
Agent Trustworthiness

Lora L. Kassab1 and Je�rey Voas2

1 Naval Research Laboratory

Center for High Assurance Computer Systems

Washington, D.C. 20375, USA

kassab@itd.nrl.navy.mil
2 Reliable Software Technologies

21515 Ridgetop Circle, Suite 250

Sterling, VA 20166, USA

jmvoas@RSTcorp.com

Abstract

Agent-based technology could revolutionize the manner by which distributed computation is performed.

The fact that the information returned by an agent to the agent owner cannot be validated by the owner is

impeding the widespread adoption of agent-based computing. Our paper addresses this concern by proposing

a new type of software assertion to increase observability by providing agent owner's with agent state \snap-

shots." These snap-shots provide agent owners with: (1) a means to determine whether its agent's results are

trustworthy, (2) information to debug a roving agent, (3) a greater ability to meet real-time constraints, and

(4) a means to identify hosts systems that are resource-de�cient, grant insu�cient access rights, or tamper

with agents. We present a methodology and tool for selecting and embedding protective assertions into

agent code. We also discuss how the information from the assertions is automatically analyzed. Although

our proposed assertions are not foolproof, they make it much harder for an agent to be tampered with in ways

that are not detectable by the agent's owner. This knowledge is paramount for the utility of an agent-based

system.

1 Introduction

Agent-based technology is transforming distributed computing from a scienti�c \number crunching"

exercise to a more
exible computing arena. The explosive growth of the Internet as a medium

for communication, business, and electronic commerce has fostered the growing interest in agent-

based systems (ABS). An agent's migratory behavior provides the ability to utilize an unbounded

set of sources for information and computing resources. The salient characteristic of ABS is the

conservation of network bandwidth; once the agent migrates to a host system, all subsequent

computation is performed there.

The
exibility of agent-based computing is not without penalty since the value-added by ABS

is defeated if: (1) malicious or errant hosts attack agents, (2) malicious or errant agents attack

hosts, or (3) erratic Internet behaviors or resource scarcity pose intolerable time delays.3 These

possibilities testify why wide-spread use of ABS is impeded for critical applications. This paper

presents a scheme that addresses (1) and (3). This scheme can also be modi�ed to address (2), but

that will not be in the scope of this paper.

Even though host systems have a \trusted computing base" security advantage over agents,

security vulnerabilities threaten each key player in this paradigm:

3The concern over protecting agents during migration is minimal as protection can be achieved using well-known

cryptographic protocols to transfer an agent securely.

Agent Agent's have no privacy; hosts can spy out code, data, or control
ow.

A host system can tamper with an agent's code, data, or control
ow.

An agent's code can be executed incorrectly.

An agent can be terminated.

A host can lie about system call results, its identity, or any requested data.

A host can snoop or interfere with any agent communication.

Agent Owner Agent owner's su�er from the e�ects of all of the agent vulnerabilities.

Agent owner's also su�er from not knowing if an agent's results are correct.

Host System Agents can infect host systems with a virus.

Agents can exhibit unintended or undesirable consequences during execution.

Agents can greedily consume resources and cause denial of service.

Figure 1 illustrates the core problem of ABS: an agent owner does not trust its agent (once

dispatched), and agents and host systems4 do not trust each other (mutual suspicion). This lack of

trust raises three critical questions: (1) If an agent owner cannot trust an agent's results, then what

is the purpose of using this computing paradigm? (2) If an agent cannot trust the host system,

then why would the agent migrate to that host system (if this is even possible to control)? (3) If

a host system cannot trust an agent, then why would the host system allow the agent to execute?

Even in a closed, \trusted" environment, these questions are not easily answered, because there is

no guarantee that players are (and will remain) benevolent and cooperative. This lack of trust may

ultimately determine whether ABS will receive serious attention.

Owner
Agent Host

System
Agent Agent

OBSERVABILITY

TRUST

Figure 1: Trust Problems in an ABS

The many bene�ts from agent-based systems should not be overshadowed by these problems.

There are approaches that can decrease the vulnerabilities of agents and agent owners. Our paper

presents one such approach.

Our paper focuses on decreasing the vulnerabilities of the agent and of the agent owner to

increase the reliability (and thus usability) of the agent computing paradigm. Others have addressed

mechanisms for protecting host systems from the vulnerabilities of non-local code [8, 22, 30, 32].

Although protecting systems from mobile code is not a solved problem, sandboxing techniques

and access control have been mostly successful for constraining non-local code. The problem of

protecting agents from potentially malicious hosts has been deemed as the hardest security problem

of this paradigm with very low solubility [10, 23]. This is primarily attributed to the fact that it

is impossible to prevent malicious or faulty sites from tampering with cleartext agents [4] or from

preventing any of the agent vulnerabilities listed above.

Recent research in mobile computing security contradicts the above statements by presenting

a protocol that allows certain mobile code programs (ones that compute polynomial or rational

4We use the term host system as opposed to agent server, because the vulnerabilities of this paradigm a�ect the
entire host system and not simply the agent server process executing on a machine.

2

functions) to execute in encrypted form except for the cleartext instructions [20, 21]. Therefore,

execution on a host system does not compromise an agent's privacy and it safeguards against

agent tampering. Although this approach is critical for protecting mobile agents (which compute

functions in this particular set of functions), we assume cleartext agents in order to encompass all

agent computations.

Our paper presents novel ideas for fortifying agent-based systems with the ability to assess

trust through observability, with a focus on increasing the observability of an agent's state to its

owner. The core of our technology is based on a new type of run-time software assertion, termed a

protective assertion. We have borrowed the idea of using assertions to increase observability from

the integrated-circuit design and software testing communities, who have known for years that

increased observability provides increased trust. Protective assertions provide a dynamic strategy

for an agent owner to observe its agents in order to make better decisions whether vulnerabilities

have been exploited.

2 ABS Requirements

Before describing our approach, we will �rst identify a few necessary characteristics of a plausible

security solution that do not limit the potential and
exibility of the mobile agent computing

paradigm.

The most common approach for protecting agents and host systems has been simply to avoid

migration to non-trusted hosts and not admit unknown code. This is commonly known as the

\trust" approach. The problem with this approach is that it is absolute (i.e., full trust or no trust)

and it relies on blind-faith that all hosts and agents are consistently benign. Furthermore, this

approach limits the intention that mobile agents exploit open and evolvable networks. That is, the

network is \closed" and new hosts can only be integrated into the network if all other hosts trust

the newcomers. Thus, we contend that any realistic, e�ective solution must presume a network of

untrusted hosts.

In addition to assuming the presence of untrusted hosts, a plausible security solution targets

detection instead of prevention. Techniques that make tampering more \di�cult," such as mutating

agents in the time limited blackbox approach [10] is less viable than focusing on ways to determine

if malicious host acts have been attempted. We contend that survivability of the agent owner is

jeopardized if the returned information is incorrect or late returning. Therefore, mechanisms that

detect either occurrence improve the survivability of the agent owner. We say this because if the

agent owner is being deliberately fooled by incorrect information from its agents, the agent owner

is almost certainly under some form of an information assault. If we can thwart such assaults, then

the survivability of the agent owner is increased.

Our �nal requirement is the ability to track intermediate agent states. Mobile agents will be

an important ingredient in producing secure,
exible distributed systems if there are advances in

tracking the intermediate states created when mobile agents are executed [6]. Vigna has proposed

one method for tracking intermediate states to detect the possibility of agent tampering through

traces. These traces shadow the execution of an agent in a manner that cannot be forged by the host

[23]. Tracking intermediate states, however, should not be equated with an interactive protocol. An

interactive protocol between an owner and its mobile agents requires active participation from both

an agent owner and an agent, precluding the possibility of the owner going o�-line. Simply reporting

information back to the agent owner provides the owner with the ability to better determine if the

state of its agent is \sound" without forcing the owner to remain connected to the network (as

these reports can be sent via email).

3

Notice the similarity between the trust problem associated with ABS and the problem associated

with composing Commercial-O�-The-Shelf (COTS) software with customized software [27, 26, 25].

Developers who must rely on COTS functionality for certain components of their systems rarely

trust it. It is a black box to them. Likewise, the state of a host system that a visiting agent will

encounter is a black box to the agent owner. Further, an agent owner cannot know exactly how its

agent will behave on a host system unless the owner has full access to the hardware and software

of the host system. Because full access is not realistic, techniques that reveal the state of agents

and the state of execution environments to the owners are warranted.

Throughout history, any time a process has been shrouded in secrecy, suspicions have arisen.

For example, around twenty years ago, Joseph Newman attempted to get a patent for a perpetual

motion machine from the US Patent and Trademark O�ce [15]. When asked by the o�ce to reveal

the internals of the machine, Newman refused, and no patent was granted. Today, the level of

distrust of agent computation is similar to the disbelief that surrounded Newman's invention. Had

Newman let the patent examiners see inside and had the machine worked as claimed, the examiners

would certainly have approved the application.

We contend that a security solution can be found that will provide a means for an owner

to determine the legitimacy of its agents. Without state information about agents and hosting

environments, the trustworthiness of an agent's results can only be viewed with skepticism. Thus, to

provide e�ective protection to agent owners without introducing large overhead costs or diminishing

the
exibility of ABS, our approach will be based on following assumptions: (1) mobile agents

execute in a network containing untrusted hosts, (2) detecting unexpected behavior by host systems

is the key to protecting agents and agent owners, and (3) agent owners must track the states of

their agents.

3 Protective Assertions

As stated earlier, our approach to increasing trust in ABS is based on the programming practice

of using software assertions. Traditional run-time assertion checking enhances software validation

by helping to ensure that program states satisfy certain semantic constraints. Some of the earliest

documentation on assertions can be traced to [9, 14], and more recent research into giving programs

the ability to check themselves during execution can be found in [18, 19, 3, 1]. While these ideas

have generally addressed fault detection, our contribution to assertion theory is to modify it and

apply it to increasing trust in ABS.

The conjecture that software assertions are invaluable as a complement to testing software is

reinforced by others. Osterweil and Clarke classi�ed assertions in their 1992 IEEE Software article

as \among the most signi�cant ideas by testing and analysis researchers" [16]. Microsoft reports

copious use of assertions [13, 5]. In fact, interest in assertions has become so great that recent

languages support assertions, including Anna [11] and Ei�el [12].

Software assertions are usually Boolean functions that evaluate to TRUE when a program

state satis�es a semantic condition, and FALSE otherwise. Assertions can, however, output more

than TRUE or FALSE, and in fact, can modify internal program states. Note that each assertion

produces more program \output" than if the program did not have the assertions. This increases

program observability.

Unlike the traditional use of assertions as a validation technique, our protective assertions in-

crease the observability of a \seemingly black-box agent" to its owner.5 This provides the detection

5The reason that we say \seemingly black-box agent" is that after a cleartext agent leaves \home," there is no
way to know whether the agent's integrity is preserved.

4

that is necessary to add trust to ABS.

A protective assertion dynamically tests both the state of the agent and the state of the execution

environment. Protective assertions can provide the following information to an agent owner.

� Protective assertions reveal any owner-speci�ed agent state \snap-shots" throughout its exe-

cution at hosting systems. These \snap-shots" provide agent owners with a means to deter-

mine whether to trust its agent's results (derived from one or more possibly untrusted hosts).

Since agents are intended to be autonomous programs, protective assertions also provide an

avenue to learn about decisions made by agents. Further, this information can also be used

by a programmer to debug a roving agent.

� Protective assertions can \test" the execution environment. This not only provides agents

with the insight as to when to migrate based on current resource consumption, access restric-

tions or resource expenses on the hosting system, but it also allows agent owners to better

determine (and meet) real-time constraints for agent computations.6 That is, agent owners

can determine if and when other agents need to be dispatched in order to ful�ll the overall

agent computation.

� Finally, protective assertions provide the opportunity for owners to identify host systems

that are malicious, resource-de�cient, or do not grant su�cient access rights. This is valuable

information for subsequent agent computations.

Thus, our protective assertions provide a window into the events that occur during an agent's

migration. This is currently not available, resulting in justi�ably suspicious agent owners.

Our approach for providing trust is geared for Java agent-based systems, since Java is quickly

becoming the development language of choice in a number of ABS: IBM Aglets, Mitsubishi Elec-

tric's Concordia, General Magic's Odyssey, and ObjectSpace's Voyager to name a few. Therefore,

there are several Java agent-based systems that could bene�t from Java protective assertions. Even

though our protective assertion tool is intended for Java agent-based systems, the theoretical un-

derpinings are independent of the agent-based system and capable of building this resilence into

any agent-based system.

We assume that all agent owners and host system owners (this is the party that is responsible

for launching the agent server process on that host system) own a public and secret key. Migrating

agents are encrypted using the public key system PGP [17]. As in PGP, a random session key is

generated for each agent. Using the private key algorithm, IDEA, the agent is encrypted with the

random session key. Then, the RSA algorithm is used to encrypt the random session key with the

recipient's public key. Both the encrypted agent and the encrypted session key are dispatched from

each agent migration point.

In order to transmit data from a host system back to the agent owner, the data is encrypted

with the random session key that the agent carries. The agent owner can then use the random

session key to decrypt the data received. Thus, cryptography is used to (1) securely transport

agents and (2) return protective assertion results (as explained in Section 3.1). We assume that

the keys for each hosting system have not been compromised.

3.1 Agent Protective Assertion Process

This section speci�es: (1) the process by which protective assertions are embedded into agents,

and (2) the process for how the results from the protective assertions are analyzed. These two

6We anticipate that use of resources will not be granted to visiting agents without a fee (this concept was employed
in General Magic's Telescript environment [31].

5

processes are illustrated in Figure 2. The shaded blocks in Figure 2 represent \forti�ed" agents

with protective assertions. Our complete approach consists of four steps in the following order: (1)

employing fault injection [29], (2) using the Assertion Editor GUI, (3) instrumenting agents with

protective assertions, and (4) generating an oracle. We will explain each of these in more detail:

Source Code
Java Agent Assertions

Selected

GUI
Editor

Assertion
Instrumented
Java Agent

with Assertions
Parser
Code

Source
Compile Dispatch

Agent
Bytecode

Oracle

Injection
Fault

Figure 2: Process for Embedding Protective Assertions

1. Employing Fault Injection: Fault injection will identify agent weaknesses by simulating

malicious, errant, or intolerable host system scenarios. As a result, fault injection will recom-

mend what protective assertions are needed to \harden" the agent against weaknesses that

fault injection isolates in an agent.

2. Assertion Editor GUI: Once the user has insight into which protective assertions are most

necessary, the next step in our process involves the agent owner (or user) to (1) structure

the protective assertions using the Assertion Editor GUI, (2) specify where the protective

assertions are to be placed in the code, and (3) specify what information, if returned, indicates

that the agent is no longer trustworthy.

Figure 3 is a screen-shot of the Assertion Editor GUI that is used to specify protective

assertions. This GUI is part of Reliable Software Technologies AssertMate (TM) that is used

to specify assertions for the Java language, and is also used to specify protective assertions

for ABS.7

Note that, an agent owner can select protective assertions without �rst employing fault injec-

tion. In this situation, the selected protective assertions would depend on what information

the owner deems su�cient for deciding whether an agent's results are trustworthy. Once pro-

tective assertions are selected, our tool performs the remaining steps in the process without

requiring additional user intervention.

3. Instrumentation: Next, our tool parses the agent's Java source code and embeds the pro-

tective assertions assertions into the agent.

4. Oracle Generation: In addition to parsing the code to embed protective assertions, our

tool also builds an oracle. The tool creates an oracle daemon that executes on a designated

machine to collect and analyze the information returned from executed protective assertions.

The agent owner must provide the criteria for analyzing the results received by the oracle,

i.e., what return information from the agent is reasonable and what is not reasonable. Thus,

a 1:1 mapping exists between the protective assertions and the information that the oracle is

waiting to receive and analyze.

As an agent executes on a host system, the information generated from every executed pro-

tective assertions is collected locally (on a host system) and sent back to the oracle. If no

7Java does not support an assertion capability.

6

Figure 3: Assertion Edit Window

machine will be accessible throughout an agent's migration, this information can be sent back

via email. In this situation, once the agent owner is back on-line, the oracle can be executed

using the email messages (one from each host system) as input.

Messages received from host systems include the outcome of each (uniquely identi�ed) pro-

tective assertion that was executed. Messages are sent back to the agent owner encrypted

with the random session key carried by the agent.

3.2 Agent Fault Injection

Since selecting the appropriate protective assertions is critical for producing \forti�ed" agents, we

will explain in more detail how fault injection helps us make these decisions.

Fault injection is a family of techniques (that are similar to testing) which provide worst-case

predictions for how badly a system will behave in the future. Though tools exist to automate fault

injection, it is also possible (but more time consuming) to perform fault injection manually [24].

Regardless of whether fault injection is automated or manual, fault injection identi�es potential

agent weaknesses to an agent owner prior to agent dispatch.

Throughout an agent's migration, it is possible for anomalous events such as: (1) a host system

seeding an agent with misinformation and disinformation, (2) an agent exhibiting unintended or

undesirable consequences during execution on a given host system, or (3) an agent reaching an

unanticipated state during execution. Fortunately, fault injection can be modi�ed to simulate each

of these events. This allows agent owners to learn prior to dispatch how their agents will respond

to such events in the \wild." If agents are vulnerable to these events, then protective assertions are

warranted.

Protective assertions harden agents by dynamically ensuring that the agent's state remains

\acceptable." Fault injection provides insight into which agent computations need hardening. For

example, a host system could tamper with state data or provide erroneous system call results. A

host system could easily change values stored in memory, such that subsequent access causes an

7

agent program to access erroneous data. It is even easier for a host to advance the program counter

to bypass a system call or not allow an exception to be thrown.

By simulating these types of events with fault injection, locations in an agent's code can be

identi�ed that require hardening. Recognize that even if the embedded protective assertions are

bypassed by the host system, this lack of information returning to the agent owner is a clear

indication to the agent owner of probable malicious activity.8 Our goal is not to attempt to prevent

attacks by host systems, but rather to enable an owner to determine whether malicious activity is

likely to have occurred.

Fault injection for Java agents is best applied to the input space and the host system interface.

Since all arrays in Java are automatically bounds checked before they are accessed (and assuming

there is not a bug in the JVM), bu�er over
ow is not a concern for Java programs. Further, Java

programs cannot access random memory locations. Therefore, many of the standard ways that

fault injection is applied to languages like C do not apply. However for other agent languages that

do not enforce type safety or prohibit memory access, these standard fault injection anomalies can

be applied to simulate such events.

Figure 4 illustrates how fault injection can be applied to Java agents. Here, we illustrate fault

injection simulating malicious or errant host input or system call results.

Resources and System Calls

Input
Space

Java Agent

Source Code

Fault

Injection

Figure 4: Agent Hardening using Fault Injection

Not only can fault injection aid in selecting protective assertions, it can be used to build recovery

(fault tolerance) into agents. Although improving the fault tolerance of agents does not eliminate

the possibility of malicious hosts killing agents, fault injection helps to identify situations where

agent resilience can be improved. And fault injection can be re-applied after protective assertions

are added to see if the added assertions have strengthened the weaknesses.

Note the utility of applying fault injection prior to dispatching an agent is highlighted by the

ability to detect where appropriate checks are still needed. This improves overall agent performance

by reducing the possibility that dispatched agents will terminate due to careless mistakes (e.g., an

exception being thrown because an agent received unanticipated input from a host system).

Fault injection aids in selecting which protective assertions to embed and where to embed them.

Metrics can also play a valuable role here: triggering the protective assertions to send back a message

to the oracle daemon. Software metrics traditionally refer to measures of various structural entities

of a program. In contrast, semantic metrics measure qualities such as reliability, the frequency of

certain places in the code being exercised (these are termed as pro�ling metrics), execution traces

through the code, etc. Protective assertions can utilize pro�ling metrics to measure the clock time

spent executing certain parts of the agent by a host. For example, a system time probe assertion

can be placed at the beginning and end of a code block.

This pro�ling metric serves several important purposes related to trust. If the time spent is

8A complete lack of information suggests that the agent was killed by a host system or the agent's protective
assertions were removed.

8

high (compared to the expected ranges expected by the oracle and thus determined by the owner),

that tells the owner and the agent that the host is providing few resources to the visiting agent.

If the time spent is unusually small or if no times are returned to the owner, then this suggests

the host may have skipped over selected code or tampered with the agent. Regardless if the host

tampered or skipped code, the agent owner now knows: (1) not to trust the agent's results, (2) to

dispatch another agent, and (3) possibly which traversed host system was the culprit.

By combining fault injection with metrics, protective assertions can be crafted to make an agent

more resilent to host system attacks and allow owners to inspect agent states more closely. This

next section provides examples of types and format of protective assertions.

4 Classes of Protective Assertion

This section presents the classes of protective assertions that can be embedded into agent code.

Assertions have the following format:

<assertion_type> (<condition>, <message>);

<assertion type> is one of the following statements:

� The ASSERT statement performs a semantic check at a particular location in a program like

the conventional use of assertions.

� The PRE CONDITION statement performs checks at method entry, the �rst statement in a

method.

� The POST CONDITION statements perform checks at method exit, the last statement in a

method but before any return statement.

� An INVARIANT statement checks whether the <condition> holds at the beginning and at

the end of every method in a class.

� The SYSTEM PROFILE statement checks system conditions at program start-up to check

whether a host system will provide a suitable execution environment.

� The PROBE statement is an assertion that unconditionally executes.

<condition> is any valid Boolean expression. An assertion �res when <condition> evaluates

to the Boolean false. These expressions are the same as any legal control
ow expression in the

Java programming language. Our tool provides a means for simplifying the creation of complex

Boolean expressions by allowing the use of existential quanti�ers (e.g., ForAll, ThereExists, etc.).

<message> is a text string that is displayed when an assertion �res. If our tool is used locally

to \test" the code, then the <message> is displayed locally. Once an agent is dispatched, however,

these <messages> will be collected locally on the host system and transmitted back to the agent

owner when the agent completes execution on a particular host system.

ASSERT, PRE CONDITION, POST CONDITION, and INVARIANT are useful for capturing

\snap-shots" of an agent's state, intermediate results, debugging information, and execution paths.

Applying these assertion classes to agent code is not that dissimilar from the traditional use of

assertions in non-mobile programs. For brevity, we will not elaborate on how these four assertion

classes are implemented for Java source code, and will instead refer the reader to the NIST report

[28] for detailed information. We will now focus our attention on the SYSTEM PROFILE and

PROBE constructs. These assertions have been customized for Java mobile agent code.

9

The SYSTEM PROFILE assertion \tests" whether an execution environment is suitable. This

statement can check for su�cient availability of system resources, or whether the hosting system

will provide the necessary access permissions for an agent to complete its task. For example,

the following assertion will �re if the amount of free memory is so insu�cient that the agent's

computation will take too long to terminate. This situation could prevent the agent from meeting

real-time constraints or it could cause the agent to exceed reasonable CPU resource expenses

(assuming a time-based resource expense system is in place). If this assertion �res, the <message>

is sent to the agent owner indicating that the agent is migrating.9

SYSTEM_PROFILE(Runtime.getRuntime().freeMemory() > TooLittleForMyAgent,

``Agent Migrating: Insufficient memory '' +

Runtime.getRuntime().freeMemory() + `` at site:'' + getHost());

Other SYSTEM PROFILE assertions can easily be created to check whether a host system grants

the appropriate �le permissions necessary for an agent to accomplish its task.

The ability to tamper with an agent's code, data, or control
ow information is considered one

of the most grave security vulnerabilities of agents. Determining when tampering has occurred

is a key challenge for our assertions and the oracle daemon. Protective assertions can capture

state information such as values of scoped variables, intermediate results, information returned

from system calls, database queries, whether code has been skipped, or any other dynamically

requested information. Further, protective assertions can reveal the \constants" that should persist

throughout migration. Inconsistency of this data is a clear indication of agent tampering. Once an

agent owner knows that tampering has occurred, the question of whether to trust the results of an

agent is immediately answered.

The PROBE assertion is best-suited for agent integrity checks.10 Execution of this statement

provides the ability to extract information about any class, including it's methods, �elds, and data.

To provide this information, we employ Java's core re
ection API. The core re
ection API supports

introspection of the classes and objects within a JVM. We take advantage of this API within the

PROBE assertion class as an opportunity to check the integrity of an agent's code and data.

Our following example illustrates the PROBE assertion. Here, the agent owner will be noti�ed

of all methods in the class, class name. The <condition> parameter is set to false to force execution

of this assertion.

PROBE(false, (Class.forName(class_name)).getMethods());

The agent owner already knows exactly (assuming the code isn't self-modifying) what method

names should be returned. Likewise, similar re
ection methods can be used to obtain underlying

information about all constructors within a class, �eld values, exceptions thrown, modi�ers, types,

number of parameters, etc.

Since owners embed protective assertions prior to agent dispatch, the owner knows (via the

oracle generated) what information is expected from the agent for each host visited. If there

is a signi�cant time lapse where no information is transmitted back to its owner via protection

assertions, then this strongly suggests that: (1) the agent was terminated, (2) protective assertions

were removed, or (3) other greedy resource consumptive processes have caused the agent to receive

little CPU access (if any). This is true because the PROBE assertions must be executed. Regardless

of which vulnerability was exploited, the bene�t is that the agent owner detects this occurrence

9The symbol + denotes concatenation.
10The previous assertion classes can be used as well, however, our PROBE statement is unconditionally executed

which is guaranteed to attempt to relay the information back to the agent owner.

10

and can react accordingly. Such knowledge is imperative for agent owners who must trust the

information that they receive from their agents.

5 Summary

The growing dependence on information predicates the necessity for information trustworthiness.

Unless the security weaknesses engendered by the ABS paradigm are adequately strengthened,

agent-based computing will be shelved as an insecure technology searching for purpose. We have

provided six classes of assertions that address these security weaknesses. Each assertion class boosts

an agent's observability to its owner. We are currently investigating additional classes.

Protective assertions, like other ABS security approaches, are not foolproof. Even with pro-

tective assertions, it is still possible to clone agents, tamper with agents, remove assertions, lie to

agents or tamper with agent communication. Although these malicious acts reduce the e�ectiveness

of employing protective assertions, our technique provides the capability to make informed deci-

sions if any malicious act was attempted. As stated earlier, if protective assertions are removed,

the subsequent lack of information returning to an owner suggests foul play.

Our approach can be criticized for the overhead required to return information to the owner. We

contend that this overhead is minimal relative to the computational bandwidth savings a�orded

by agents. A second criticism is that return data can be tampered with. However, only if the

tampered data is consistent with what the oracle anticipates will it go undetected. And this seems

unlikely unless host systems become omnipotent.

References

[1] J.M. BIEMAN AND H. YIN. Designing for software testability using automated oracles, In

Proceedings of International Test Conference, pages 900-907, September 1992.

[2] Boris BEIZER. Software Testing Techniques, Second Edition, International Thompson Computer

Press, 1990.

[3] M. BLUM. Designing Programs To Check Their Work, Technical report, University of California

at Berkeley, December 1988.

[4] David CHESS, Benjamin GROSOF, Colin HARRISON, David LEVINE, AND Colin PARRIS. Itinerant

Agents for Mobile Computing, IEEE Personal Communications Magazine, 2(5):34-49, October

1995.

[5] M. EVANS AND S. MCCARRON. The Assertion De�nition Language Translation System: An

Automated Test Generation Tool, Proceedings of Quality Week'94, San Francisco, CA, May

1994.

[6] William M. FARMER, Joshua D.. GUTTMAN, AND Vipin SWARUP. Security for Mobile Agents:

Issues and Requirements, In Proceedings of the 19th National Information Systems Security

Conference, pages 591-597, Baltimore, MD, October 1996.

[7] A. GHOSH AND T. O'CONNOR. Analyzing Programs for Vulnerability to Bu�er Overrun Attacks,

Technical report, Reliable Software Technologies, January 1998.

11

[8] Li GONG, Marianne MUELLER, Hemma PRAFULLCHANDRA AND, Roland SCHEMERS. Going Beyond

the Sandbox: An Overview of the New Security Architecture in the Java Development Kit 1.2,

In Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey,

California, December 1997.

[9] C. A. R. HOARE. An axiomatic basis for computer programming, CACM, October 1969.

[10] Fritz HOHL. Time Limited Blackbox Security: Protecting Mobile Agents from Malicious Hosts,

To appear in Mobile Agents and Security Book edited by Giovanni Vigna, published by

Springer Verlag 1998.

[11] D. LUCKHAM AND F. VON HENKE. An overview of ANNA, a speci�cation language for Ada,

IEEE Software, pages 9{22, March 1985.

[12] B. MEYER. Ei�el the Language, Prentice-Hall, 1992.

[13] B. A. MUELLER AND D. O. HOSHIZAKI. Using Semantic Assertion Technology to Test Application

Software, Proceedings of Quality Week'94, San Francisco, CA, May 1994.

[14] P. NAUR. Proof of algorithms by general snapshots, BIT, 6(4):310{316, 1966.

[15] E. MARSHALL. Newman's Impossible Motor, Science, 10, pp. 571-572, February 6, 1984.

[16] L. OSTERWEIL AND L. CLARKE. A Proposed Testing and Analysis Research Initiative, IEEE

Software, pages 89{96, September 1992.

[17] Simson GARFINKEL. PGP: Pretty Good Privacy, O'Reilly & Associates, Inc., 1995.

[18] D. ROSENBLUM. Towards a method of programming with assertions. In Proceedings of the 14th

International Conference on Software Engineering, pages 92{104, May 1992.

[19] R. RUBINFELD. A mathematical theory of self-checking, self-testing, and self-correcting pro-

grams, Technical Report TR-90-054, International Computer Science Institute, October 1990.

[20] Tomas SANDER and Christian F. TSCHUDIN. On Software Protection Via Function Hiding, Sub-

mitted to the 2nd International Workshop on Information Hiding.

[21] Tomas SANDER and Christian F. TSCHUDIN. Towards Mobile Cryptography, IEEE Symposium

on Security and Privacy, To appear in May 1998.

[22] Joseph TARDO and Luis VALENTA. Mobile Agent Security and Telescript, In Proceedings of

IEEE COMPCON, February 1996.

[23] Giovanni VIGNA. Protecting Mobile Agents Through Tracing, In Proceedings of the 3rd ECOOP

Workshop on Mobile Object Systems, Jyv�alskyl�a, Finland, June 1997.

[24] J. VOAS. Fault Injection for the Masses, IEEE Computer, December 1997.

[25] J. VOAS. A Defensive Approach to Certifying COTS Software, IEEE Computer, To appear in

June 1998.

[26] J. VOAS, F. CHARRON, AND K. MILLER, Robust Software Interfaces: Can COTS-based Systems

be Trusted Without Them?, Proceedings of 15th International Conference on Computer Safety,

Reliability, and Security (SAFECOMP'96), Springer-Verlag, Vienna, Austria, October 1996.

12

[27] J. VOAS, G. MCGRAW, A. GHOSH, AND K. MILLER. Glueing together Software Components: How

good is your glue?, In Proceedings of Paci�c Northwest Software Quality Conference, Portland,

Oregon, Pages 338-349, October 1996.

[28] J. VOAS, M. SCHMID, and M. SCHATZ. A Testability-Based Assertion Placement Tool for Object-

Oriented Software, NIST Report GCR 98-735, National Institute of Standards and Technology,

January 1998.

[29] J. VOAS, G. MCGRAW, L. KASSAB, AND L. VOAS. A Crystal Ball for Software Liability, IEEE

Computer, 30(6):29-36, June 1997.

[30] Robert WAHBE, Steven LUCCO, Thomas E. ANDERSON, Susan L. GRAHAM. E�cient Software-

Based Fault Isolation, In Proceedings of the Symposium on Operating System Principles, 1993.

[31] James E. WHITE. Telescript Technology: Mobile Agents, General Magic White Paper, General

Magic, Inc., 1996.

[32] F. YELLIN. Low Level Security in Java, Technical Report, Sun Microsystems, 1995.

13

