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Abstract

To date, the SCR (Software Cost Reduction)
method has been used to specify system require-
ments. This paper extends the SCR method to hard-
ware/software co-design and co-validation. Our ap-
proach consists of three steps. First, the SCR method
is used to specify the required system behavior, i.e.,
the required relation between environmental quantities
(called monitored quantities) that the system moni-
tors and environmental quantities (called controlled
quantities) that the system controls. Next, the sys-
tem designers specify the I/O devices required to com-
pute estimates of the monitored quantities and to set
values of the controlled quantities. Finally, the re-
quired software behavior is speci�ed as three modules:
a device-independent module, specifying how the (esti-
mated) monitored quantities are to be used to compute
estimates of the controlled quantities, and two device-
dependent modules: an input device interface module,
specifying how data from the input devices are to be
used to compute estimates of the monitored quantities,
and an output device interface module, specifying how
the values of controlled variables are written to output
devices. To illustrate the approach, we use SCR to
specify a simple light control system.

1 Introduction
The SCR (Software Cost Reduction) requirements

method is a formal method based on tables for the
speci�cation and analysis of the black-box behavior of
complex systems. Designed for use by engineers, the
SCR method has been applied to a variety of practi-
cal systems, including avionics systems, telephone net-
works, and safety-critical components of nuclear power
plants. Originally formulated by NRL researchers to
document the requirements of the Operational Flight
Program (OFP) of the US Navy's A-7 aircraft [1, 7, 8],
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SCR has been used by a number of industrial organi-
zations such as Grumann, Bell Laboratories, Ontario
Hydro, and Lockheed, to specify the requirements of
other practical systems. For example, in 1994, Lock-
heed used SCR to specify the C-130J OFP [4], which
contains more than 250; 000 lines of Ada code.

SCR* is an integrated suite of tools supporting the
SCR method [6]. The toolset includes a speci�cation
editor for creating and modifying a requirements spec-
i�cation, a consistency checker for checking the speci-
�cation for application-independent properties (e.g.,
type correctness and unwanted nondeterminism), a
simulator for symbolically executing the system based
on the speci�cation, a model checker [2] for analyz-
ing the speci�cation for critical application properties,
and a dependency graph browser for displaying the de-
pendencies among the variables in the speci�cation.
Our ongoing research also includes a new e�ort to au-
tomatically generate source code from SCR speci�ca-
tions. Currently, more than 70 organizations in the
US, Canada, UK, and Germany, including industrial
and government organizations and universities, are ex-
perimenting with the SCR* toolset.

The practical utility of the SCR method for de-
veloping requirements speci�cations has been demon-
strated in four pilot projects. In one, NASA re-
searchers used the SCR consistency checker to detect
several errors in the requirements speci�cation of the
International Space Station [3]. In a second project,
Rockwell-Collins engineers used the SCR tools to de-
tect 24 errors, many of them serious, in the require-
ments speci�cation of a 
ight guidance system [11]. In
a third project, our group at NRL used the SCR tools
to expose several errors, including a safety violation,
in a contractor-produced speci�cation of a US mili-
tary system [5]. In a fourth project, our group used
SCR* to specify the requirements of a cryptographic
device (CD), verifying that the CD speci�cation satis-
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�es seven security properties and demonstrating that
it violates an eighth [10]. Especially noteworthy is
that, in each of the latter two projects, using the SCR
method to specify and analyze the required behav-
ior of a moderately complex system required only one
person-month of e�ort.

In applying the SCR method and tools, our em-
phasis so far has been on specifying, validating, and
verifying system requirements. This paper describes
how, in addition, the SCR method and tools can be
applied to software requirements speci�cation and also
to hardware/software co-design and co-validation. To
illustrate the extended method, we use a simpli�ed
speci�cation of a light control system (LCS).

2 Background
By speci�cation, we mean a description of the re-

quired behavior of an entire system, subsystem, or
component. A speci�cation should describe what is to
be built, omitting details of how this will be achieved.
A system or component that satis�es the speci�cation
can be implemented in hardware, software, or a com-
bination of both. An important goal is to avoid both
overspeci�cation and underspeci�cation. Thus a spec-
i�cation must describe the required black-box behav-
ior of every acceptable implementation. Hence, every
implementation that satis�es the speci�cation must be
acceptable to the customer. Further, it should be free
of \implementation bias". That is, every implemen-
tation that is acceptable to the customer must satisfy
the speci�cation. The SCR method includes a set of
guidelines for achieving these goals in practice. These
guidelines are typically tailored to a speci�c problem
domain, e.g., embedded control systems.

System Requirements Speci�cation. The Sys-
tem Requirements Speci�cation (SRS) describes the
required black-box behavior of an entire system in-
cluding its interfaces, hardware, software, peripheral
devices, etc. To construct an SRS, the set of envi-
ronmental quantities that are relevant to the system
behavior must be identi�ed, and each quantity must
be represented by a mathematical variable. The set
of environmental quantities consists of both controlled
quantities { quantities in the environment that the sys-
tem controls { and monitored quantities { quantities
in the environment that can in
uence system behav-
ior. The SRS should contain a detailed description of
each quantity, including how it is measured, accept-
able values, ranges, etc.

The desired system behavior is documented in the
SRS by describing the relationship between the values

of the monitored and controlled quantities. To de-
scribe this relationship, two relations, REQ and NAT,
of the Parnas Four Variable Model (FVM) [12] are
used. Relation NAT describes the constraints imposed
on the environmental quantities by physical laws and
the system environment; relation REQ describes addi-
tional constraints on the values of controlled quantities
that the system must enforce. In developing the SRS,
we initially specify REQ in terms of the ideal behavior
of the system; that is, we assume that the system can
obtain perfect values of the monitored quantities and
compute perfect values of the controlled quantities.
Later, we specify timing and accuracy requirements
for each controlled variable.

System Design Speci�cation. The System De-
sign Speci�cation (SDS) identi�es and documents the
characteristics of all resources that are available to the
software to compute estimates of the monitored quan-
tities and set values of the controlled quantities. These
values are usually read from or written to hardware
devices, such as sensors and actuators. They may also
be obtained from or written to external computers or
other software modules. The values in the system's
hardware/software interfaces are denoted by mathe-
matical variables. This set of system values is par-
titioned into input data items { values that the input
devices provide to the software { and output data items
{ values the output devices obtain from the software.

SCR Notation. To specify the REQ and NAT re-
lations in a practical and e�cient manner, the SCR
method uses four constructs { mode classes, terms,
conditions, and events. The mode classes and terms
capture historical information { the changes that have
occurred in the values of monitored variables { and
thus help make the speci�cations concise. A mode
class may be viewed as a state machine, whose states
are called modes and whose transitions are triggered
by events. A term is a state variable de�ned on mon-
itored variables, mode classes, or other terms. A con-
dition is a predicate de�ned on one or more state vari-
ables (a state variable is a monitored or controlled vari-
able, a mode class, or a term).

An event occurs when a state variable changes
value. The notation \@T(c) WHEN d" denotes a con-
ditioned event, de�ned as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evaluated
in the \old" state, and the primed condition c0 is eval-
uated in the \new" state. Informally, this expression
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Figure 1: Relationship between the SRS, the SDS, and the SoRS.

denotes the event \predicate c becomes true in the new
state when predicate d holds in the old state". The
notation \@F(c)" denotes the event @T(NOT c) and
\@C(x)" denotes the event \variable x has changed
value".

3 Software Requirements in SCR
To extend the SCR method, we use the System

Requirements Speci�cation and the System Design
Speci�cation as the foundation for the Software Re-
quirements Speci�cation (SoRS). For ease of change,
we organize the Software Requirements Speci�cation
into three modules: two device-dependent modules
and a device-independent module. The two device-
dependent modules are the input device interface mod-
ule, and the output device interface module. This or-
ganization allows us to easily change the software re-
quirements speci�cation, e.g., to introduce a new in-
put or output device or to modify or add a system
function, by changing a small part of one of its three
modules. Figure 1 shows the relationship between the
SRS, the SDS, and the SoRS and the decomposition
of the SoRS into three modules1.

An important observation we make in this paper
is that the interfaces of the device-dependent modules
constituting the SoRS are most conveniently speci�ed
in terms of the environmental variables , i.e., the mon-
itored and controlled variables, already identi�ed in
the System Requirements Speci�cation (SRS). This
has two important consequences:

1Although the structure of the diagram of Figure 1 is remi-

niscent of a commuting diagram, it does not actually commute.

1. Because the SRS describes all the environmental
quantities, the interfaces of the device-dependent
modules of the SoRS are easily documented by
providing appropriate references to the SRS.

2. Because the SRS describes the required rela-
tion REQ between the monitored and controlled
variables, the black-box behavior of the device-
independent module is already described (by
REQ).

What remains is to document the black-box behav-
ior of the device-dependent modules, which we specify
using two relations D IN and D OUT. Relation D IN
speci�es how estimates of the monitored quantities are
computed in terms of the input data items. Relation
D OUT speci�es how the estimates of the controlled
quantities, speci�ed by the device-independent mod-
ule, are used to compute the output data items that
drive the output devices. Relation gREQ speci�es the
relation between estimates of the monitored quantities
and the estimated values of the controlled quantities.
For the purpose of this paper, we assume that gREQ is
isomorphic to relation REQ.

4 Specifying the LCS in SCR
Suppose there is a need for a new light control sys-

tem (LCS) for a group of windowless o�ces. If a per-
son occupies an o�ce, the lights must go on. A facili-
ties manager sets the default ambient light level. Users
may assign an alternate ambient light level. To save
energy, the system must turn o� the lights if an o�ce
is unoccupied for more than T3 minutes. However,
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Mode Class = mcStatus

Old Mode Events New Mode

unoccupied @T(mOccupied) occupied

occupied @F(mOccupied) temp empty

temp empty @T(DUR(NOT mOccupied) > mT3) unoccupied
@T(mOccupied) occupied

Figure 2: Mode transition table for the Light Control System

Events New tCurrentLL

@T(mcStatus = occupied) when (DUR(mcStatus 6= occupied) � mT1) mDefaultLL

@C(mAssignedLL) mAssignedLL

Figure 3: Event table for tCurrentLL of the Light Control System

if an o�ce is reoccupied within T1 minutes after it
becomes empty, the previous ambient light level must
be reestablished. If the o�ce is reoccupied at or after
T1 minutes, the default ambient light level must be
established.

4.1 System Requirements Speci�cation.

To produce the system requirements speci�cation,
we �rst identify the environmental quantities, denot-
ing each by a mathematical variable. To make the
speci�cation concise, next we de�ne mode classes and
terms. We use the pre�x \m" to indicate the names of
monitored variables, the pre�x \t" for terms, the pre-
�x \mc" for mode classes, and the pre�x \c" for the
names of controlled variables. The type of a variable
indicates the range of values that may be assigned to
that variable.

To specify the LCS requirements, we require
�ve monitored variables { mOccupied, mDefaultLL,
mAssignedLL, mT1, and mT3 { and one controlled vari-
able cAmbientLL. The monitored variable mOccupied,
which has type boolean, indicates whether an o�ce is
occupied. The monitored variables mDefaultLL and
mAssignedLL, both of type integer, represent the two
ambient light levels. We assume that light levels are
measured in lux and that the ambient light in o�ces
may vary from 0 � 10; 000 lux. The monitored vari-
ables mT1 and mT3 represent the lengths in minutes
of the two time intervals, each in the range 0 to 30.
The controlled variable cAmbientLL, of type integer,
represents the ambient light level of an o�ce.

Next, we specify the modes of operation of

Mode Class = mcStatus

Modes cAmbientLL

occupied,
temp empty

tCurrentLL

unoccupied 0

Figure 4: Condition table for cAmbientLL

the system. We identify a single mode class
mcStatus which takes on values from the set
funoccupied; temp empty; occupiedg. Finally, we
use an integer-valued term tCurrentLL to represent
the current chosen light level. Note that the current
light level may di�er from the ambient light level in
situations where the lights are o� because an o�ce is
unoccupied.

The relation REQ is speci�ed by three tables. Fig-
ure 2 shows a mode transition table which speci�es
new values for the mode class mcStatus. Figure 3
shows an event table which speci�es new values for
the term tCurrentLL. In Figures 2 and 3, the expres-
sion DUR(c) indicates the length of time (in minutes)
that condiditon c has been true. Figure 4 shows a con-
dition table which de�nes the value of the controlled
variable cAmbientLL. Relation NAT (not shown) de-
�nes the initial values of the monitored and controlled
variables and constrains how each may change from
one state to the next.
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Events New mOccupied

@T(iMD) true

@F(iMD) when (not iDCC or (DUR(iDCC and iMD) < 1)) false

Figure 5: Event table for mOccupied of the Light Control System

4.2 System Design Speci�cation

In the system design phase, we identify and spec-
ify the hardware devices that will be available to the
software in the proposed system. The software can use
these devices to compute the estimated values of all
the monitored variables. To keep the paper concise,
this section omits details of the hardware device in-
terfaces that would be provided to the software (e.g.,
whether the devices are memory- or I/O-mapped, in-
terrupt driven or polled; their physical addresses; de-
tails of their control and data registers; etc).

Input Data Items. To enable the software to de-
termine whether a room is occupied (i.e., to estimate
the value of mOccupied), each o�ce will be equipped
with a passive infrared motion detector and a door
closed contact. The motion detector is represented
by a boolean variable iMD, which is true when there is
movement in the range of the detector and false other-
wise. Similarly, the door closed contact is represented
by a boolean variable iDCC, which is true if the door
is fully closed and false otherwise.

Each o�ce will also be equipped with a control
panel containing four displays, each with an associated
pair of buttons. Each pair of buttons is used to control
the value, shown in the display, of one of the four moni-
tored quantities, mDefaultLL, mAssignedLL, mT1, and
mT3. Associated with the four monitored quantities
are four input data items, iDefaultLL, iAssignedLL,
iT1, and iT3. To change the value contained in one
of these displays, the user would depress the appro-
priate button. For example, if the operator wishes to
change the default light level from 10 lux to 20 lux,
he would depress the button labeled Up next to the
display iDefaultLL, which initially contains 10, until
the display contains the value 20.

Output Data Items. The only controlled quantity
is the brightness of the cluster of dimmable lights rep-
resented by controlled variable cAmbientLL. The lights
are controlled by two output data items: a pulse line
represented by a boolean variable oPL which deter-
mines whether the lights are on or o�, and a dim value

represented by an integer variable oDV. The dim value,
which is between 0 and 100, sets the brightness level
of the lights between 0% (o�) and 100% (fully on).

4.3 Software Requirements Speci�cation

As described above, we recommend that the SoRS
be organized into two device-dependent modules and
a device-independent module. Because the behavior
of the device-independent module is already de�ned
by the relation REQ in the SRS, what remains to be
done is to specify the input and output device interface
modules, i.e., the relations D IN and D OUT.

Relation D IN The relation D IN speci�es how the
input data items iMD, iDCC, etc., are used to compute
estimates of the monitored quantities, mOccupied,
mDefaultLL, mAssignedLL, mT1, and mT32. Comput-
ing mDefaultLL, mAssignedLL, mT1, and mT3 from
iDefaultLL, iAssignedLL, iT1, and iT3 is trivial. In
contrast, the estimated value of the monitored quan-
tity mOccupiedmay be derived in di�erent ways. One
way is to de�ne mOccupied = iMD; that is, the esti-
mate is that the room is occupied i� the output of the
motion detector is true. However, if a room is actually
occupied but there is insu�cient motion to trigger the
motion detector, iMD will be false thereby providing
an inaccurate estimate of room occupancy. As a bet-
ter estimate for the monitored variable mOccupied, we
could use the output of the door contact iDCC in con-
junction with the output of the motion detector iMD.
This is speci�ed by the event table of Figure 5. The
value of mOccupied is set to true whenever the out-
put of the motion detector (i.e., the input data item
iMD) becomes true. When iMD becomes false, how-
ever, mOccupied remains true if the door has been
fully closed and the value of iMD has been true for a
continuous period of at least a minute (if this is the
case, the presence of a motionless person in an o�ce
is highly likely), and is set to false otherwise.

2In our approach, estimates of the monitored quantities are

denoted by gmOccupied, etc. To improve readability, we have

omitted the tildes.
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Relation D OUT The device-independent
module of the SoRS speci�es how estimates of the
monitored quantities relate to estimates of the con-
trolled quantity cAmbientLL. Relation D OUT spec-
i�es how these estimates of cAmbientLL are used to
compute the output data items oPL and oDV, corre-
sponding to the pulse line and the dim value of a
dimmable light cluster. The pulse line is de�ned as
oPL = (cAmbientLL 6= 0); the de�nition of dim value
is oDV = (cAmbientLL=100).

5 Hardware/Software Co-Validation
and Co-Synthesis

Above, we demonstrated how the SCR notation and
toolset may be used to specify the relations REQ and
NAT. We can also use the SCR notation and toolset
to specify the relations D IN and D OUT. Just as for
system requirements speci�cations, the available ver-
i�cation and validation features of the toolset (e.g.,
consistency checking, simulation, model checking, and
theorem proving) may be used to verify that the rela-
tions D IN and D OUT are well-formed and that they
satisfy critical properties. Also, the proposed code
generation facility of the toolset may be used to auto-
matically generate code for both the device-dependent
and the device-independent modules. What remains
to be done is to verify end-to-end system behavior,
i.e., to verify that the timing and accuracy constraints
speci�ed in the system requirements speci�cation are
feasible. Developing tool support for this is a current
focus of our research.
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