
Doc, Wyatt, and Virgil: Prototyping Storage Jamming Defenses

J. McDermott, R. Gelinas, and S. Ornstein
Center for High-Assurance Computer Systems1

Naval Research Laboratory, Washington, DC 20375, USA

1. This work was supported by ONR. Any opinions, conclusions, or recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views, policies, or decisions of the Office of Naval Research or the Department of Defense.

Abstract

This paper describes progress to date on three prototype
tools for detecting storage jamming attacks. One proto-
type uses a replay defense; another uses logical replica-
tion, and the third can be used to determine the source
and pattern of a detected attack. Three prototype jam-
mers are used to test the effectiveness of the defenses.
Initial experiments have shown that access control,
encryption, audit, and virus detection do not prevent or
detect storage jamming. The prototype tools have been
effective in detecting the same attacks. Object-oriented
data storage may require the use of application-specific
techniques for applying checksums.

1 Introduction

Storage jamming [3] (called information warfare by
Ammann, Jajodia, et al. [1]) is a particularly trouble-
some kind of data integrity attack. Storage jamming is
malicious but surreptitious modification of stored data,
to reduce its quality. The person initiating the storage
jamming does not receive any direct benefit. Instead,
their goal is more indirect, such as deteriorating the
position of a competitor. We assume that a Trojan horse
does the storage jamming, since the Trojan horse may
run with privileges the attacker does not have. Manual
storage jamming is possible, but in general much less
effective.

We call values that should be stored authentic values.
We call values stored by a jammer bogus values. We
call the action of storing a bogus value a jam. A storage
jamming attack diverges the state of the stored data
from the authentic state. The attacker expects that the
victim will not detect the damage but will continue to
use the damaged data. The lifetime of a storage jammer
(how long it is able to jam and remain undetected) is a
function of the rate and extent of its jamming, the spe-
cific user population, and the seriousness of its impact
on the real world.

The most promising targets are systems with complex

stored data, the authenticity of which cannot be deter-
mined by inspection. This includes legacy systems, dis-
tribution and inventory systems, distributed interactive
simulations, data warehouses, and command and con-
trol systems. The most promising hosts for the attacking
Trojan horses are data-creating application programs
that do not have high assurance. All the attacker has to
do is occasionally write a wrong, but plausible answer.
For this reason, more conventional security techniques
such as access control, cryptography, and intrusion
detection are not generally useful Since the current
trend is toward rapidly developed special purpose
applications based on low-cost shrink-wrapped general
purpose software, there are many potential hosts.

McDermott and Goldschalg identified detection as the
best defense and shown how it can be implemented [4].
Amman, Jajodia, et al. have developed an algorithm for
repairing damaged data and for partial operation during
an attack [1]. We are currently building prototypes of
replication and replay defenses. We use our prototypes
to investigate the basic effectiveness (or lack thereof) of
these proposed defenses. This paper describes our
progress to date. We have two prototypes, one for a
replay defense and one for a replication defense.

2 Target System

We chose Windows NT (running on IBM PC compati-
ble hardware) as the underlying operating system for
several reasons. Windows NT is a modern operating
system that has a rich set of security features, and good
built-in audit tools. The relatively low assurance of
these features is of no consequence, because our exam-
ple storage jamming attacks do not challenge access
control, audit, or authentication features. Windows NT
running on PC hardware is relatively low cost, which is
good for prototypes. Finally, some of our sponsors are
interested in using Windows NT, so the specific results
are of interest as well.

Because of its access control features, we limited our

target system to the NTFS file system, there are no
DOS (i.e. FAT) or OS/2 (i.e. HPFS) partitions. We
enabled most of the C2 security features [2], omitting
those that have no bearing on storage jamming attacks
(e.g. the boot time-out value was not set to zero). Per-
missions on the %systemroot% directory were set so
that no one but administrators could change the direc-
tory or its contents. Specific files in %systemroot% that
applications needed to write were then reset to allow
write or change access, to those files only.

We tried a range of audit settings, all the way up to
maximum auditing on the target files. Every file and
subfolder of the target folder was set for audit of read,
write, execute, delete, change permissions, and take
ownership. The log manager was configured not to
overwrite security log entries but to halt the system if
the security log became full.

We also tried two commercial off-the-shelf virus detec-
tion packages, running in their maximum search set-
tings (e.g. cryptographic checksums based on all bytes
of a file). We do not identify the packages in this paper
because their failure to detect jamming does not dimin-
ish their value as security tools, when used as intended.

2.1 Target Applications

We chose two applications for jamming attacks:
Microsoft Access and Microsoft SQL Server.

Our first target application was Microsoft Access. This
is an inexpensive database system that has both access
control and the capability to encrypt its stored data.
This allowed us to demonstrate that storage encryption
per se is not a general defense against storage jamming
attacks. The discretionary access control in this data-
base system is equivalent to access control lists, i.e.
specific permissions can be set for individual named
objects, on a per user basis.

The specific application is an in-flight refueling data-
base inspired by Ammann, Jajodia, et al. [1]. It is a toy
application with 13 tables, 4 pre-defined queries, and
one form. Figure 1 shows the base table Tankers from
the database. Tankers records information about the
assignment of tankers to refueling missions. The aver-
age amount of data in the database is a few thousand
small records. This makes it easy to inspect the integrity
of the stored data.

Figure 1. Base table Tankers from the target database

We experimented with a range of security policies for
our database. Passwords were assigned to individual
users and permissions were set for specific named
objects. In the most extreme policy, user mcdermott
was only given read permission for the database form
Refueling and all other users were given no access.
(This strongest policy would probably not be usable in
a practical system but was useful in testing the limits of
jamming and access control). In all policies, the data-
base was encrypted using the built-in security wizard.

Our second target application is Microsoft SQL Server,
a full-featured database system. It uses discretionary
access control on objects as fine as individual attributes,
on a per-user or per-group basis. SQL Server also uti-
lizes the underlying access control and audit features of
the Windows NT operating system. We performed the
same series of experiments against SQL Server, with
the exception of those related to encryption.

3 The Defensive Prototypes

Our prototyping included three defenses: Doc, Wyatt,
and Virgil. Each prototype exists in several versions,
depending on the features we are exploring.

3.1 Doc

The Doc prototype is an architecture-independent
defense that replays command sequences in order to
detect surreptitious attacks originating from a single
application. Doc records sequences of user keystrokes
and later replays them, checking that the results of the
replay are the same as the results for the original input
sequence. The recorded sequences are stored in scripts
that include steps where the state of the stored data is
checked against the correct state. The script results are
based on an initial state that must be recorded with the
script. Our initial Doc prototype uses two kinds of
scripts: statistical scripts and syntactic scripts. Statisti-
cal scripts are based on typical usage of the protected
application. Statistical scripts contain sequences of
commands that appear most frequently, with the most
commonly used parameters. Syntactic scripts are based
upon language generators that are specified by a gram-
mar. The grammar specifies a legal set of commands or
input values that we wish to deny the jammer.

The state of the stored data is recorded as a cumulative
CRC-32 check value. We chose a simple, non-crypto-
graphic check value because the check value is not
stored with the corresponding detection objects but in
an encrypted file. We also chose a simple, non-crypto-
graphic check because the CRC-32 check value calcu-
lation is fast. We also want to minimize the storage
required for check values.

The defensive principle used in Doc is trigger denial.
The problem of detecting all jammers by replay is simi-
lar to the problem of exhaustive testing. Our alternative
is to deny potential jammers the use of the most fre-
quently occurring trigger conditions, the principle of
trigger denial. So instead of saying that the Doc proto-
type stops all jammers, we say that there is no jammer
present that uses the trigger conditions exercised by
Doc, with further restrictions discussed below. We call
a set of triggers that cannot be used (because of replay)
a denial set. We can design specific denial sets by
choosing appropriate replay scripts. In our initial exper-
iments, we use regular sets to analyze the denial set of a
script.

An example will clarify. Suppose we wish to protect the
relation Tankers from attacks that are triggered by val-
ues of the attribute Tankers.PlannedFuel. (By this we
do not mean that a value triggers the attack, but that the

decision to jam is conditioned on values of Tank-
ers.PlannedFuel.) Suppose we know, from statistical
analysis our application, that the values of Tank-
ers.PlannedFuel range between 5000 and 30000. We
use Doc to record sequences of commands from fre-
quently occurring tasks (obtained from statistical analy-
sis of the application), so that the most frequent events.
For this example, suppose we include four events:
OpenWindow, ResizeWindow, GetFocus, and CloseWin-
dow. This initial script is a statistical script. Then we
modify the script by adding a syntactic generator that
causes the script to insert all values between 5000 and
30000 into Tankers.PlannedFuel. We now have a script
that will detect any attack that is triggered by the events
OpenWindow, ResizeWindow, GetFocus, CloseWindow
or update to Tankers.PlannedFuel, and conditioned on a
value for Tankers.PlannedFuel between 5000 and
30000. Jammers that wish to remain undetected will
have to use a trigger that does not use the frequently
occurring events and is not conditioned on the value of
Tankers.PlannedFuel. This latter kind of restriction can
be troublesome for the jammer, since it runs the risk of
inserting implausible values if it does not check the cur-
rent data.

The Doc prototype checks all NTFS permanent storage
objects (i.e. files and folders) that are accessible to the
application being checked. This will detect jammers
that change files or folders not currently opened by the
application. For example, a jammer hosted in Microsoft
Access may target xls (i.e. spreadsheet) files in the cur-
rent user’s folder, so a check of the currently open mdb
(i.e. database) file is not enough. On the other hand, for
performance and security reasons, we do not plan to use
Doc in a mode that allows us to detect bogus changes to
any data stored on a system. So we only detect jammers
that do not break access control or encryption.

The scripts, initial state, and check values of the Doc
prototype can be stored on removable media (e.g.
Iomega JAZ drive). This allows us to increase the size
and variety of the scripts that can be used. The remov-
able nature of these drives and their built-in read/write
protection has the benefit of complicating matters for
Trojan horses that may try to search for or tamper with
the scripts. The final version of Doc will be designed to
run from the removable media, so no image of the Doc
system will be on fixed storage. We are also experi-
menting with encryption for the scripts and code, to
guard against tampering.

Doc has a graphical user interface, but also works with
command lines. The graphical user interface allows the
user to name a script, specify the target directory that
defines the environment for a replay, or to chose a script

to replay.

Doc’s output includes a visible alarm and the recording
of an event in the security log of the target machine.

Doc is designed to allow the creation of scripts based
on recorded command sequences. This enhances the
indistinguishability [4] of the detection replays and is
much easier to use. Doc includes a script editor that
allows a Doc user to insert commands into previously
recorded sequence of user interface commands. The
inserted commands can build a script that inserts a
range of data values into a table.

Doc’s script language allows full manipulation of key-
board and mouse commands. The keyboard commands
duplicate keystrokes in the order that they are to be
replayed. Pressing the key and releasing are considered
to be two separate actions. The number of milliseconds
to wait before the next action can also be specified (if
not specified, a default value will be used).

Mouse movements specify the row and column on
which the mouse cursor is to be placed, as well as the
time delay before the next action. Right, middle, and
left mouse buttons can be double-clicked, pressed and
released.

The following shows a sample of a Doc script:

LBUTTONDOWN 96 CB DELAY=94
LBUTTONUP 96 CB DELAY=0
STRING TEST
KEYDOWN <RIGHTSHIFT> DELAY=656
KEYDOWN 3 DELAY=203
KEYUP 3 DELAY=109
KEYUP <RIGHTSHIFT>DELAY=172
FIELD ###
KEYDOWN <RETURN> DELAY=562
KEYUP <RETURN> DELAY=63
MOUSEMOVE 96 C9 DELAY=5187
MOUSEMOVE 99 CA DELAY=16
MOUSEMOVE 9E D0 DELAY=31
MOUSEMOVE AC D6 DELAY=16
MOUSEMOVE BC E4 DELAY=15
LBUTTONDOWNBC E4 DELAY=297
LBUTTONUP BC E4 DELAY=125

There are several areas of note. The STRING command
breaks the text output into KEYDOWN and KEYUP
sequences. Thus:

STRING TEST

Breaks out into:

KEYDOWNT DELAY=63
KEYUP T DELAY=63
KEYDOWNE DELAY=63

KEYUP E DELAY=63
KEYDOWNS DELAY=63
KEYUP S DELAY=63
KEYDOWNT DELAY=63
KEYUP T DELAY=63

where 63 milliseconds is the default delay time.

The FIELD command allows for strings of text that
change with each replay of the script. This gives the
ability to test for certain trigger values, as well as make
it more difficult for the virus to detect our scanning.

Like the STRING command, the FIELD command is
disseminated into the following:

FIELDCHAR # 1
FIELDCHAR # 1
FIELDCHAR # 1
FIELDACTIVATE 1

FIELDCHAR contains part of a sequential chain of val-
ues that ultimately are recreated into the field template
(The # character specifies a digit from 0-9). FIELDAC-
TIVATE is used increment the field and output the
appropriate KEYUP and KEYDOWN commands.

Using the preceding script and replaying it 3 times, the
output would be:

TEST:0
TEST:1
TEST:2

By using three # characters, we tell Doc to output
sequentially, incrementing digits from 0 to 999. If more
then 1000 iterations are used, we roll back to 0.

3.2 Wyatt

The Wyatt prototype is a replication-based defensive
tool. Wyatt is designed to use logical replication as a
defense. Replication in general is problematic. Under
many approaches, bogus data can be replicated auto-
matically and precisely to many locations. However
replication works as a defense if we use logical replica-
tion over distinct application systems. Many replication
algorithms copy data values from the source data item
to its replicas. However, logical replication copies the
command that caused the source data item to change.
The command is executed at each replica’s site and,
because of one-copy serializability, results in the same
new value for the replica. If we assume a distinct prove-
nance for the application system at each site, then a
would-be attacker must install distinct (i.e. site-spe-
cific) cooperating Trojan horses at each site. The proto-
type can achieve higher assurance by increasing the
distinction in provenance. The most distinction would

be a completely heterogeneous set of sites, with soft-
ware from different vendors, purchased via blind
buys.Assuming the would-be attacker can insert set of
distinct Trojan horses is not enough; the Trojan horses
must be implemented to insert bogus data in one-copy
serializable fashion. In an architecture that prevents
unauthorized communication between sites, this will
require the attacker to use stateless jammers. Stateless
jammers are less effective because the rate and extent of
their jamming is less predictable, because it is entirely
dependent on user input. For the same reason, it will be
easy for a victim to reproduce the effects of a stateless
jammer and locate it.

The Wyatt prototype can detect stateless cooperating
Trojan horses at n-1 sites, if there are n replication sites.
In cases where the Trojan horses are not stateless, it
may even detect the presence of n cooperating Trojan
horses at n sites, because their serializability may fail.
In either case, replication is a more effective defense
than the more general replay approach. There are two
reasons why a replicated defense is more effective.
First, a replication defense over n sites can deny all trig-
gers at n-1 sites. Second, the replicas can be used for
damage assessment and for continued operation during
and after a storage jamming attack.

Detection is simple in the Wyatt prototype. There is a

detection process at each source or replica site. Follow-
ing changes to protected data, the process at the source
site computes a checksum and sends it to each replica
site, along with the identification of the change. After
the logical update is performed at a replica site, the
detection process at the replica site computes its own
checksum and compares it to the checksum transmitted
by the source site detection process. If there is disagree-
ment, there is a problem.

An example will clarify. Suppose we have replicated
our target refueling database at two sites East and West,
with the primary copy at site West (see Figure 2).
Authentic changes to the Tankers relation are replicated
to site East by logical replication. So if Tankers is
changed at site West by the SQL command

UPDATE Tankers SET type = ‘K21’,
yr = ‘4’, serial = ‘77’ WHERE
mission = ‘Coke’ AND slot = 3,

then this command is sent to site East and run against
the copy of the Tankers relation at East. Wyatt will
compute a checksum cw at West and send it to site East;

at East, the local copy of Wyatt will compute its own
checksum ce and compare the two. In this case, they

will agree because of the one-copy serializability of the
replication mechanism.

Figure 2. The Wyatt Prototype

Now suppose we have a jammer running at site West
that reduces Tankers.PlannedFuel by 10% for a single
tuple, each time a read-only form named Refueling is
opened at site West. If the form is opened, then the
Tankers relation is changed at West, but not at East. On

the next authentic update, the checksum cw sent to East

by Wyatt will not agree with local checksum ce com-

puted by Wyatt at East. See Figure 3 below.

UPDATE Tankers
SET type = ‘K21’, yr = ‘4’, serial = ‘77’
WHERE mission = ‘Coke’ and slot = 3

cw = 0x34d2f

ce = 0x34d2fcw = 0x34d2f

ce = cw?

Site East Refueling DatabaseSite West Refueling Database

Wyatt
prototype
at East

Wyatt
prototype
at West

Figure 3. Wyatt Detecting the Ike Jammer

The Wyatt prototype can also protect applications that
do not have logical replication built in. It protects appli-
cations that cannot replicate appropriately by recording
the inputs and replaying them at the replica sites. If the
context for the recorded commands is replicated at the
each site, then replaying the commands will update or
create new data that is logically identical at each site.
We have already done some testing of this for Microsoft
Word. In the case of database systems, this form of repl-
ciation may be preferable to any built-in replication [5].
This is because database replication by itself may not
catch bogus values introduced by Trojan horses in pro-
grams such as middleware or window managers.

3.3 Virgil

The Virgil prototype is a data file checker. Virgil is a
tool that can pinpoint an attack detected by Doc. Virgil
uses complex check value structures that can identify
the specific file or folder that was corrupted, and the
time of the unauthorized change. These more precise
check values require a significant amount of storage
and slow down the checking, so we do not use them in
the initial detection process.

The Virgil prototype can also be used to watch portions
of a file system. Unlike virus protection software, the
Virgil prototype checks arbitrary file types. Virgil also
uses logical checksums (see below), so it does not
detect changes that do not matter. It also runs entirely
from removable media, with its executable code and
check values stored outside the normal file system. This
makes it more tamper-proof than a system based on a
fixed drive.

4 The Prototype Jammers

Our prototype jammers included Ike, Curly Bill, and
Ringo. We consider them prototypes because they were
not designed for “use” as actual Trojan horses. We
expended minimal effort on making them either robust
or hard to find. Instead, they were designed to be easy
to modify for experimentation. We assume that it is
possible to build robust, hard to find Trojan horses.
However, proving this is outside the scope of our work.

We omit details on the construction of our prototype
jammers for obvious reasons.

4.1 Ike

Ike is a stored-procedure Trojan horse. The first Ike
prototype was coded in Visual Basic for Access and
attached to various events or properties within likely
Access objects. Ike was designed to apply SQL to select
targets for attack, for example:

SELECT * FROM Tankers WHERE
PlannedFuel BETWEEN 10000 AND
20000

If the query returns enough data, the target is consid-
ered large enough to jam. Ike then jams random targets
chosen from a fixed fraction of the tuples. Bogus values
are generated by simple arithmetic operations applied
to the valid data. This makes it easy for us to detect the
effects of various experiments.

We were pleased to find that the internal access controls
of the Access database system apparently prevent naïve
jamming across their boundaries. Attempts to insert
bogus values into objects the current user could not
modify were prevented. For example, if we restricted
user mcdermott to just read access on the table Tankers,

UPDATE Tankers
SET type = ‘K21’, yr = ‘4’, serial = ‘77’
WHERE mission = ‘Coke’ and slot = 3

cw = 0x47f0a

ce = 0x34d2fcw = 0x47f0a

ce = cw?

Site East Refueling DatabaseSite West Refueling Database

Wyatt
prototype
at East

Wyatt
prototype
at West

Ike jammer

bogus
values

then Ike was unable to modify it when run by user
mcdermott.

However, the main point of this is that access control is
not generally effective. As discussed below, we were
able to jam any data that our user had privileges to
modify.

4.2 Curly Bill

Curly Bill is a Trojan horse Java front end program that
attacks database files. Curly Bill is not used to experi-
ment with Java security per se, but to investigate jam-
ming via front end software, where the source of the
jamming is outside the application being jammed. The
approach used in Curly Bill is similar to Ike. First, a
potential target is queried to see if its contents are large
enough to make detection unlikely. Then random tar-
gets are chosen from a fixed fraction of the tuples and
bogus values are generated by simple arithmetic opera-
tions applied to the valid data.

4.3 Ringo

Ringo is a sophisticated low-level Trojan horse attached
to Access. Its main use is to investigate the effective-
ness of our defensive prototypes against low-level
attacks. Ringo has a separate “user” interface and is
designed to display and record extensive debugging
information about its own actions. Ringo uses a naive
jamming strategy of randomly swapping values of a
randomly selected attribute.

5 Initial Experiments

Our first round of experiments tested the Doc prototype
against the first Ike jammer. The access controls were
able to prevent Ike from jamming data, when the user
running Ike did not have write access to the data (hence
forth called a read-only user). We did not experiment
with bypassing the controls, other than to run Ike as a

read-only user. We did this to confirm that the access
controls did appear to work. We did notice that
Microsoft Access did not alert the read-only user to
failed attempts to modify a protected object. This lack
of notification makes Trojan horse attacks simpler,
since an attack does not have to catch and mask excep-
tions from the user.

The use of database encryption made no difference to
the first Ike jammer. This was not surprising to us, since
Ike operates from within the database and has access to
the plaintext data.

When the user did have write access to stored data, we
were able to jam it, even when the jammer was associ-
ated with a read-only object (e.g. a form defined on a
multiple table view). In the case of a stored procedure
triggered from within a read-only object, it was possible
to jam writeable objects stored in the same database.
Once again, Access failed to notify the user that records
were being modified, so there was no need to catch
these notifications and discard them before the user
could see them. This would be a case of jamming from
within the GUI of an application.

The audit records generated by these initial experiments
were not useful in detecting the attacks. As Figure 4
shows, the audit records are too coarse in granularity. In
the case of SQL server, the necessary information must
be available for recovery and for replication, but it is
not available through the tools that are provided with
SQL Server. Even if tuple-by-tuple information was
available, it would be very difficult to locate a few
bogus changes among the hundreds of authentic modi-
fications. Furthermore, garbage collection of the logs
might remove the needed records before they could be
examined. SQL Server does provide users a notification
that records were modified, so an attacker must include
logic to mask out these notifications.

Figure 4. An Audit Record Generated By a Storage Jamming Attack

The Doc prototype did successfully detect every jam-
ming attempt made by the Ike and Curly Bill jammers.
We detected direct attacks, where the Ike prototype
made bogus changes to data underlying its host object
and jamming attacks from read-only objects, where the
bogus changes were made to tables not currently open.
In its present form, the Doc prototype cannot pinpoint
the unauthorized changes more finely than individual
tables. Even table-level damage location requires a
complex checksum calculation that creates tension
between performance and precision. As checksum com-
plexity increases, we can locate damage more precisely,
but the time and space needed to perform a check
increases too. At present the best approach appears to
be to use two scripts, a search script with simple check-
sums and a location script with complex checksums.
The location script is run when a previous search indi-
cates possible storage jamming.

Our initial tests for the Wyatt prototype have detected
jamming in Microsoft Word, via the playback scheme
we described earlier. Further tests and development of
the Wyatt prototype for Microsoft SQL Sever are cur-
rently ongoing.

5.1 Checksumming the Representation of
Objects

We encountered an interesting factor when we began to
develop the Doc prototype. The kind of checksums we
needed were not the same as we would need to prevent
tampering with a valid original. We want a bit-wise
checksum to show that an original is unchanged. Jam-
ming works by creating originals that contain small
amounts of incorrect data, so what we need is a check-
sum that shows the equivalence of two instances of the
same data.

Modern object-oriented software, i.e. software that uses
objects to store data, will change the representation of
an object when the abstract (logical) stored values have
not changed at all. There are at least two reasons why
this can happen. First, object-oriented applications are
usually designed to save state information about their
presentation (e.g. window position) and about their last
context (e.g. files open for editing). Any changes to this
are recorded, even though the user’s stored data has not
changed, just its display and context. Second, objects
that store large amounts of data usually organize the

4/23/972:24:48 PM Security Success Audit Object Access 560********WAL-
LACE
Object Open:
Object Server:Security
Object Type:File
Object Name: C:\users\mcdermott\spoofing\testing\ikeS.mdb
New Handle ID:192
Operation ID:{0,7495737}
Process ID:2152207776
Primary User Name:*********
Primary Domain:WALLACE
Primary Logon ID:*********
Client User Name:-
Client Domain:-
Client Logon ID:-
Accesses:
 READ_CONTROL

 SYNCHRONIZE
 ReadData (or ListDirectory)
 WriteData (or AddFile)
 AppendData (or AddSubdirectory or CreatePipeInstance)
 ReadEA
 WriteEA
 ReadAttributes
 WriteAttributes

Privileges:-

representation of the data according to complex internal
structures such as B trees. Optimization of these struc-
tures may cause two equal (but not identical) instances
of an object class to have different internal data struc-
tures, and hence different checksums for the same
abstract values.

If the application to be protected has this characteristic,
then we must use abstract checksums to compare the
state of the stored data. Abstract checksums are com-
puted over just the values stored by an object, instead of
the bits that currently represent the object. For example,
in checking our database prototypes, we computed
checksums over the tuples stored in each table. If crc()
denotes our checksum function then we compute
crc(SELECT * FROM Tankers) instead of
crc(Tankers.mdb). Readers familiar with relational
database systems will notice that even this command
may not be enough, we may need crc(SELECT DIS-
TINCT mission, fuel, type, serial
FROM Tankers order by mission, fuel,
type, serial). Abstract checksums are often easy
to compute, but they are application specific. For this
reason, we may have to develop an abstract checksum
class or package for each application we want to pro-
tect. This problem is not unique to database systems.
We also encountered this in our first experiments with
Microsoft Word.

6 Conclusions

Our prototypes have demonstrated the feasibility of
detecting storage jamming by either replay or by repli-
cation. Defense via replication is preferable, because
replication can deny a much larger set of triggers. Rep-
lication can also be used for continued operation and
damage assessment. However, it is not necessary to rep-
licate data to be able to detect storage jamming. The
replay defense will work in any architecture, and can be
used to provide a reasonable measure of protection.

Design and programming of these prototypes was com-
plicated by the fact that the target systems are not
open.Generation, transmission, and handling of low-
level events by these black boxes is not uniform. Most
of the licenses supplied with the software prohibit dis-
sassembly, which further complicates the process of

understanding the interactions between the application
and the operating system. Care must be taken to ensure
that the scripts used in the replay defense are indistin-
guishable from real user input.

Our experience so far is that both replication and replay
defense tools must be application specific. Checksums
used to compare stored values must be logical check-
sums. Efficient computation of these is not only appli-
cation specific, but suffers from the problems of closed
design mentioned above. In many cases, we expect that
either replay or replication will require detailed logic to
deal with application specific commands. We conjec-
ture that this difficulty is fundamental to the nature of
storage jamming, because data storage is application
specific (if we include general purpose database sys-
tems in our definition of applications).

Our future plans are to continue prototyping to investi-
gate two more issues we have not looked at: 1) replay
and replication of network input, and 2) the impact of
application specifics in an operational system.

References

1. AMMANN, P., JAJODIA, S. McCOLLUM, C. and
BLAUSTINE, B. Surviving information warfare attacks on
databases. Proc. of the IEEE Symposium on Research in Secu-
rity and Privacy, , Oakland, CA, USA, May, 1997.

2. Department of Defense Trusted Computer System Evalu-
ation Criteria, DoD-5200.28-STD, December, 1985.

3. McDERMOTT, J. and GOLDSCHLAG, D. Storage jam-
ming. In Database Security IX: Status and Prospects (D.
Spooner, S. Demurjian, and J. Dobson, eds.), 365-381. Chap-
man and Hall, 1996.

4. McDERMOTT, J. and GOLDSCHLAG, D. Towards a
model of storage jamming. In Proc. of the IEEE Computer
Security Foundations Workshop, 176-185. Kenmare, Ireland,
June, 1996.

5. McDERMOTT, J. Replication does survive information
warfare attacks. In Proc. of IFIP WG 11.3 11th Annual Work-
ing Conference on Database Security, Lake Tahoe, CA, USA,
August, 1997.

