tj.

An external transition is a special type of a transition in which the two partici-
pating tasks (source and destination) are not in the same workflow (i.e., transition to
and from a foreign task). An implied external transition may lead to a start task of
another workflow. Similarly, an implied transition leads from the final task and is

used to notify the external entity that the network has terminated. Note that an MLS
transition is turned into an external transition when an MLS design is decomposed
into multiple single-level workflows for runtime.

External transitions are also used to specify synchronization points with some
external events. Typically, external transitions may be used to specify communication
and synchronization between two independent workflows. Here, an external transition
leading into a task in the workflow is assumed to have an implied source task (outside
of the workflow). Similarly, an external transition leading out of a task in the
workflow is considered to have an implied destination task (outside of the workflow).
External transition is a cornerstone of our strategy to support MLS workflow.

The classes (i.e., types of objects) that are associated with an input transition to a
task are called the task’s input classes, and those appearing on an output transition are
called output classes of that task. A task's output class, which is not its input class, is
created by the task. Specifically, an object instance of the specified class is created by
the workflow runtime. A task's input class, which is not its output class, is dropped
(consumed). Note that some input classes may be unused by the task. They are simply
transferred to the task’s successor(s).

A group of input transitions is called an AND-join if all of the participating
transitions must be activated for the task to be enabled for execution. An AND-join is
called enabled if all of its transitions have been activated. All the input transitions of a
task may be partitioned into a number of AND-joins. A group of input transitions is
called an OR-join if the activation of one of the participating transitions enables the
task.

A group of transitions is said to have a common source if they have the same
source task and all lead from either its success state or its fail state. A group of
common source transitions may form either an AND-split, OR-split (selection), or
Loop.

All tasks that we define in this paper are single-level tasks. What we mean by
single-level task is that it receives input from one classification level and produces
output at the same classification level. There are four special tasks: begin, success,
failure, and synchronization. The synchronization tasks represent external transitions
to and from other workflows. In general, workflow designers do not manipulate
synchronization nodes directly. They are automatically generated by the system based
on the specification of foreign tasks, and input and output transitions to and from the
foreign tasks.

An MLS workflow is a network of interconnected single-level (foreign or native)
tasks from more than one classification domain. Note that we call a task single-level
from one particular level of abstraction (view). Since a single-level task may be
realized by an MLS workflow at a lower level of abstraction, it may have side-effects
on different classification domains at lower abstraction levels. Hence, our distinction
between single-level and multilevel is purely from the perspective of a specific
abstraction level.

An MLS workflow that is the realization of task Ti where L(Ti) = Sa must obey the
following constraints:

− The begin, success, and fail nodes of the MLS workflow must be L(begin) =
L(success) = L(failure) = Sa and

− It may have tasks in other classification domains; however, if the L(Tj) = Sb where
Sa does not dominate Sb, then Tj must be a foreign task. In other words, only tasks
in Sc where Sa ≥ Sc may have realizations.

If the workflow designer creates an MLS workflow from the highest classification
level with a complete view of the workflow being designed, then the complete MLS
workflow with realizations of all its tasks can be specified. However, if the workflow
designer creates an MLS workflow that requires input from (output to) higher
classification levels, then he may only know the interfaces to the tasks at the higher
levels but not the detailed workflow process at that level. Hence, in such cases,
foreign tasks can be used to define communication and synchronization with a task at
higher classification levels.

4.2 Workflow Interoperability

There are two aspects of workflow interoperability:

1. The interoperability protocol between independent WMFSs.
2. The ability to model the interoperability in a workflow process definition tool (i.e.,

workflow builder).

A standards body such as OMG (e.g., jFlow [5]) can handle the first aspect.
However, the second aspect should be handled by each WFMS.

OMG’s jFlow introduces two models of interoperability: nested sub-process and
chained processes. In nested sub-process workflow structures, a task in workflow A
may invoke workflow B as the performer of a task and then wait for it to complete.
Hence, the task in workflow A is a requester, and the task that is realized by the
sub-processes can serve as the synchronization point for interaction between the two
workflows. In chained workflow structures, one task may invoke another, then carry
on with its own business logic. The workflows terminate independently of each
other; in this case, the task registered with the sub-process would be another entity
that is interested in the results of the sub-process.

These two models provide powerful mechanisms for interoperability. However, we
would like to extend them to support a richer interoperability model: cooperative
processes. Consider two independent autonomous workflows that need to cooperate.
Let’s assume that there are agreements among organizations that participate in the
cooperation. Organization A is in charge of workflow A and Organization B is in
charge of workflow B. Tasks in workflow A and workflow B can communicate and
synchronize with each other as shown in Figure 3. In this example, two workflows
may have independent starting and ending points.

Workflow A

 Workflow B

Fig. 3. Cooperative processes

There is another situation that we want to support in the context of cooperative
processes. In general, the designer of workflow A does not need to know the structure
of workflow B and vice versa. This may be because organization A does not want
organization B to know the structure of its workflow process and vice versa. In
conjunction with MLS principles, the designer of a workflow may not be allowed to
know the detailed workflow structure of a higher level workflow. For example, the
designer of the workflow, whose classification level is M, may not be allowed to
know the workflow structure that is in domain H where H dominates M.

However, there is a minimal set of information that is required for communication
and synchronization among tasks in cooperating autonomous workflows. These
include:

1. Where and how to send/receive requests (i.e., the location and invocation method
of tasks) and

2. How and where to receive replies (i.e., expected outputs and the return address).

Therefore, the above specification has to appear in the workflow design so that
proper runtime code can be generated. Hence, we need a primitive that represents this
situation in the design tool. The foreign task, introduced in section 4.1, can accom-
modate this need.

5 Workflow Tools for MLS Workflow

As we mentioned in section 4.1, a workflow management system consists of, in
general, four components. The EApp�Builder, sometimes called a workflow
process definition tool, is a distributed programming tool with a graphical user
interface. Users should be able to express mission logic in terms of input, output, and
external transitions, guards, input and output classes, and conditions for enabling each
task, etc. Once a user specifies the mission logic, the runtime code for the
EApp�Enactment can be generated. The EApp�Enactment is responsible for
task scheduling, enforcing dependencies among tasks, passing data from one task to
another, and error recovery based on the generated code. The workflow monitor that
is a part of EApp�Manager is a convenient tool to track and monitor the progress
of work.

An MLS workflow needs all the tools that a single-level WFMS provides. How-
ever, an MLS workflow requires extra capabilities in those tools. We will examine the
extra requirements and the capability we plan to support for each tool.

5.1 A Builder for MLS Workflow

An MLS workflow designer should be able to specify MLS mission logic graphically
using this tool. In other words, this tool should provide:

− A global picture of the MLS workflow process (mission logic);
− Appropriate views for different users at different levels of abstractions;
− A way to express input and output classes, a guard for each transition, the structure

of input and output transitions (e.g., AND-join, Loop) among tasks in the same and
different classification domains; and

− Capabilities to define domains and to specify dominance relationships among
domains (e.g., Top Secret > Secret > Unclassified).

Each task that will be specified in the tool may be either a foreign or native task. If
it is a native task, it has a realization as described in section 4.1. This tool provides the
capability to expand a task whose realization is a workflow to see the detailed
specification.

To support the design of information flow among classification domains, this tool
allows a workflow designer to divide the design region into many classification do-
mains. It allows users to add tasks to a domain. Once a task is added to a domain, it
recognizes the classification of the domain and associates that classification level to
the task. In our MLS workflow builder, all tasks are single-level tasks at this abstrac-
tion level. However, a task in a classification domain may be realized by an MLS
workflow at a lower abstraction level. If a user wants to see other levels of abstrac-
tion, he can do so by expanding a specific task that was realized by a workflow. The
reasons for allowing only single-level tasks in our MLS workflow process definition
tool are as follows:

− An MLS task can be decomposed into single-level tasks,
− Each task that was not realized by a workflow must run at a single host and site

that are single-level.

Hence, it is more natural to map real-world tasks into single-level tasks in a
workflow than to map them into multilevel tasks.

The MLS workflow builder also allows users to add transition arcs between tasks
where the tasks may be in the same domain or in two different domains. If there is a
transition arc from a task in one classification domain to a task in another
classification domain, then there is an information flow between two classification
domains. During the runtime code generation stage, the code generator recognizes
information flow across classification domains and generates the special code that
was described in section 3.2.

A designer of an MLS workflow, working at level Sa, often has a need to specify
an interaction with a task Ti at Sa to another task Tj at Sb where Sa does not dominate

Sb. Since Sa does not dominate Sb, the designer is not allowed to know the detailed
description of Tj. For example, when a secret level workflow designer designs a
workflow, the secret workflow may need data from a top secret level task. The secret
level designer may not be allowed to know how the top secret task generates the
answer, but he knows how to send a request and how to receive an answer when the
top secret task sends information. Hence, the top secret task is a foreign task to the
secret level designer. Even if Sa dominates Sb in the above example, the MLS work-
flow designer at Sa may not wish to specify (or does not know the details about) the
workflow at Sb , and therefore, may treat Tj at Sb as a foreign task.

Let us give a concrete example that involves cooperative processes and foreign
tasks in an MLS workflow design as in Figure 4 where multi-lined arrows represent
information flow across classification boundaries, ovals represent tasks, and B
(begin), S (success), and F (fail) are special nodes.

TSA_H

TSA

Logistics

Ops Ops1B

S

F

Domain L

Domain H

Domain M

L1 L2

Fig. 4. A workflow that has a cooperative process and a foreign task

Logistics starts a workflow in domain L and Ops1 receives information form the
workflow in domain L. If the designer of the workflow in domain M does not want to
specify the details of the workflow in domain L, he can declare Logistics_L, which is
the combination of tasks L1 and L2, as a foreign task.

Since this particular workflow is designed in domain M, all tasks in domain M may
be native tasks. Since the designer of the workflow in domain M may not know the
detailed structure of the workflow in domain H, he can declare the TSA_H as another
foreign task. The transitions, TSA to TSA_H, TSA_H to Ops1, Logistics to L1, and L2
to Ops1, and input and output classes that are associated with each transition define
when and what kinds of data will be passed to other workflows at different
classification domains. The specification of foreign task expresses interfaces (i.e.,
invocation methods and outputs) and where to send requests. The runtime code

generator uses that information (i.e., specification of foreign tasks and transition spec-
ification to and from other tasks) and generates two single-level workflows as in
Figure 5 using the principles that were presented in section 3.2. Hence, shaded
proxies in Figure 5 represent the combination of policy server, flow controller
wrapper and synchronization nodes that represent external transitions. No code will
be generated for the workflow in domain H because TSA_H is a foreign task.

P4

P4

TSA

Logistics

Ops Ops1B

S

P1 P2

P3

P3

F

Domain M

Domain L

l-1 l-2

Fig. 5. An outcome of code generation from a workflow design specification

Note that even though this tool allows workflow designers to specify information
and control flow among tasks in different domains, the operational environment of the
tool will be system-high (i.e., workflow builder neither accesses sensitive data in
multiple domains nor passes it around). Hence, although this tool has to be trusted in
the sense that the tool does what it is supposed to do, it can be run in a single-level
platform.

5.2 Enactment Service for MLS Workflow

An MLS workflow enactment service is responsible for executing a workflow in a
correct and secure way. As we presented earlier, our approach depends on:

− The services in the underlying MLS distributed architecture to coordinate infor-
mation and control flow among tasks in different classification domains and

− Secure use of multiple single-level COTS workflow enactment services with or
without modifications.

Since there will be no direct communication among workflow enactment services
at different classification levels, there is no special MLS requirement for a workflow
enactment service itself. On the other hand, the underlying MLS distributed architec-

ture and its security devices must provide the necessary assurance for multi-level
security. However, our approach depends on workflow interoperability among mul-
tiple single-level workflow enactment services to achieve MLS workflow. This is
why we extended the workflow interoperability model, introduced external transitions
in the MLS METEOR model, and supported them in the METEOR enactment
service.

One question that arises from our approach is “can we use other COTS WFMS
enactment services to achieve MLS workflow function?” As long as a WFMS
understands the concept of external transitions, we can in principle use any COTS
WFMS at each classification level. In that case, the METEOR design tool can be used
as an integration tool for designing a workflow comprising several independent
workflows.

5.3 Workflow Monitor for MLS workflow

When an MLS workflow is executed, there are many automatic and human computer
tasks that are executed in different classification domains. Workflow managers in
different classification domains (assuming a workflow manager per classification
level) may have knowledge about tasks in their classification domain and other
domains that they are authorized to access. In other words, users of an MLS workflow
in different classification domains may have different views of the workflow that they
are sharing. Hence, an MLS WFMS should provide the ability to monitor activities in
all domains that the workflow manager is authorized to access.

Monitoring may include when, where, and who performs the tasks in the case of
human tasks. Since the workflow designer specifies the expected behavior of a work-
flow, the workflow monitor can be designed to detect security critical events as well
as unexpected behavior. For example, system failure or communication failure can be
reported to a workflow manager through a workflow monitor. Also, if a task has not
completed within a given time (i.e., deadline), those anomalies can be reported.

A WFMS that runs at each classification level is a single-level WFMS in our
strategy for MLS WFMS. A single-level workflow monitor cannot provide all the
capabilities that are desired for an MLS workflow monitor. The MLS workflow
monitors at different classification levels should have different views of the workflow
depending on the dominance relationship among classification domains. Our strategy
for an MLS monitor is to send lower level status information (i.e., workflow control
data) from the monitor at a lower classification level to a monitor at a higher classi-
fication level. The higher level monitor can present a unified execution status of the
workflow in its classification domain and other domains that it is authorized to view.

Another natural question in the context of heterogeneous workflow is “what if the
COTS WFMS monitor is not equipped to send status information to the outside?” In
that case, we can create dummy tasks at higher classification levels to receive status
information from lower-level tasks. Higher level workflow managers can monitor
lower level activities through those dummy tasks.

6 Conclusion and Future Work

MLS workflow is a new research area that combines workflow and security tech-
nology. In this paper, we presented a technical approach to MLS workflow and the
necessary techniques for our approach. We introduced a cooperative model and
foreign task for workflow interoperability. We also described a new METEOR work-
flow model and the focus of our current development effort, a new MLS
EApp�Builder. The current builder saves design in the form of XML [6]. These
XML files are used by EApp�Enactment to generate runtime code and by
EApp�Manager to monitor and manage applications. Our immediate future work
includes the modification of EApp�Enactment to fully support a new MLS
METEOR model and to develop graphical user interfaces for workflow monitors.

References

1. Atluri ,V., Huang, W-K., and Bertino, E.: An Execution Model for Multilevel Secure
Workflows. 11th IFIP Working Conference on Database Security (August 1997)

2. Anderson, M., North, C., Griffin, J., Milner, R.., Yesberg, J., Yiu, K.: Starlight: Interactive
Link. 12th Annual Computer Security Applications Conference, San Diego, CA (1996)

3. Krishnakumar, N., Sheth, A.: Managing Heterogeneous Multi-system Tasks to Support
Enterprise-wide Operations. Distributed and Parallel Database Journal, 3 (2) (April 1995)

4. METEOR project home page. http://lsdis.cs.uga.edu/proj/meteor/meteor.html
5. OMG jFlow submission. ftp:///fpt.omg.org/pub/bom/98-06-07.pdf
6. Extensible Markup Language (XML) 1.0. World-Wide-Web Consortium.

http://www.w3.org/TR/1998/REC-xml-19980210.html
7. Kang, M., Moskowitz, I., Lee, D.: A Network Pump. IEEE Transactions on Software

Engineering, Vol. 22, No. 5 (1996) 329 - 338
8. Kang, M., Froscher, J., Eppinger, B.: Towards an Infrastructure for MLS Distributed

Computing. 14th Annual Computer Security Applications Conference, Scottsdale, AZ
(1998)

9. Miller, J., Palaniswani, D., Sheth, A., Kochut, K., Singh, H.: WebWork: METEOR’s
Web-based Workflow Management System. Journal of Intelligent Information Systems,
Vol 10 (2) (March/April 1998)

10. Kochut, K., Sheth, A., Miller, J.: ORBWork: A CORBA-Based Fully Distributed, Scalable
and Dynamic Workflow Enactment Service for METEOR, UGA-CS-TR-98-006,
Technical Report. Department of Computer Science, University of Georgia (1998)

11. Reichert, M., Dadam, M. and P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Information Systems, Vol. 10 (2) (March/
April 1998)

