Applying Formal Methods to an Information Security

Device: An Experience Report *
Presented at HASE ’99, Washington, DC, November 17-19, 1999

James Kirby, Jr.

Myla Archer

Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375
{kirby, archer, heitmeyer}@itd.nrl.navy.mil

Abstract

SCR (Software Cost Reduction) is a formal method
for specifying and analyzing system requirements that
has previously been applied to control systems. This
paper describes a case study in which the SCR method
was used to specify and analyze a different class of sys-
tem, a cryptographic system called CD, which must
satisfy a large set of security properties. The paper
describes how a suite of tools supporting SCR—a con-
sistency checker, simulator, model checker, invariant
generator, theorem prover, and validity checker—were
used to detect errors in the SCR specification of CD
and to verify that the specification satisfies seven se-
curity properties. The paper also describes issues of
concern to software developers about formal methods—
e.g., ease of use, cost-effectiveness, scalability, how
to translate a prose specification into a formal nota-
tion, and what process to follow in applying a formal
method—and discusses these issues based on our ez-
perience with CD. Also described are some unexpected
results of our case study.

1 Introduction

Although scores of formal methods have been pro-
posed by researchers, the methods are rarely used by
software practitioners. The common perception among
practitioners is that formal methods require too much
effort (e.g., specification using temporal logic) and too
much detail early in the development process, do not
scale to industrial projects, are not cost-effective, and
provide no clear benefits. The following excerpt from
the February, 1997 Call for Papers for the First IEEE
International Conference on Formal Engineering Meth-
ods expresses this negative view:

Formal methods have been extensively re-
searched in academia, but their application in
industry is very limited. A critical barrier is the
poor understanding of how to merge academic
advances in formal methods into how industry ac-
tually builds software. Practitioners also feel that
existing formal methods are difficult to use and
their application consumes prohibitive amounts
of resources, particularly at the start-up.

*This work is funded by the Office of Naval Research and
SPAWAR.

Motivated in part by our desire to evaluate these
perceptions, we recently conducted a case study in
which a formal requirements method called SCR (Soft-
ware Cost Reduction) and a set of tools called SCR*
were applied to a requirements specification for a com-
munication security device (CD). Most of our informa-
tion about CD, which is based upon the PEIP (Pro-
grammable Embeddable INFOSEC Product) technol-
ogy, was obtained from a prose document describing
CD'’s requirements.

At the start of the study, we formulated a set of
questions that the study would address. These ques-
tions were designed either to evaluate the above per-
ceptions or to address the suitability and the capabil-
ities of the SCR method for CD. They included the
following;:

e Ease of Use. How hard was SCR to use? What
aspects of the method presented the most diffi-
culty? How could the level of effort be reduced?

e Benefits. What was learned about CD’s require-
ments that was not previously known? Given the
skepticism about formal methods, what aspects
of our method were attractive to the CD program
manager? What aspects were viewed negatively?

e Cost-Effectiveness. Was the effort of applying
SCR to CD worth the benefits gained?

e Scalability. How well did SCR scale? Can the
scalability of SCR, be improved?

e Applying SCR to a Secure System. In the
past, the SCR method has been applied to control
systems, not to secure systems. How suitable is
SCR for specifying and analyzing systems like CD
that must satisfy critical security properties?

e Starting with Prose. How difficult is the trans-
lation from a prose requirements document to the
SCR tabular notation? What characteristics are
needed in a prose specification to facilitate trans-
lation into SCR?

e Error Detection vs. Verification. In many
projects, formal methods are used to detect spec-
ification errors. Can one use the SCR method to
go beyond error detection, to verify, that is, prove
correct, critical system properties?

e Process. Reference [8] suggests a process for ap-
plying the various techniques of SCR* (i.e., spec-
ification followed in turn by consistency checking,
simulation, model checking, and mechanical theo-
rem proving). How effective is this process? Can
it be improved?

This paper is organized as follows. Section 2 pro-
vides background information about SCR, the SCR*
toolset, and CD. Section 3 describes the process we fol-
lowed in applying the SCR method to CD. Section 4
describes what we learned from this exercise about
the above questions, and Section 5 discusses some un-
expected results. Finally, Section 6 discusses related
work, and Section 7 presents our conclusions.

2 Background

SCR and the SCR* Toolset. The SCR require-
ments method [8] offers a tabular notation for speci-
fying system requirements. The approach to specifica-
tion is black box: SCR. specifies the required system be-
havior in terms of monitored and controlled variables.
These variables represent physical quantities in the sys-
tem environment (such as airspeed, aircraft position,
switch settings, or actuator positions) that the system
monitors or controls. An SCR specification also uses
additional variables, called auziliary variables, to cap-
ture system history and to make the specification more
concise. In an SCR specification, each dependent vari-
able (each variable other than a monitored variable) is
defined either by a condition table relating its value to
those of other variables or by an event table describ-
ing the value of the variable when one of the variables
on which it depends changes value. Besides tables,
an SCR specification includes dictionaries of variables,
constants, types, assumptions about the system envi-
ronment, and application properties, e.g., safety and
security properties that the system is intended to sat-
isfy. The formal basis for the SCR* toolset is a formal
model [8] which defines the semantics of SCR require-
ments specifications. In the formal model, a system is
represented as an automaton whose states are deter-
mined by the values of the monitored and dependent
variables, and whose transitions are determined from
the tables in the specification.

SCR* [7, 6] is a set of software tools developed
by NRL to provide mechanized support for the SCR
method. SCR* includes a specification editor, a con-
sistency checker, a simulator, a dependency graph
browser, and an invariant generator [11]. To help the
user check that the operational specification is con-
sistent with the properties in the property dictionary,
SCR* supports several analysis tools. Among these
are the explicit state model checker Spin [9], which
has been integrated into the toolset, and several tools
which are partially integrated, including the TAME
(Timed Automata Modeling Environment) interface

[1] to PVS [14], and a validity checker [3]. An addi-
tional SCR* tool is a test case generator [4] which con-
structs sequences of system inputs and expected out-
puts for testing the conformance of an implementation
with an SCR specification. Automatic code generation
of Java and C source code from SCR specifications is
in the planning stage.

CD. The communications security device CD (COM-
SEC Device) provides cryptographic processing for a
US Navy radio receiver. CD generates keystreams
compatible with another cryptographic device and sup-
ports multiple radio channels. In addition, CD can
download algorithms and associated keys into working
storage, assign them to designated channels, and clear
an algorithm and its keys from memory. Unlike most
other COMSEC devices, which are implemented solely
in hardware, CD is partially implemented in software.

The SCR specification of CD is based on a 48-page
prose document, the CD System Requirements docu-
ment (SRD). The SRD was designed to satisfy a large
number of security requirements compiled by the DoD
organization that evaluates COMSEC devices and cer-
tifies them for use. The SCR specification of CD cap-
tures a significant subset of the system behavior de-
scribed in the SRD. While much of the SRD is con-
sistent with the SCR’s black-box requirements model,
some of the CD behavior described in the SRD does
not follow this model. The SCR, specification captures
some of this behavior, also. In a few cases, the SCR
specification captures additional behavior missing in
the SRD; this additional behavior makes the SCR spec-
ification more complete. Like the SRD, the SCR speci-
fication deliberately omits some sensitive CD behavior.

3 Applying SCR to CD

To apply the SCR requirements method to CD, we
first translated a subset of the prose SRD into SCR’s
tabular notation. Then, we applied the SCR* analy-
sis tools—the consistency checker, simulator, invariant
generator, Spin, TAME, and the validity checker—to
the SCR specification. The consistency checker, simu-
lator, and invariant generator were used to check the
well-formedness of the specification and to perform
“sanity checks”. Spin, TAME, and the validity checker
were used to analyze the CD specification for eight se-
curity properties.

3.1 From Prose to SCR

The CD Systems Requirement Document (SRD) is
a traditional 2167A-style prose document. To capture
the CD’s required behavior, the SRD describes the sys-
tem modes, the mode transitions, and the system func-
tions (e.g., key load function, reset function, report
status function).

Unlike most prose requirements documents, the
SRD captures many aspects of the required system be-
havior precisely and completely. We were able to ex-

tract most of CD’s required behavior directly from the
SRD. We obtained security properties by examining
our SCR specification, surmising the goals of the re-
quired behavior, and interpreting descriptions of func-
tions in the CD SRD as security requirements. The
CD project manager has reviewed the security proper-
ties that we formulated and confirmed that, except for
one, they are reasonable security properties of CD.

Our SCR specification describes the behavior of CD
that is consistent with the SCR’s black-box model
of requirements. In SCR, the CD behavior is de-
scribed in terms of inputs (the status of primary and
backup power, data provided by the host, and posi-
tions of switches), outputs (indicator lights and sta-
tus messages), and modes. The SCR specification also
describes some memory management behavior that
goes beyond SCR’s usual modeling of black box re-
quirements. Because the SRD intentionally omits the
rules for cryptographic synchronization and generating
keystreams, we were unable to capture some required
behavior that would be relevant and useful to reason
about in our SCR specification.

The CD SRD assumes an unbounded number of al-
gorithms and keys and an unspecified number of algo-
rithm and key storage locations. Because the toolset
does not provide a convenient means of specifying
many identical entities, we assume two key banks, each
with two key storage locations, and at most 1,000 dif-
ferent algorithms and 1,000 different keys. So that the
system is always in exactly one mode, the SCR CD
specification includes an additional Off mode not in-
cluded in the SRD.

Another feature of the CD specification that does
not fit SCR’s black box model is the Built-in Test
(BIT), which represents a design decision, not a re-
quirement. The SCR CD specification replaces the
full and background BITs by the monitored vari-
ables mHealthyFull and mHealthyBackground, which
each denote the operational “health” of CD’s security-
critical components.

Most of the effort spent in building the SCR CD
specification took place over a nine-month period as
a background activity. The initial build of the speci-
fication took approximately one person-week. About
one additional person-week was devoted to refining and
completing the specification, with frequent use of the
consistency checker as described in Section 3.2.

3.2 Applying the Consistency Checker

The consistency checker uses static analysis to check
a specification for consistency with the SCR require-
ments model. The checks expose syntax and type er-
rors, variable name discrepancies, unwanted instances
of non-determinism (called disjointness errors) missing
cases (called coverage errors), and circular definitions.
Since the consistency checker is designed for use by en-
gineers developing high assurance systems, the checks

are implemented as fully automatic push-button anal-
yses that require no user input or guidance. When
an error is detected, the consistency checker facilitates
error correction by providing detailed feedback. For
some types of errors, the checker, in addition to de-
scribing the error and highlighting where in the spec-
ification the error occurs, displays an example that
demonstrates the error.

Aside from disjointness and coverage checks, all the
checks execute quickly, so we invoked the checks many
times during an editing session. We invoked the more
computationally expensive disjointness and coverage
checks less frequently.

3.3 Simulating the CD Specification

The SCR* simulator is a tool for validation, i.e., for
checking that the specification captures the intended
behavior of the system. Validating a system before
it is built is difficult because people who have a deep
understanding of the system’s intended behavior often
do not have the time or the skills needed to read and
analyze the specifications. The SCR* simulator allows
users to evaluate the behavior of the specified system
before it is built and without reading the SCR. specifi-
cation.

To facilitate validation of a specification, the sim-
ulator supports the rapid construction of front-ends
customized for particular applications. Thus, applica-
tion experts can interact with a representation of the
system that closely resembles the actual system to be
built. For example, to indicate to the user that the
variable cAlarmIndicator has value on, the simula-
tor displays a graphical representation of a red light
labeled ALARM and may sound an alarm. By inter-
acting with such front-ends, the user moves out of the
world of requirements specification and into the world
of the application.

We found an application-specific front-end for CD
useful in interacting with the CD project manager. Af-
ter viewing a simulation of CD using the CD-specific
front-end (built in less than a day), the CD project
manager provided us with useful feedback on the SCR
specification of CD. Evaluation of the CD specification
through this front-end to the simulator made effective
use of a scarce commodity, the project manager’s time.

3.4 Automatic Invariant Generation

The algorithm for invariant generation constructs
state invariants from the functions defining the depen-
dent variables. For a dependent variable v taking val-
ues in a finite set {ai,as,...,a,}, the algorithm ex-
amines the conditions that can cause the value of v to
change and generates for each a; an invariant of the
form (v = a;) = C;, where C; is a predicate on the
variables on which v depends. For dependent variables
of numeric type, the hypotheses v = a; are replaced by
predicates restricting v to intervals. Often, such inter-

vals can be computed automatically from values with
which v is compared in the specification.

Applying the implemented algorithm to the mode
transition table for the CD mode class smOperation
initially yielded invariants that, for some modes, were
unexpectedly weak. This led us to examine the mode
transition table more closely and to correct the formu-
lation of several events leading to a mode transition.

The invariants generated from the corrected mode
transition table proved significant in an additional
respect: three invariants provided auxiliary lemmas
needed in the verification of security properties (see
Sections 3.6 and 3.7). As noted in Section 3.6 below,
two additional auxiliary invariants were also needed in
verifying security properties. Applying a fuller (not
yet implemented) version of the invariant generation
algorithm by hand generated these two additional in-
variants.

3.5 Model Checking Properties

When a software specification describes an automa-
ton, as in SCR, one can use a model checker to check
its properties. Model checking performs an exhaus-
tive search of some representation of the state space of
the automaton. When the number of state variables is
large, and particularly when—as is common in software
specifications—the individual variables take values in
a large (even infinite) set, the state space can become
extremely large, making exhaustive search of the entire
state space difficult or impossible. This is referred to
as the state explosion problem. The problem can often
be alleviated by applying abstraction.

For SCR*, we have developed automatable abstrac-
tion methods that reduce the state space either by
eliminating variables (variable restriction) or by reduc-
ing the sizes of their type sets (variable abstraction)
[6]. However, even with the use of abstraction, the
state space to be searched often remains too large to
search exhaustively. As a result, model checkers are
seldom able to verify that a particular property holds.
Nevertheless, when a property is not an invariant for
the automaton, a partial search of the state space can
often find states that violate the property. In addi-
tion to finding states in violation, most model checkers
produce counterexamples in the form of scenarios—
sequences of inputs—that lead to the bad state. Such
counterexamples help users understand the reasons for
property violations, and how to fix the specification to
eliminate them.

We used Spin several times to analyze each prop-
erty, adjusting Spin’s parameters in an attempt to ex-
plore the largest possible subset of the reachable state
space. The discovery of a few property violations led
to corrections in the formulation of some properties.
Model checking failed to detect any violations of the
eight properties we investigated. But because we were
unable to search the complete state space of any of

the abstract specifications (the model checker ran out
of memory before the analysis was complete), theorem
proving was required to establish the properties as in-
variants. The importance of the theorem proving phase
was demonstrated when we were able to establish with
the help of a theorem prover that one of the eight prop-
erties is not an invariant (see Sections 3.6 and 3.7). In
other words, sometimes theorem provers can find prop-
erty violations that model checkers cannot, because for
theorem provers, state explosion is not usually a prob-
lem.

3.6 Checking Properties with TAME

The tool TAME is a specialized interface to PVS
whose goal is to reduce the human effort required
in using PVS to specify, and to prove properties of,
automata models. TAME was originally designed
to specify and reason about Lynch-Vaandrager (LV)
timed automata [12] but has been recently adapted
to two other automaton models, I/O automata and
the automata model that underlies SCR. specifications
(see [1]). TAME provides a template for specifying au-
tomata models, and approximately twenty specialized
PVS strategies that mimic the high-level proof steps
typically used by humans in proving invariant proper-
ties. Experience has shown that for automata mod-
els whose state variables have simple types (such as
numerical, boolean, or enumerated types), nearly all
state invariants can be proved using the TAME steps
exclusively.

TAME has been partially integrated into the SCR*
toolset. A prototype translator transforms SCR spec-
ifications to TAME specifications. Further, additional
PVS strategies, appropriate for use in proofs of prop-
erties of SCR specifications, have been developed [1].
In practice, most properties of interest for an SCR au-
tomaton are either state invariants (properties of each
single reachable state) or transition invariants (prop-
erties of all reachable transition pairs of states). State
invariants, which are one-state properties, must either
be proved by induction or by appealing to other state
invariants. Although induction can also be used to
prove transition invariants (which are two-state prop-
erties), this approach is seldom appropriate, since the
transitions possible from any given state seldom have
any connection to the transitions possible from one
of its successor states. Rather, transition invariants
are normally proved by reasoning directly about the
next-state relation of the SCR automaton. To an-
alyze these two kinds of properties, TAME provides
two SCR-specific strategies: SCRAINDUCT_PROOF,
which performs the standard parts of an induction
proof for a state invariant and SCR_DIRECT_PROOF,
which does the same for the direct proof of a transi-
tion invariant. These strategies combine into a single
TAME invariant strategy.

In many cases, TAME’s invariant strategy is suffi-

cient in itself to prove an invariant. When the invariant
strategy fails to complete a proof, there are two pos-
sible reasons: either the invariant does not hold, or
additional invariants are needed in the proof. Associ-
ated with every “dead-end” in the proof is a problem
transition. TAME supplies an analysis strategy AN-
ALYZE that causes PVS to display the details of a
problem transition to the user.

Applying the automatic invariant strategy of TAME
to our eight proposed invariants for CD resulted in
the automatic proof of four of these invariants. Three
of the remaining invariants were proved by proposing
and proving in TAME one or more auxiliary invariants.
Studying these auxiliary invariants revealed that all of
them were direct consequences of invariants generated
by the invariant generation algorithm (see Section 3.4).

TAME also detected 14 problem transitions for the
eighth proposed CD property, smOperation = sAlarm
= cKeyBank1Keyl = O (informally, “if CD is in Alarm
mode then key 1 in keybank 1 is 07). Some intelli-
gent exploration using the SCR* simulator led to the
discovery of a counterexample leading to one of these
transitions, thus establishing that the property does
not hold in our SCR specification of CD.

3.7 Applying the Validity Checker

VC, the SCR* validity checker [3], checks the valid-
ity of first-order one-state or two-state properties di-
rectly by using an initial term-rewriting phase followed
by application of a decision procedure. The decision
procedure uses BDDs (binary decision diagrams) to
evaluate propositional formulae and a constraint solver
to reduce simple integer arithmetic formulae (Pres-
burger formulae). The variable ordering heuristic for
the BDDs has been refined to be particularly efficient
for SCR specifications. VC can also perform induction
proofs by first applying a preprocessor to generate the
appropriate base and induction cases and then apply-
ing the direct method to the generated cases. A pro-
totype translator of SCR specifications into input for
VC has been built.

VC is not a general-purpose theorem prover but can
be applied to properties whose proofs do not require
higher-order reasoning, reasoning about nonlinear nu-
merical constraints, or interactive proof. Our eight se-
curity properties were all suitable for analysis by VC.
VC was able to prove directly all of the properties not
requiring auxiliary lemmas. Those properties that did
require auxiliary lemmas had to be reformulated for
VC with the auxiliary lemmas included as assump-
tions. Once this was done, VC was able to verify the
remaining true properties of the SCR specification. For
the false property (see Section 3.6), VC produced a sin-
gle problem transition that is a special case of one of
the 14 problem transitions reported by TAME. It is
also the problem transition for which a corresponding
counterexample was discovered using experimentation

in the simulator. Thus, like TAME, VC can also be
used to detect property violations.

3.8 Generating Test Sets for CD

Applying the above techniques can lead to very
high-quality requirements specifications. Although
high-quality requirements specifications are valuable,
the ultimate objective of the software development pro-
cess is to produce high-quality software—software that
satisfies its requirements. To weed out software errors
and to convince customers that the software perfor-
mance is acceptable, the software needs to be tested.
An enormous problem, however, is that software test-
ing, especially of safety-critical systems, is extremely
costly and time-consuming. It has been estimated that
current testing methods consume between 40% and
70% of the software development effort [2].

One benefit of SCR is that the high-quality speci-
fication produced by the method can play a valuable
role in software testing. We have developed an auto-
mated technique [4] that constructs a suite of test cases
from an SCR requirements specification. A test case is
a sequence of system inputs, each coupled with a set
of system outputs. We have built a prototype tool in
Java based on this technique which automatically con-
structs a suite of test cases from an SCR requirements
specification. Given the Java tool’s early success in
constructing test cases [4], we expect that using the
tool to generate test cases from the CD specification
should be equally successful. The CD project manager
has expressed significant interest in using test cases
generated by our Java tool to test the CD software and
other related software. Hence, the next crucial step in
applying our method is to use the Java tool to generate
test cases from the CD requirements specification.

4 Lessons Learned

This section answers the questions posed in the in-
troduction, based on our experience with CD.

Ease of Use. We are experts in SCR, and thus did
not need to learn the SCR specification method. Al-
though we are novices in the area of secure systems, we
nevertheless were able to produce a well-formed SCR
specification for CD in just two weeks and to analyze
a set of security properties for CD in less than three
weeks. The brief time required to specify and to ana-
lyze the CD requirements using SCR* is evidence that
SCR is easy to use.

The direct use of formal methods such as model
checkers or theorem provers requires the user to invent
an appropriate model of a system for analysis by these
tools. Much of the advantage we experienced with
SCR arises because SCR provides the user with a well
thought-out organization for a specification and an edi-
tor for creating well-structured specifications. Further,
SCR specifications can be automatically transformed
into representations suitable for analysis by Spin, PVS,

and other formal analysis tools. This greatly simplified
our application of model checking and theorem proving
to the SCR specification of CD.

There were some difficulties. First, while Spin is
well integrated into the toolset, there are inherent dif-
ficulties with Spin itself. For example, the effects of
different settings of the Spin options are not obvi-
ous, so using Spin often involves much trial and er-
ror. Also, because a full state space search is usu-
ally infeasible, what conclusion to draw when Spin
fails to find a counterexample is unclear. Second, the
interpretation of proof dead-ends in TAME (was an
auxiliary invariant needed, or did they correspond to
counterexamples?) requires thought and creativity. Fi-
nally, some of the tools, including the invariant gener-
ator, VC, and TAME, are not fully integrated into the
toolset. Hence, they cannot conveniently exchange in-
formation. Moreover, some invariant generation needs
to be done by hand since the full invariant generation
algorithm is not implemented, and some rewriting of
the SCR specification is sometimes needed before the
automatic translator into TAME can be applied.

Benefits. As Section 3 makes clear, we obtained sev-
eral benefits from applying SCR, to CD. First, we have
a complete and consistent requirements specification
for CD. Second, this SCR specification has been ver-
ified to satisfy seven security properties. Third, we
have demonstrated that one particular property does
not hold, and we have a counterexample that demon-
strates the violation. Besides having a “good” SCR
specification for CD, we discovered a few instances of
incompleteness in the prose requirements document:
a missing mode (as stated above) and some missing
mode transitions.

In contrast to our positive view of the benefits ob-
tained, the CD program manager viewed the formaliza-
tion of the CD specification to be valuable mainly as a
basis for automatic test case generation and automatic
code generation. He was not especially interested in
our formalization of CD or our formal analysis of its
properties.

Cost-Effectiveness. As discussed above, it took us
two person-weeks to specify a real system and less
than three to analyze the specification. Thus, the
effort required was low-cost. Moreover, we consider
the benefits—a precise “build-to” specification that we
know 1) is well-formed, 2) satisfies seven security prop-
erties, and 3) fails in a well-understood way to satisfy
an eighth property—to be well worth that effort.

Scalability. We note that CD is a real system, and not
a toy. The following statistics show that the CD speci-
fication is moderately complex. Our SCR specification
of CD has 39 variables—17 monitored variables, 3 aux-
iliary variables, and 19 controlled variables. Both the
relationship among these variables and their individual

tables are complex. In any state after the initial state,
the monitored variable mHostCommand can take one
of 17 values, and therefore, in any state of the CD,
there are 16 possible input events involving changes
in this variable. In addition, there are 16 other in-
put variables. As a result, the mode transition table
is large, involving 55 events to define 25 mode transi-
tions. Many event tables in the specification are also
large: the average number of events per table is 8, with
the largest table containing 16 events.

SCR and its analysis techniques are not extraordi-
narily strained by a specification of this complexity.
Full consistency checking of the CD specification takes
around eight minutes. Individual Spin runs to analyze
the specified properties require only a few—between
one and thirteen—minutes. The proofs of the (true)
state invariants require an average of six to seven min-
utes in TAME; the proofs of transition invariants re-
quire one minute or less.

Where will the problems arise as SCR. is applied to
larger and more complex specifications? In connec-
tion with the larger example of the WCP specification
studied in [6], we have already encountered difficulty
with the PVS typechecker. We developed abstractions
of the WCP specification for six different properties,
and then applied TAME to to the properties in these
abstractions. Only three of the abstractions could be
type-checked in PVS, one after some hand optimiza-
tion. That the PVS prover, unlike the typechecker, did
not run out of memory for this last property suggests
that the typechecker may be the biggest bottleneck in
applying TAME to properties of more complex sys-
tems. A second problem, described above, is that of-
ten, model checkers do not run to completion on large
examples. As a result, counterexamples may not be
found, even when they exist. A third problem we have
encountered is the slowness of the current SCR editor
in displaying certain information, such as the variable
dictionary, when the number of variables is large.

How to solve the PVS typechecking problem is an
open question; the nature of the problem is somewhat
subtle, since, for example, there is not an exact cor-
relation of typechecking complexity with the number
of state variables. An improvement that would ad-
dress the problem with model checking is the develop-
ment and implementation of better abstraction meth-
ods. The problem with display speed in the SCR editor
has been solved in a new Java implementation of the
SCR* toolset that is currently in progress.

Applying SCR to a Secure System. NRL origi-
nally developed SCR to specify requirements for con-
trol systems (e.g., avionics). CD, in contrast, is an
information system that must satisfy a set of security
properties. While most of CD’s behavioral require-
ments were easily captured by SCR, capturing others
in the SCR black box model was problematic. The

SCR specification puts portions of CD’s memory on
the interface of the black box. It describes the rules
CD’s implementation must follow when loading keys
and algorithms into memory and the rules for clear-
ing memory when certain undesired events (e.g., power
failure) occur.

As noted above, using SCR, we were able to verify
the seven correct security properties we identified for
CD, and to find a counterexample for the incorrect one.
Since the actual security requirements are sensitive, we
did not use them in verifying CD. Although we did
not have access to the actual security properties, the
CD project manager confirms that all but one of the
properties that we identified are reasonable security
properties. This gives us confidence that we would
have similar results with the actual properties.

Because the authors of the prose requirements de-
cided to omit details of some sensitive requirements
(e.g., cryptographic synchronization, keystream gener-
ation), the SCR specification does not capture them.
How well SCR could capture these requirements re-
mains an open question.

Starting with Prose. Many consider the task of cre-
ating a formal specification from prose to be daunting.
Yet, the two person-weeks of effort required to trans-
late the prose CD requirements into the SCR tabular
notation was relatively modest. The effort compares
favorably with the approximately one person-week re-
quired to translate the larger, semi-formal WCP spec-
ification to the SCR notation using a partially auto-
mated process [6].

While the CD and WCP requirements documents
differed in several important ways (e.g., prose vs. semi-
formal specification, requirements for communication
security device vs. control system), both captured be-
havioral requirements relatively completely and pre-
cisely. In both translation efforts we did not make (and
could not have made correctly) decisions about the re-
quired behavior of each system; we only had to decide
how to capture that behavior using SCR notation. In
our experience, this does not require major effort.

The effort to create the CD SCR specification could
have been reduced. Much of the translation effort in-
volved mapping prose requirements organized by sys-
tem function to SCR requirements, which are orga-
nized by the different variables. Organizing the prose
requirements in a way that better supports hand trans-
lation to SCR (e.g., describing in one place all rules
that determine the value of a particular output) would
reduce the translation effort. We believe that eliminat-
ing much of the prose and capturing decisions about
required behavior directly with the SCR toolset would
save time and effort. Such an approach would rely
on simulation to communicate the specified system be-
havior to those without the time or skills to read the
specification.

Error Detection vs. Verification. The CD case
study has demonstrated that it is possible to verify
properties of the requirements specification of a real
system, and, moreover, that it is possible to do so with-
out extraordinary effort. Our experience suggests that
verification may be feasible in other real-world appli-
cations.

Our case study has also shown that by applying
verification, one can uncover errors that tools such as
model checkers miss. This occurs in part because theo-
rem provers can reason about abstract values, and as a
result are much less dependent upon model abstraction
than model checkers.

Process. In previous work with the SCR* Toolset
[6], model checking before mechanical theorem prov-
ing eliminated the effort of trying to verify properties
that do not hold. By guiding improvements in the for-
mulation of some properties, model checking reduced
the verification effort for CD as well. Unlike our ex-
perience with the WCP [6], however, model checking
failed to find a violation of an invalid property. Both
TAME and VC uncovered a violation of this property.
Moreover, the tools in the toolset were complementary
in additional ways: the results of consistency checking
were useful to later analysis tools (e.g., the results of
disjointness checking influenced the TAME represen-
tation of CD), and invariant generation proved suffi-
cient to find all auxiliary lemmas needed in theorem
proving. More automated communication between the
tools would improve the process.

5 Some Unanticipated Results

We were surprised that, as noted above, Spin failed
to uncover any counterexample for the false property
of CD (in contrast to our experience with the WCP in
[6]). This may be because the property in this case is
“nearly true”, i.e., the density of counterexamples is
small. In any case, it shows that the attempt to prove
properties true can be useful in the search for errors.

Another unexpected result was that automatically
generated invariants provided all of the auxiliary lem-
mas needed in the proofs of the true properties. How
often this will happen in other analyses is unclear.
However, the fact that it happened in this case demon-
strates the potential power of automatic invariant gen-
eration and the importance of better information shar-
ing between the different tools.

Although we had previously encountered similar
skepticism about formal methods, we were surprised at
the CD project manager’s negative view of our formal-
ization of the CD requirements. The project manager’s
view may partly be a result of the phase of development
of CD when we undertook this study—implementation
was underway—and may change when, as planned, we
apply SCR in the initial stages of development of the
CD transmitter (which has not yet been designed). Ap-

plying SCR in the initial phase of a project is likely
to increase the cost-effectiveness of doing so, since the
most costly errors in software development tend to oc-
cur during the requirements phase. However, for sell-
ing practitioners on the utility of formal methods, it
may be effective to emphasize that a high-quality for-
mal specification provides the foundation for the auto-
matic generation of both source code and test cases.

6 Related Work

Other tabular specification methods with support-
ing tools include Tablewise [10] and RSML [5]. Table-
wise was developed at Odyssey Research Associates,
Inc. as part of a NASA-funded project in formal meth-
ods for the development of high assurance avionics soft-
ware. RSML has been successfully applied to finding
errors in the specification of a complex avionics sys-
tem: the Traffic alert and Collision Avoidance System
IT (TCAS 1II).

Tablewise specifications consist of decision tables,
which are similar to SCR condition tables, but use a
more complex format to permit very simple (atomic)
table entries. Like SCR, Tablewise provides disjoint-
ness and coverage checks. It also supports the gener-
ation of Ada code from the decision tables. Tablewise
is not being further developed.

The AND/OR tables in RSML specify details of
transitions, while SCR, tables specify how dependent
state variables are updated. As a result, RSML speci-
fications require many more tables than SCR specifica-
tions. In contrast with SCR, RSML explicitly supports
specification features such as hierarchical states and
local variables. Like SCR, RSML provides automated
support for checking consistency and a version of com-
pleteness (called d-completeness). Automated support
for the analysis of specification properties beyond con-
sistency and completeness is not yet extensive.

7 Conclusion

The CD example shows that the SCR method can
be applied to systems other than embedded control sys-
tems. In addition, our experience with CD has under-
scored the importance of supporting a formal method
with a suite of analysis tools, up to and including me-
chanical theorem proving. In particular, it has shown
that the individual tools can both complement and
support one another.

SCR has now been applied to many real systems,
e.g., the Operational Flight Program of the A-7 aircraft
[8], a flight guidance program [13], a weapons control
panel (WCP) of a Navy submarine [6], and now, CD.
In both the A-7 and flight guidance applications, af-
ter a best effort to eliminate specification errors using
inspection, the SCR consistency checker still revealed
a significant number of errors. Consistency checking
also revealed errors in the WCP specification, and fur-
ther analysis by model checking revealed several prop-

erty violations. The CD example has illustrated the
usefulness of all the SCR analysis tools from consis-
tency checking through theorem proving. Together,
the above examples show that it is both feasible and
beneficial to apply SCR to formalize and analyze real-
world systems.

Acknowledgements

We wish to thank Stanley Chincheck and Thomas
Sasala for providing us with their prose specification for
CD, and Stan, Tom and our colleague Bruce Labaw for
many helpful discussions. We also thank our colleagues
Ralph Jeffords, Ramesh Bharadwaj and Steven Sims
for performing some of the analyses of CD.

References

[1] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS in-
terface to simplify proofs for automata models. In Proc.
User Interfaces for Theorem Provers 1998, Eindhoven,
Netherlands, July 1998.

[2] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, 1983.

[3] R. Bharadwaj and S. Sims. Salsa: Combining decision pro-
cedures for fully automatic verification. Draft.

[4] A. Gargantini and C. Heitmeyer. Automatic generation of
tests from requirements specifications. In Proc. ACM 7th
FEur. Software Eng. Conf. and 7th ACM SIGSOFT Symp.
on the Foundations of Software Eng. (ESEC/FSE99),
Toulouse, FR, Sept. 1999.

[5] M. P. E. Heimdahl and N. G. Leveson. Completeness
and consistency in hierarchical state-based requirements.
IEEE Transactions on Software Engineering, 22(6):363—
377, June 1996.

[6] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and
R. Bharadwaj. Using abstraction and model checking to de-
tect safety violations in requirements specifications. IEEE
Trans. on Softw. Eng., 24(11), Nov. 1998.

[7] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software re-
quirements. In 10th Intl. Conf. on Computer Aided Verifi-
cation (CAV’98), Lect. Notes in Comp. Sci., pages 526-531.
Springer-Verlag, 1998.

[8] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Auto-
mated consistency checking of requirements specifications.
ACM Transactions on Software Engineering and Method-
ology, 5(3):231-261, April-June 1996.

[9] G. J. Holzmann. The model checker SPIN. [EEE Trans.
on Softw. Eng., 23(5):279-295, May 1997.

[10] D. N. Hoover and Z. Chen. Tablewise, a decision table
tool. In Proc. 10th Annual Conf. on Computer Assurance
(COMPASS ’95), pages 97-108, Gaithersburg, MD, June
1995. IEEE.

[11] R. Jeffords and C. Heitmeyer. Automatic generation of
state invariants from requirements specifications. In Proc.
6th International Symposium on the Foundations of Soft-
ware Engineering (FSE-6), Orlando, FL, November 1998.

[12] N. Lynch and F. Vaandrager. Forward and backward sim-
ulations — Part II: Timing-based systems. Information and
Computation, 128(1):1-25, July 1996.

[13] S. Miller. Specifying the mode logic of a flight guidance sys-
tem in CoRE and SCR. In Proc. 2nd Workshop on Formal
Methods in Software Practice (FMSP’98), 1998.

[14] N. Shankar, S. Owre, and J. Rushby. The PVS proof
checker: A reference manual. Technical report, Computer
Science Lab., SRI Intl., Menlo Park, CA, 1993.

