
Formal Methods For Developing High Assurance

Computer Systems: Working Group Report

Mats P.E. Heimdahl
Department of Computer Science and Engineering

University of Minnesota, 4-193 EE/CS Building, Minneapolis, MN 55455

Constance L. Heitmeyer
Center for High Assurance Computer Systems

Naval Research Laboratory, Washington, DC 20375-5337

1 Introduction

The Second International Workshop on Industrial-

Strength Formal Techniques (WIFT'98) was held in Oc-

tober, 1998, in Boca Raton, Florida. At the workshop,

four di�erent discussion groups investigated various top-

ics. This report summarizes the discussions conducted

on the topic \Formal Methods for Developing High As-

surance Systems."

High assurance computer systems are computer systems

where convincing evidence is required that the system

satis�es a collection of critical properties. To operate

correctly, these systems must satisfy properties such as

safety and security. Examples of high assurance systems

include 
ight control systems, medical systems, and con-

trol systems for nuclear plants. In addition, increased

reliance on communications is moving many communi-

cations systems, such as telephone networks and cellular

and satellite communications systems, into the domain

of high assurance systems.

The aim of the 1998 discussion was to revisit and con-

tinue a discussion began in the working group with the

same name at the �rst WIFT in 1995. A report describ-

ing the discussions at WIFT'95 is available at the web

site:

http://www.cse.msu.edu/WIFT98/

2 Discussion Points

During WIFT'95, the following topics were discussed:

Advantages: Where and how have formal methods

had utility in the development of high assurance

systems?

Barriers: What are the major barriers to applying for-

mal methods in the development of high assurance

systems?

Strategies for Success: How can we obtain an

industrial-strength process for developing high as-

surance computer systems?

Due to time constraints, some topics scheduled for dis-

cussion at WIFT'95 never were addressed. The goal of

the WIFT'98 discussion was to revisit the above topics

and also to address the following:

Uses of Formal Methods: How are formal methods

being used in the development of high assurance

systems?

Overcoming the barriers: How can the barriers to

widespread use of formal methods be overcome?

The summary below is organized around these two top-

ics and roughly follows the 
ow of the discussion in the

group.

3 Uses of Formal Methods

A formal method may be described as an approach to

developing computer systems that includes 1) a notation

with a well-de�ned syntax and semantics, 2) some guide-

lines and procedures for using the notation, and 3) tech-

niques for analyzing speci�cations expressed in the nota-

tion. Traditionally, formal methods have been used for

formal speci�cation and formal veri�cation. Recently,

the use of formal methods for refutation has also gained

widespread use in some segments of industry.

Formal Speci�cation

Formal speci�cation of the required system behavior has

many bene�ts. For example, a formal speci�cation is

unambiguous and precise, can be checked for syntactic

correctness, and can help ensure that a speci�cation is

well-formed.

Formal Veri�cation

A formal speci�cation enables formal veri�cation. In

formal veri�cation, a proof is constructed, often with

mechanical support, that the speci�cation satis�es prop-

erties of interest. Several projects have successfully

applied both formal speci�cation and "light-weight"

analysis to verify well-formedness properties (e.g., type

correctness, no missing cases, no unwanted nonde-

terminism). By light-weight analysis, we mean me-

chanical analysis that is largely automated or semi-

automated. Examples of formal methods supporting

both formal speci�cation and light-weight analysis in-

clude SCR (Software Cost Reduction) [1, 2], which



Ontario Hydro and NRL have applied in real-world

projects, and RMSL, which has been used in the de-

velopment of TCAS II, a collision avoidance system for

aircraft [3, 4, 5].

Usually more di�cult and complex than veri�cation of

well-formedness properties is formal veri�cation of ap-

plication properties, such as security and safety prop-

erties. Despite the complexity of developing formal

proofs of application properties, however, there have

been numerous successes. Examples include the veri-

�cation of the 
oating point algorithm for division in

the AMD5k86 microcode [6], veri�cation of clock syn-

chronization [7], and veri�cation of a collection of rep-

resentative instructions for the AAMP5 processor [8].

Refutation

While the goal of veri�cation is to demonstrate that a

speci�cation is correct with respect to some property,

the goal of refutation is to �nd errors in the speci�ca-

tion. A technique called model checking, which auto-

matically checks a �nite-state machine model for spec-

i�ed properties, has been highly successful in detect-

ing errors. The use of model checkers to detect de-

fects in microprocessor designs is now common in in-

dustry, and several commercial tools are available to

perform this task [9]. In addition, some microproces-

sor manufacturers have in-house research groups devel-

oping proprietary technologies. The success and util-

ity of formal methods in the analysis of chip design is

undisputed. Reports of successful application of model

checking, largely to detect hardware errors, are abun-

dant (see, e.g., [10]).

Why the success in hardware?

Three factors related to the success of formal methods

in microprocessor design stand out: 1) the high cost

of design mistakes, 2) the availability of standard nota-

tions, and 3) the availability and use of tools, such as

simulators.

First, the cost of detecting and correcting a mistake in a

chip design during the design phase is low; in contrast,

detecting and correcting a mistake when the mask is

produced or when the chip is manufactured is very high.

Thus, there is a clear cost savings associated with each

mistake detected and corrected using a formal method.

This cost savings provides a compelling business case

for using formal methods technology during design.

Second, nearly all hardware designers use one of two

design languages, VHDL or Verilog (see Figure 1), or a

variant. Hence, many engineers are trained to use these

languages. Further, tools, including simulators and code

synthesizers, have been developed for designs expressed

in these languages. This defacto language standardiza-

tion provides a focal point for research and commercial

development of formal analysis tools.

Model Checker
(design debugging)

Synthesis Tools
(hardware implementation)

Simulator
(design debugging)

Hardware Designer

VHDL or
Verilog

Specification

Ref: C. Heitmeyer. Adopted from an invited talk at the 1998 Symposium
on Formal Techniques for Real-Time Fault-Tolerant Systems [13]

Figure 1: Formal methods in hardware design.

Model
Checker

Synthesis
Tools

Simulator

Software Developer

?

Other Analysis
Tools

Other Analysis
Tools

Other Analysis
Tools

Ref: C. Heitmeyer. Adopted from an invited talk at the 1998 Symposium
on Formal Techniques for Real-Time Fault-Tolerant Systems [13]

Figure 2: Formal methods in software development.

2



In the domain of software development the picture is

very di�erent. First, although a number of studies have

shown that signi�cant cost savings can be achieved by

detecting software errors early in the development pro-

cess (see, e.g., Boehm [11]), this fact is not widely ac-

cepted among software practitioners. The common ap-

proach is to detect errors during the later development

stages (e.g., coding, testing, and initial operation). Of-

ten, the solution to a software bug is to make a �x avail-

able on a web site and the only e�ect is a minor public

relations setback. Thus, an explicit business case is lack-

ing for using formal methods in software development.

Second, the number of di�erent modeling, design, and

implementation languages used in software development

is very large; nothing close to a standard approach to

software development is available (Figure 2). Further,

tools such as simulators and formal analysis tools are

rarely used during the initial stages of software devel-

opment. Unfortunately, the costs of training engineers

and of tool development are very high.

Who should use formal methods?

Formal methods may be used in two ways: 1) software

practitioners may rely on formal methods experts to

apply the methods, or 2) practitioners may apply the

formal methods and their support tools directly. Cur-

rently, the former is the dominant approach. In indus-

try, formal methods are perceived as very di�cult to

use. (At this point in the discussion, industry represen-

tatives pointed out that they are, in fact, software prac-

titioners, and that they and their colleagues use formal

methods. Admittedly, these were fairly sophisticated in-

dustry representatives from Praxis Critical Systems and

Collins Commercial Avionics, but they pointed out sev-

eral examples of engineers not extensively trained in for-

mal methods using sophisticated formal methods tech-

nology. For example, formal modeling of the AAMP-FV

microprocessor at Collins was performed in large part

by the microprocessor designers.)

For formal methods to have a large impact on software

development, this reliance on formal methods experts

must be reduced and the use of formal methods must

become standard in software development. Thus, we

should strive for a broad dissemination of formal meth-

ods knowledge and, like the hardware community, make

formal modeling and formal analysis part of standard

practice.

4 Overcoming the Barriers

To make lasting inroads in industry and to put formal

methods techniques and tools in the hands of the soft-

ware developers, there are several barriers that must be

overcome: 1) the notations must be more accessible and

easy to use, 2) robust tools must be produced, 3) edu-

cation must be improved, and 4) cost-e�ectiveness must

be demonstrated.

Notations and tools

For industrial success, the traditionally abstruse no-

tations and di�cult-to-use tools produced by formal

methods research must be abandoned. There is little

doubt that the software developers in industry are ca-

pable of using formal methods; if they can learn to ef-

fectively use C++, they can learn formal modeling and

analysis. What is needed is a reduction in the unnec-

essary complexity introduced by poorly designed lan-

guages and tools.

The importance of improved notation is well known,

and several research groups are addressing the problem

[2, 3, 12, 13]. We expect new and easy to use formal

notations to emerge in the next few years.

Providing robust and well-engineered tools is a more

challenging problem. The small market for formal meth-

ods tools does not justify the high cost of quality tool

development. Most tools are developed in research en-

vironments, and stability and ease of use are not the

highest priorities. Nevertheless, as the penetration of

formal modeling in industry increases, the availability

of quality tools can be expected to follow.

A few suggestions tool developers should consider in-

clude the following:

� Provide more automation.

� Provide good feedback when errors are detected.

When an analysis tool detects a problem, the er-

ror report must clearly identify the problem in the

speci�cation.

� Provide tool integration and tool interoperability.

Di�erent tools are good for di�erent tasks and must

also be usable in concert. There should be no need

to use more than a single notation.

� Provide simulators, i.e., tools that symbolically ex-

ecute the system based on the speci�cation. Inte-

grating a simulator into a formal method provides

additional inducement for industrial users to apply

a formal method.

� Integrate methods and tools into the software de-

velopment process.

Education

Finding the time for formal methods education in the

undergraduate curriculum is a challenge. Computer sci-

ence and engineering are broad topics, and many stu-

dents (and to a large extent industry) are simply not

interested in formal methods education. Courses in

topics such as graphics, multimedia, and Internet soft-

ware development are more popular and are perceived

3



N
um

be
r 

of
 U

se
rs

Time

Basic Research Use of technology by
risk tolerant users

Increasing use of
technology in industrial

pilot projects

Technology becomes
an industry standard

Ref: C. Heitmeyer. Adopted from an invited talk at the 1998 Symposium
on Formal Techniques for Real-Time Fault-Tolerant Systems [13]

Figure 3: Technology adoption in industry.

to have more direct relevance to a student's future ca-

reer. Rigorous software development (with or without

formal methods) is a strenuous, time-consuming, and

non-glamorous activity. Convincing students that this

activity is important to software development is not an

easy task.

We see no easy solution to this problem. Hopefully, as

formal methods prove their worth in industry, the de-

mand for and availability of formal methods education

will increase.

Provide a business case for adoption

If we can show that the use of formal methods reduces

development costs, shortens time to market, and in-

creases productivity, management is much more likely

to adopt the approach. The success of model checking

and equivalence checking in the hardware community

can be partially credited to the well-known high cost of

classes of design problems that can be eliminated using

these techniques. If we can provide similar evidence in

the software community, widespread adoption of formal

methods in industry is more likely to occur.

5 Summary

The consensus of the group was that formal methods are

mature enough to be applied in software development.

The methods have proven their worth in numerous in-

dustrial projects, and there is little doubt that they have

an important place in the software development process.

Transferring formal methods technology to industry is

largely a non-technical problem (it is often a culture

clash) and the transfer is happening (slowly).

The group agreed that there have been few major break-

throughs in formal methods usage since WIFT'95. The

one notable exception is the increased use of model

checking technology in microprocessor design. In the

hardware community, the use of formal methods has

moved into the rapid adoption stage, and some formal

analysis tools have become part of the standard prac-

tice.

The use of formal methods in software engineering is

currently limited to the early adopters (the risk-tolerant

users in Figure 3). The challenge for the software com-

munity for the next few years is to follow the lead of the

hardware community by successfully transferring for-

mal methods technology into the development of high-

assurance software systems.

Acknowledgements

We thank the members of our working group, Perry

Alexander, Yi Deng, Detlef Fehrer, Patrice Godefroid,

Anthony Hall, Steve Miller, and Ralph Johnson, for par-

ticipating in the discussions and helping to extend and

re�ne the ideas in this report. Some of the above ma-

terial was presented originally by C. Heitmeyer in an

4



invited talk at the 1998 Symposium on Formal Tech-

niques for Real-Time Fault-Tolerant Systems [13].

REFERENCES

[1] M. Viola. Ontario hydro's experience with new

methods for engineering safety-critical software. In

Proceedings of SafeComp'95, 1995.

[2] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and

R. Bhara. Using abstraction and model checking

to detect safety violations in requirements speci�-

cations. IEEE Transactions on Software Engineer-

ing, 24(11), November 1998.

[3] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and

J.D. Reese. Requirements speci�cation for process-

control systems. IEEE Transactions on Software

Engineering, pages 684{706, September 1994.

[4] Mats P. E. Heimdahl and Nancy G. Leveson. Com-

pleteness and consistency in hierarchical state-base

requirements. IEEE Transactions on Software En-

gineering, pages 363{377, June 1996.

[5] D.Y.W. Park, J.U. Skakkeb�k, M.P.E. Heimdahl,

B.J. Czerny, and D.L. Dill. Checking properties

of safety critical speci�cations using e�cient deci-

sion procedures. In Proceeding of FMSP'98: Second

Workshop on Formal Methods in Software Practice,

March 1998.

[6] M. Kaufmann and J. Moore. An industrial strength

theorem prover for a logic based on common

lisp. IEEE Transactions on Software Engineering,

23(4):203{213, April 1997.

[7] S. Owre, J. Rushby, N. Shankar, and F. von Henke.

Formal veri�cation for fault-tolerant architectures:

Prolegomena to the design of pvs. IEEE Trans-

actions on Software Engineering, 21(2), February

1995.

[8] S.P. Miller and M. Srivas. Formal veri�cation of the

AAMP5 microprocessor. In Proceedings of the In-

ternational Workshop on Industrial Strength For-

mal Techniques, pages 2{17, 1995.

[9] R. Kurshan. Formal veri�cation in a commercial

setting. In Proceedings of the Design Automation

Conference, June 1997.

[10] E. Clarke and R. Kurshan. Computer-aided veri�-

cation. IEEE Spectrum, June 1996.

[11] B. Boehm. Software Engineering Economics.

Prentice-Hall, Englewood Cli�s, NJ, 1981.

[12] N.G. Leveson, J.D. Reese, and M.P.E. Heimdahl.

Spectrm: A cad system for digital automation. In

Proceedings of the 17th Digital Avionics Systems

Conference, November 1998.

[13] C. Heitmeyer. On the need for \practical" formal

methods. In Proceedings of the Symposium on For-

mal Techniques for Real-Time Fault-Tolerant Sys-

tems (FTRTFT '98), September 1998.

5


