
A Formal Language for Cryptographic Protocol Requirements �

Paul Syverson and Catherine Meadows

Center for High Assurance Computing Systems

Naval Research Laboratory

Washington, DC 20375

USA

Abstract

In this paper we present a formal language for specifying and reasoning about cryptographic protocol

requirements. We give sets of requirements for key distribution protocols and for key agreement protocols

in that language. We look at a key agreement protocol due to Aziz and Di�e that might meet those

requirements and show how to specify it in the language of the NRL Protocol Analyzer. We also show

how to map our formal requirements to the language of the NRL Protocol Analyzer and use the Analyzer

to show that the protocol meets those requirements. In other words, we use the Analyzer to assess the

validity of the formulae that make up the requirements in models of the protocol. Our analysis reveals

an implicit assumption about implementations of the protocol and reveals subtleties in the kinds of

requirements one might specify for similar protocols.

Introduction

The past few years have seen a proliferation of formal techniques for the speci�cation and analysis of cryp-

tographic protocols. That these techniques can be useful has been shown by the fact that several (including

BAN logic [5], the NRL Protocol Analyzer [12] [13], and the Stubblebine-Gligor model [16]) have been used

to �nd
aws in open literature protocols that were previously believed to have been secure. Thus the use

of formal methods for the analysis of cryptographic protocols has begun to attract attention as a promising

way of guaranteeing their correctness.

Less attention, however, has been paid to the question of what exactly constitutes the correctness of a

cryptographic protocol. Yet, we see that what constitutes correctness can vary widely with the application.

In a key distribution protocol guarantee of secrecy and guarantee against replay attacks and impersonation

are of the most importance. For a protocol used to guarantee the security of banking deposits, secrecy may

or may not be important, although guarantee against replay attacks and impersonation de�nitely will be.

Guarantee of timeliness may also be important, as well as the guarantee that messages are processed in the

order that they are sent. (For example, a malicious intruder could cause somebody to overdraw his account

by causing a deposit message and a withdrawal message to processed out of order.) For a protocol used to

�Earlier versions of portions of this paper have appeared in [17] and [18].

1

distribute rights by proxy, it might be necessary not only to guarantee against impersonation but also to

guarantee the entire pedigree of a message.

Protocols may also di�er in the amount of trust that is placed in each individual. For example, Burrows,

Abadi, and Needham, in their logic of authentication, make the assumption that the parties trying to

authenticate each other are honest and will follow the rules of the protocol.1 For other protocols, this may

not necessarily be the case. In the Burns-Mitchell resource sharing protocol [4], it is assumed that the party

attempting to obtain the resource may be trying to cheat the resource supplier into giving him a resource

that he has not paid for at the same time he is trying to guarantee the the resource supplier is not cheating

him. In a voting protocol, we make the assumption that individuals may try to �nd out other individuals'

votes, that they may try to cast their votes more than once, and that they may be willing to divulge their

votes to a small group of individuals if this will help them subvert the goals of the protocol.

Even when we restrict ourselves to the analysis of key distribution protocols, it is not always clear what

constitutes the appropriate requirements. For example, in [6], Burrows, Abadi, and Needham describe the

various orders of belief that a protocol can achieve, but make no recommendations. A protocol may achieve

�rst order belief, in which A believes that K is a good key for communication with B, and vice versa, but

neither has any belief about the beliefs of the other, or it may achieve second order belief, in which not only

does each believe in the key, but each believes the other believes in the key, or it may achieve some yet higher

order of belief. In [19] Syverson discusses the various orders of belief and where each would be appropriate.

Misunderstandings about requirements and assumptions has also contributed to much of the controversy

about the various techniques. For example, in [15], Nessett points out an alleged
aw in the Burrows-Abadi-

Needham logic by using it to prove that a protocol in which keys are distributed in an obviously unsafe way is

secure. The response of Burrows, Abadi, and Needham [6] was that in their logic they make the assumption

that principals do not divulge their keys; since in this protocol the principals do divulge their keys, it does

not satisfy the original assumption. But one can also argue that the use of an unsafe key distribution method

is not the same as knowingly divulging your key.

The degree to which requirements and assumptions can vary, and the controversy that can be caused by a

lack of precise understanding of what the requirements are, suggests that we need to pay more attention to

understanding and stating them in a precise way. Once we have a clear and precise statement of what the

goals and assumptions of a protocol are, we can attempt to prove it satis�es these goals with a high degree

of con�dence that we know what we are about.

In this paper we attempt to make it easier to state and reason about requirements in a precise manner by

providing a requirements speci�cation language for the NRL Protocol Analyzer. The NRL Protocol Analyzer

has the advantage that it is tied to no �xed set of assumptions about the kinds of requirement it is used

to verify. The speci�er of a protocol can use it to prove that an insecure state is not reachable, or that an

insecure sequence of events cannot occur; it is up to the speci�er to decide what these states and sequences are.

However, until now the user of the Analyzer had to specify the undesired states and sequences in terms of the

protocol speci�cation itself. Thus the requirements had to be rewritten for each protocol speci�cation, even

when the aims of the protocols were identical. With the requirements speci�cation language, it is possible

to specify a set of requirements for a class of protocols, and then map them to a particular instantiation. It

is also possible to reason about the requirements in isolation without concerning ourselves with particular

1Honesty assumptions are relaxed in the version of BAN presented in [2].

2

protocol instantiations.

An Example

In order to make clearer the abstract constructs we describe in this paper we set out a speci�c protocol as an

example. We present the well known Kerberos protocol. [14] We set this out simply for illustrative purposes;

thus we present a simpli�ed version of the protocol as �rst given in [5].

The Kerberos Protocol

(1) A sends to S: A;B

(2) S sends to A: fTS ; L;KAB; B; fTs; L;Kab; AgKBSgKAS
(3) A sends to B: fTS ; L;KAB; AgKBS ; fA; TAgKAB
(4) B sends to A: fTA + 1gKAB

Here A and B are two principals. By sending the �rst message, A requests of the authentication/key server

S that a key KAB be distributed for a secure communication session between A and B. Curly braces

indicate encryption and subscripting with a key indicates the key used therein. Thus, the second message is

entirely encrypted with KAS , a key good for secure communication between A and the server. It contains

a timestamp generated by S, TS , a lifetime L for the session key, the session key itself, the name B, and

another �eld that is encrypted with KBS a key good for secure communication between B and S. The

second message gives A the session key and lets A know that this was freshly sent by S and is for a session

with B. The third message gives B the session key and lets him know that it was freshly sent by S. The

second part of the third message shows B that A has the session key. The last message lets A know that B

has recently seen the session key. This is an example of the type of protocol to which our �rst set of formal

requirements is addressed.

The remainder of this paper is organized as follows. In section 1 we present an example of the type of

requirements for which we intend to use our language. Speci�cally, we look at two party key distribution

protocols involving a single key/authentication server. In section 2 we present the language itself and a

corresponding model-theoretic semantics. We also present the model of computation on which our semantics

is based, namely that underlying the NRL Protocol Analyzer. In section 3 we give a brief overview of the

Analyzer. In section 4 we give requirements for two party key agreement protocols, such as in Di�e-Hellman

key agreement [7]. We also look at a particular key agreement protocol due to Aziz and Di�e [3]. We specify

this protocol in the language of the Analyzer and evaluate it with respect to the requirements we have given.

Finally, we discuss our �ndings and present our conclusions.

1 Formal Requirements

One of the disadvantages of currently available logical languages for cryptographic protocol analysis is that

for the most part each protocol has its own speci�cation. Our approach goes some way towards a remedy

by allowing a single set of requirements to specify a whole class of protocols. This has the advantage that

3

a protocol analyst can largely identify the goals of any protocol in this class with that one speci�cation,

which seems to be a fairly intuitive way to view things. For instance one might want evaluate a protocol for

two party session key distribution using ordinary public or shared key cryptography. While many of these

protocols have special features and requirements, there are a number of requirements they all share|for

example, that the distributed key be known only to the two principals and the server if there is one. We can

express in our language general requirements for protocols for distributing session keys to two parties via a

server. This speci�cation should also satisfy protocols with no server, i.e., where one of the participants is

the server. It should also work for interdomain communications. Although there are undoubtedly further

requirements to be speci�ed for servers from di�erent domains to authenticate each other, that process should

not a�ect the requirements for the two end parties in relation to whoever produces the key.

We begin by setting out formal requirements for key distribution protocols such as Kerberos. We will give

a gloss of the notation that should be su�cient for an intuitive reading of the requirements. Precise syntax

and semantics for our language will follow. After that we will consider requirements where the session key

is the result of input from both recipients of the session key (as in Di�e-Hellman key exchange).

1.1 Two Party, One Server Key Distribution Requirements

What are the general security requirements for the type of authentication protocol given by our example

above? That is, if A and B were to accept Kab as a usable session key, what need hold to preclude security

violations? We restrict outselves to the case in which there are two parties involved in obtaining keys, one

who initiates the protocol, who we designate as the initiator, and the other, who we designate as the receiver.

The server can be either a separate entity, or the initiator or receiver.

For this set of requirements, we assume that the server (given that he is distinct from the two principals)

is honest. Individuals attempting to communicate may be either honest or dishonest. However, we only

consider requirements for communication between two honest principals together with an honest server.

This is because, under our assumptions, if any party is dishonest, he or she will share the key with the

intruder, and so the fundamental requirement of key secrecy will not be satis�ed.2

There are some obvious requirements on such a protocol. First of all, if a key is accepted by an honest

principal for communication with another honest principal, it should not be learned by the intruder, either

before or after the accept event, unless as a result of some key compromise that is outside the scope of the

protocol. Secondly, replays of old keys should be avoided. Thus, if a key is accepted for communication by

honest principal A with honest principal B, it should not have been accepted in the past, except possibly

by B for communication with A. Thirdly, if a key has been accepted for communication between A and B,

then it should have been generated by a server for use between A and B. Finally, we make the more subtle

requirement that, if A or B accept a key for conversation with the other and with A as an initiator, then

A did in fact initiate the conversation. Thus, A and B cannot be tricked into having a conversation that

neither one of them initiated.

Events are expressed in our language using n-ary action symbols, often of arity four. The �rst argument of

the action is reserved for the agent of that action. The next argument(s) are other parameters such as a key

2In other cases, for example in our analysis of some resource-sharing protocols, we develop requirements for the interaction

of an honest principal with a possibly dishonest principal.

4

being distributed or another relevant principal. The last argument is always a round number local to the

agent of the action. The events in the informal requirements that we have stated so far are: the initiator's

request for a key for communication with the receiver, the server's sending a key for sender and receiver, the

initiator's acceptance of a key for communication with the receiver, the receiver's acceptance of a key for

communication with the initiator, the intruder's learning a key, and the compromise of a key.

They are:

� Initiator A requests to talk to receiver B:

request(user(A; honest); user(B; Y); ();M)

� Server S sends a key K for communication between A and B:

send(S; user(A;X); user (B; Y);K;M)

� Initiator A accepts a key for conversation with receiver B:

init accept(user(A; honest); user(B; Y);K;M)

� Receiver B accepts a key for conversation with initiator A:

rec accept(user(B; honest); user(A;X);K;M)

� Penetrator P learns a key:

learn(P; ();K;M)

� Key is compromised:

compromise(environment; ();K;M)

The requirements language uses standard logical notaion in the usual way. (For example, `!' represents

the standard logical conditional, and `^' is the conjunction sign). The language also contains a temporal

operator, 3- , which can be read \at some point in the past". Our use of `M?' below is not as a true variable,

hence it does not require uniform substitution of round numbers.

The requirements are:

Requirement 1 If a key has been accepted, it should not be learned by the intruder, except through a

compromise event:

3- (init accept(user(A; honest); user(B; honest);K;M1)_

rec accept(user(B; honest); user(A; honest);K;M2))!

3- (learn(pen; ();K;M?)! 3- compromise(environment; ();K;M?))

Probably the main feature in Kerberos corresponding to this requirement is that the session key is sent only

in encrypted form|and the assumption that that principals will not release the key themselves. We note

this only for illustrative purposes. We do not claim to fully describe the features of Kerberos, nor do we

analyze the protocol.

Requirement 2 If a key is accepted for communication between two parties, it should not have been

accepted in the past, except by the other party. This becomes two requirements, one for the initiator and

one for the receiver. (The receiver's requirement is a mirror image of the sender's.)

5

init accept(user(A; honest); user(B; honest);K;M1)!

:(3- init accept(user(C; honest); user(D;X);K;M?)^

(3- rec accept(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

rec accept(user(B; honest); user(A; honest);K;M2)!

:(3- rec accept(user(C; honest); user(D;X);K;M?)^

(3- init accept(user(C; honest); user(D;X);K;M?)! (C = A ^D = B))

Given the assumptions that principals will follow the protocol faithfully and that the server always generates

new keys, probably the main feature of Kerberos relating to this requirement is the use of timestamps that

are bound cryptographically to Kab in one form or another.

Requirement 3 If a key is accepted for communication between two entities, then it must have been

requested by the initiating entity and sent by a server for communication between those two entities. Again,

this becomes two requirements, one for the initiator and one for the receiver.

init accept(user(A; honest); user(B; honest);K;M1)!

3- (send(S; (user(A; honest); user(B; honest));K;M?)^

3- request(user(A; honest); user(B; honest); ();M1))

rec accept(user(B; honest); user(A; honest);K;M2)!

3- (send(S; (user(A; honest); user(B; honest));K;M?)^

3- request(user(A; honest); user(B; honest); ();M?))

Again assuming that principals execute the protocol faithfully, the use of timestamps, appropriately bound

to Kab, forms the primary mechanisms of Kerberos that relate to this requirement.

In order to be secure a protocol must satisfy the conjunction of the requirements. They must all hold;

although, it helps keep things clear if we list them separately. This will also facilitate application of the NRL

Protocol Analyzer.

Note that according to the requirements it does not matter whether a protocol uses public or shared key

cryptography. Nor do we speci�cally require which freshness mechanisms are used. The Kerberos Protocol

set out above uses shared keys and timestamps, but the requirements apply equally to protocols using

public keys and/or nonces or perhaps sequence numbers. These points should provide some indication of the

generality with which requirements can be stated even when being formal. We will return to the discussion

of requirements below, after we have precisely set out the language and its interpretation.

2 The Language

In this section we set out our formal requirements language. In general, our syntax is based on that of

temporal logic (cf. [10] or [21]) and in particular was motivated by the language of [11] and [1]; however,

6

the intended meaning of the syntax is somewhat di�erent than in those works. We begin with the general

linguistic constructs and then give the interpretation thereof in the model of computation.

2.1 Syntax

Our language contains a denumerable collection of constant singular terms, typically represented by letters

from the beginning of the alphabet. We also have a denumerable collection of variable terms, typically

represented by letters from the end of the alphabet. We also have, for each n � 1, n-ary function letters

taking terms of either type as arguments and allowing us to build up functional terms in the usual recursive

fashion. (We will always indicate whether a term is constant or variable if there is any potential for confusion.)

We have a denumerable collection of n-ary action symbols for each arity n � 1. These will be written as

words in typewriter script (e.g., accept). The �rst argument of an action symbol is reserved for a term

representing the agent of the action in question.

An atomic formula consists of an n-ary action symbol, e.g., `act' followed by an n-tuple of terms. We have

the usual logical connectives: :, ^, _, !, and $, and also one temporal operator: 3- . Complex formulae

are built up from atomic formulae in the usual recursive fashion. Since we have already seen examples of

formulae, we proceed directly to their interpretation. (Note that this is only a formal language, not a logic;

hence there are no axioms or inference rules.)

2.2 Interpretations

The key notion to understand is that of an action. For us actions are transitions from one state to another.

We represent these semantically by ordered pairs of the form (s; s0), where `s' represents the state prior to

the action and `s0' represents the state subsequent to the action. The precise way this works is given in the

de�nition of an interpretation.

De�nition 2.1 A state space is a non-empty set S, and each s 2 S is a state. We represent time digitally

using the integers. A trace is a sequence � of elements of S that is in�nite in both directions, for example,

: : : ; si�1; si; si+1; : : :. We can thus equate a trace with a function from times to states. If s is the value of

�(t), we will generally adopt the notational convenience of representing this by `st'. Let � and � be formulae.

An interpretation is a function I from atomic formulae of the language to subsets of S�S, i.e., I(�) � S�S

for any atomic formula �.

A model is an ordered 4-tuple, hS; I; �; ti such that S is a state space, I is an interpretation, � is a trace,

and t is a time. The satisfaction relation, j=, is a relation between models and formulae. It is our way of

specifying which formulae are true: given a formula � and a model hS; I; �; ti, `hS; I; �; ti j= �' means that

� is true at hS; I; �; ti. It is de�ned as the smallest relation between models and formulae satisfying the

following:

hS; I; �; ti j= � =df (st; st+1) 2 I(�)

hS; I; �; ti j= :� =df hS; I; �; ti =j= �

hS; I; �; ti j= � ^ � =df hS; I; �; ti j= � and hS; I; �; ti j= �

7

hS; I; �; ti j= � _ � =df hS; I; �; ti j= � or hS; I; �; ti j= �

hS; I; �; ti j= �! � =df hS; I; �; ti =j= � or hS; I; �; ti j= �

hS; I; �; ti j= �$ � =df hS; I; �; ti j= �! � and hS; I; �; ti j= � ! �

hS; I; �; ti j= 3- � =df hS; I; �; t0i j= � for some t0 such that t0 < t

Given a class of models �, we say that a formula� has a �-model or is �-satis�able if there exists hS; I; �; ti 2 �

such that hS; I; �; ti j= �. We say that � is �-valid if hS; I; �; ti j= � for all hS; I; �; ti 2 �. This is written

j=� �. When � is clear from context or when � is the class of all models we drop explicit reference to it in

these expressions. 2

2.3 Models of Computation

We will not be looking at the class of all models for purposes of protocol analysis. We now set out the class

we will be using. We begin by describing some of the technical machinery we need. Our description of states

and actions is motivated primarily by the formalisms operated on by the NRL Protocol Analyzer.

The model used by the Protocol Analyzer is an extension of the Dolev-Yao model [8]. We assume that the

participants in the protocol are communicating in a network under the control of a hostile intruder who

may also have access to the network as a legitimate user or users. The intruder has the ability to read all

message tra�c, destroy and alter messages, and create his own messages. Since all messages pass through

the intruder's domain, any message that an honest participant sees can be assumed to originate from the

intruder. Thus a protocol rule describes, not how one participant sends a message in response to another,

but how the intruder manipulates the system to produce messages by causing principals to receive certain

other messages.

As in Dolev-Yao, the words generated in the protocol obey a set of reduction rules (that is, rules for reducing

words to simpler words), so we can think of the protocol as a machine by which the intruder produces words

in the term-rewriting system. Also, as in Dolev-Yao, we make very strong assumptions about the knowledge

gained when an intruder observes a message. We assume that the intruder learns the complete signi�cance

of each message at the moment that it is observed. Thus, if the intruder sees a string of bits that is the

result of encrypting a message from A to B with a session key belonging to A and B, he knows that is what

it is, although he will not know either the message or the key if he has not observed them.

A speci�cation in the Protocol Analyzer describes how one moves from one state to another via honest

participants sending data, honest participants receiving data, honest participants manipulating stored data,

and the intruder's manipulation of data sent by the honest participants. Dishonest participants are identi�ed

with the intruder, and so are not modeled separately. The sending and receipt of messages by the intruder is

not modeled separately, since it is automatically assumed that any message sent is received by the intruder,

and any message received is sent by the intruder, even if it is only passed on by the intruder unchanged.

Thus every receipt of a message by an honest principal implies the sending of a message by the intruder,

and every sending of a message by an honest principal implies the receipt of a message by the intruder.

Given this, we look at the notion of a state more closely. One of the primary components of a state is a

learned fact. Each honest protocol participant possesses a set of learned facts. Each learned fact is relevant to

8

a given round of the protocol. A learned fact is described using an lfact function, which has four arguments.

The �rst identi�es the participant A for whom it is a learned fact. This will give us the agent of an action.

The second identi�es the round of the protocol via a round number that is local to the principal denoted by

the �rst argument. This will allow each principal to attach each relevant action to a particular round of a

particular protocol. The third indicates the nature of the fact. Generally this will indicate the action that

the agent is taking. The fourth gives the present value of A's counter. In e�ect, this gives us a local clock

value. The value of the lfact is either a list of words that make up the content of the fact, or if the fact does

not have any content, it is [], the empty list.

One way we represent actions semantically is via changes in learned facts; however, we do not allow arbitrary

changes in the value of lfact. A nonempty list can be the value of lfact for a given principal, round, and

action, at the principal's local time T only if the value of lfact for that principal, round, and action, at the

time immediately prior to T was [].

Thus, for example, suppose that A has attempted to initiate a conversation with B during local round N at

time T. This can be expressed by the action (s; s0) where the di�erence between s and s0 is that in s,

lfact(user(A,honest),N,init conv,T) = []

and in s0,

lfact(user(A,honest),N,init conv,T+1) = [user(B)]

At any time prior to T, the value of the lfact would also be [].

It is also useful to allow certain actions to be `forgotten'. This is accomplished by having a transition in

which the value of lfact goes from a nonempty list to [].

Another component of a state is the intruder's knowledge, represented as a monotonically nondecreasing

function of time. It is necessary to represent this in a manner distinct from the learned facts because the

Analyzer represents the intruder in a di�erent way than it represents ordinary principals. There are two

kinds of actions associated with intruder knowledge that we allow. In the �rst of these, the intruder learns

some word, that is, a string of symbols. For instance, suppose that A sends a message W to B at time t1,

and the intruder intercepts (and thus learns) W at time t2. According to what we have set out above, this

can be represented by (s; s0), where in s,

lfact(user(A),N,send to B,T) = []

and in s0,

lfact(user(A),N,send to B,T+1) = [W]

Then, the intruder learning of this action is given by (s0; s00), where the only change from s0 to s00 is that in

s00 we have

intruderknows(t2) = intruderknows(t1) [f[W]g

9

where intruderknows(t) is the set of words known by the intruder at the global time t, and t1 and t2 are the

global times corresponding to A's local times T and T + 1, respectively.

The second way the intruder may increase his knowledge is by performing some available internal operations

on things he already knows. In other words, assuming ! is some n-ary operation of which the intruder is

capable, if fW1; : : : ;Wng � intruderknows(t), then

intruderknows(t2) = intruderknows(t1) [f!(W1; : : : ;Wn)g,

where t1 and t2 are again global times.

De�nition 2.2 The four types of actions just given will be called `basic actions'. A basic model is one in

which, for any given trace �, one basic action may occur per unit time, and these specify the only allowable

di�erences between a state and its successor. 2

While basic models provide us with a simple model of computation in which to interpret the expressions of

our language, they are too simple to be practical in most cases, especially as a basis for analysis using the

NRL Protocol Analyzer. What we would like is a model in which state transitions can be complex enough

to be useful but simple enough to provide assurance that our model is a reasonable one. To this end we

introduce compressed models.

De�nition 2.3 A compressed model is a model M for which there exists a basic model M0 satisfying the

following:

� The state space and interpretation for M and M0 is the same.

� The trace � in M is a subtrace of �0, the trace in M0.

2

In particular, this means that for every transition (st; st+1) in �, there exists a subsequence of �0,

(�0(i); : : : ; �0(i+ n)), such that st = �0(i) and st+1 = �0(i+ n). Note that in a compressed model a learned

fact can change from one nontrivial value to another.

Now that we have the essentials of our semantics worked out, we can give a broad overview of how it

functions in evaluating whether a protocol meets a set of requirements. For example, suppose we have a set

of requirements describing one principal accepting a message from another, represented in our language by

accept(A;B;Mes; N). We can give a very simple description of the computational truth conditions for this

action. For example, hS; I; �; ti j= accept(A;B;Mes; N) i� in st lfact(user(A), N, accept from B, T) = []

and in st+1 lfact(user(A), N, accept from B, T+1) = [Mes]. This is of course not very revealing. While what

constitutes a send or receive action should be immediately clear, an accept action is somewhat complex.

Thus, while we can present a model with such a simple interpretation, we need to give a more detailed

interpretation of an accept action if we are to get any use out of it.

It would be hopeless to give general truth conditions for an accept action. Fortunately, at this point we

can turn to the protocol in question to see what would constitute a reasonable interpretation of accepting a

10

message. Accepting a message is what occurs when all the relevant checks have been veri�ed by the accepting

principal. Of course the atomic actions and their interpretations can be quite di�erent when we move to an

entirely distinct class of protocols, e.g., resource sharing protocols. The exact details of how this works will

be set out below when we describe how to specify a protocol for the Analyzer.

Once we have set an interpretation for all of the expressions used in the statement of requirements and

have speci�ed the protocol itself, we are in a position to determine whether or not the protocol meets the

requirements. Given a �xed state space S and interpretation I, we consider the class � of all models hS; I; �; ti

for which � is a trace of the protocol speci�cation. To see if the protocol meets the requirements we simply

see if the formulae that constitute the requirements are valid in �. Of course, while the check is very simple

in theory, it is rather di�cult in practice. This is where the NRL Protocol Analyzer comes in: it helps us

to make the determination. That is, to see if the protocol meets the requirements we present the Analyzer

with the requirements and the interpretation of atomic actions therein. We then ask it to determine if the

models in � are a subclass of those that make the requirements true. We will show how to do this below for

a sample protocol and sample set of requirements. The analysis is primarily conducted in the language of

the Analyzer, which for us amounts to a semantic description language. Thus, we present a description of

the Analyzer and its language before proceeding further.

3 The NRL Protocol Analyzer

3.1 The Speci�cation Language Used by the NRL Protocol Analyzer

A speci�cation in the NRL Protocol Analyzer consists of four sections. The �rst section consists of transition

rules governing the actions of honest principals. It may also contain rules describing possible system failures

that are not necessarily the result of actions of the intruder, for example, the compromise of a session key.

The second section describes the operations that are available to the honest principals and possibly to the

intruder, e.g., encryption and decryption. The third section describes the atoms that are used as the basic

building blocks of the words in the protocol. The fourth section describes the rewrite rules obeyed by the

operations.

A transition rule has three parts. The �rst part gives the conditions that must hold before the rule can �re.

These conditions describe the words the intruder must know (that is, the message that must be received by

the principal), the values of the lfacts available to the principal, and any constraints on the lfacts and words.

At the moment, the syntax of the constraints on words is somewhat restricted; they can only say that words

must or must not be of a given length or that they must or must not be equal to other words. The second

part describes the conditions that hold after the rule �res in terms of words learned by the intruder (that

is, the message sent by the principal) and any new values taken on by lfacts. Each time a rule �res, the

principal's local time is incremented; this is also recorded in the preconditions and postconditions of the rule.

The third part of the rule consists of an event statement. It is used to record the �ring of a rule and is useful

for indicating what the rule does. It is derived from the �rst two parts of the rule. The event statement

describes a function with four arguments. The �rst gives the name of the relevant principal. The second

gives the number of the protocol round. The third identi�es the event. The fourth gives the value of the

principal's counter after the rule �res. The value of the event is a list of words relevant to the event.

11

As an example, consider the initial session request that A sends in the Kerberos protocol, namely, A sends

to S: A;B. The corresponding rule is as follows:

If:

count(user(A,honest)) = [N],

then:

count(user(A,honest)) = [s(N)],

intruderlearns([user(A,honest),user(B,Y)]),

lfact(user(A,honest),N,init_sendsrequest,s(N)) =

[user(B,Y)],

EVENT:

event(user(A,honest),N,init_sendsrequest,s(N)) =

[user(B,Y)].

There are no conditions for this rule to �re other than to identify the local time. We also use the local time

at the start of the protocol for the local round number of the protocol run. Although the intruder is generally

assumed to know the names of all principals, we re
ect what A sent via the intruderlearns postcondition.

The initsendrequest lfact indicates that it is user(B,Y) with whom user(A,honest) wishes to have a session

key. This is also re
ected in the event statement. In this rule B is not indicated to be honest or dishonest

since that is unrelated to this transition.

The second section of the speci�cation de�nes the operations that can be made by honest principals and by

the intruder. If an operation can be made by the intruder, the Analyzer translates it into a transition rule

similar to the above, except that the relevant principal is the intruder instead of an honest principal, and

no lfacts are involved. An example of a speci�cation of an operation is the following, describing public key

encryption:

fsd1:pke(X,Y):length(X) = 1:

length(pke(X,Y)) = length(Y):pen.

The term \fsd" stands for \function symbol description." The next term gives the operation and the

arguments. The third gives conditions on the arguments. In this case, we make the condition that the key

be a certain length, which in this case we make a default unit length one. The next term gives the length of

the resulting word, which in this case is the length of Y. The last �eld is set to \pen" if we are assuming that

the penetrator can perform the operation, and \nopen" if we are assuming that he can't. Thus the decision

to put \pen" or \nopen" into the last �eld may vary with our assumptions about the environment in which

the protocol is operating.

Some operations are built into the system. These are: concatenation, taking the head of a list, taking the

tail of a list, and id check, which is used by an honest principal to determine whether or not two words are

identical.

The third section describes the words that make up the basic building blocks. We call these words \atoms".

Examples would be user names, keys, and random numbers. Again, we indicate whether or not the word is

known to the intruder in the last �eld of an atom speci�cation, it is \known" if the intruder knows it initally,

and \notknown" if the intruder doesn't know it initially.

12

The last section describes the rewrite rules by which words reduce to simpler words. An example of a rewrite

rule would be one which describes the fact encryption with corresponding public and private keys cancel

each other out:

rr1: pke(privkey(X),pke(pubkey(X),Y)) => Y.

rr2: pke(pubkey(X),pke(privkey(X),Y)) => Y.

One queries the Analyzer by asking it to �nd a state that consists of a set of words known by the intruder,

a set of lfacts, and a sequence of events that must have occurred. One can put conditions on the words,

lfacts and events by putting conditions on the words that appear in them. One can also put conditions on

the results by specifying that certain sequences of events must not have occurred.

The Analyzer then matches up the output of each rule with the speci�ed state, if possible, by performing

substitutions on the output that makes it reducible, via the reduction rules, to the state speci�ed. It may

match either the entire state or some subset. The input of the rule together with any part of the state then

becomes a new state to be queried.

The way in which the Analyzer interprets rules allows considerable freedom in how the matching is done.

Variables are local to rules, and, each time a rule is applied, a new set of variables is generated. This allows

the Analyzer, for example, to develop scenarios involving multiple instantations of protocol rounds, as well

scenarios in which the same principal plays more than one role.

4 Two Party Key Agreement

In section 1.1 above, we gave an example set of requirements for two party, one server key distribution. In

this section we consider requirements where the session key is not distributed from a single server. Rather

parts of it are produced be each of two principals. This is generally called key agreement rather than key

distribution because the session key itself need never be sent. Each principal can send an agreement key to

the other, and the session key is a function of the two agreement keys. Despite these di�erences there is a

large amount of overlap between the requirements of section 1.1 and those we now give. In fact the �rst

two are the same. (The only nominal di�erence is that in the following section we use `init accept sk' to

indicate the intiator's acceptance of a session key and `init accept ak' for the initiator's acceptance of an

agreement key, and we follow similar usage for the receiver.)

4.1 Two Party Key Agreement Requirements

Requirement 1 If a key has been accepted, it should not be learned by the intruder, except through a

compromise event:

3- (init accept sk(user(A; honest); user(B; honest);K;M1)_

rec accept sk(user(B; honest); user(A; honest);K;M2))!

3- (learn(pen; ();K;M?)! 3- compromise(environment; ();K;M?))

13

Requirement 2 If a key is accepted for communication between two honest parties, it should not have been

accepted in the past, except by the other party. This becomes two requirements, one for the initiator and

one for the receiver. (The receiver's requirement is a mirror image of the sender's.)

init accept sk(user(A; honest); user(B; honest);K;M1)!

:(3- init accept sk(user(C; honest); user(D;X);K;M?)^

(3- rec accept sk(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

rec accept sk(user(B; honest); user(A; honest);K;M2)!

:(3- rec accept sk(user(C; honest); user(D;X);K;M?)^

(3- init accept sk(user(C; honest); user(D;X);K;M?)! (C = A ^D = B))

Requirement 3 If an agreement key is accepted by either party for a communication session between two

parties, then that key must have been previously sent by the other party. (This requirement introduces the

notation `AKP ' for principal P 's agreement key, i.e., P 's contribution to the session key.)

init accept ak(user(A; honest); user(B; honest); AKB ;M?)!

3- (send(user(B; honest); user(A; honest); AKB ;M?)

rec accept ak(user(B; honest); user(A; honest); AKA;M?)!

3- (send(user(A; honest); user(B; honest); AKA;M?)

Requirement 4 If a session key is accepted by either party for a communication session between two parties,

then that party must have previously generated her own agreement key and accepted the other principal's

agreement key, and the session key must bear the correct functional relationship to the agreement keys.

(This requirement introduces the notation `f ' for the key agreement function used.)

init accept sk(user(A; honest); user(B; honest);K;M?)!

(init accept ak(user (A; honest); user(B; honest); AKB ;M?)^

(generate(user(A; honest); user(B; honest); AKA;M?))^

K = f(AKA; AKB)

rec accept sk(user(B; honest); user(A; honest);K;M?)!

(rec accept ak(user(B; honest); user(A; honest); AKA;M?)^

(generate(user(B; honest); user(A; honest); AKB;M?))^

K = f(AKA; AKB)

Note that we omit the 3- . This is because, even though an event such as generating the agreement key must

logically precede the generation of the session key, in a protocol speci�cation we may specify both as part

of the same state transition. They will thus appear to be occuring simultaneously. However, we can specify

that, if the session key was generated, then so was the agreement key.

14

The most familiar examples of key agreement are probably implementations of Di�e-Hellman key exchange

[7]. It may not be obvious how the above requirements apply to Di�e-Hellman, in which principals exchange

public agreement keys and the session key is a function of either public agreement key with the other party's

private agreement key. But, in Di�e-Hellman key exchange the public agreement keys are in e�ect encrypted

versions of the private agreement keys. If we represent P 's public agreement key as `pub(AKP)', then the

key agreement function f is implicitly de�ned via an explicit function g such that g(AKA; pub(AKB)) =

g(AKB ; pub(AKA)) = f(AKA; AKB). Di�e-Hellman satis�es further requirements, such as keeping each

principal's (private) agreement key from being known by the other. This is a useful requirement that can be

additionally speci�ed if required; however, since many agreement algorithms are not intended to meet such

a requirement, we do not set it out here.

Notice that there is very little in the above requirements that guarantees that keys are recently generated,

unused, etc. The only requirement at all in this general area is requirement 2, which basically rules out the

acceptance of previously accepted session keys. One reason for this situation is that such requirements are

not as generally desirable for key agreement protocols as they are for key distribution protocols. As always,

it should be recalled that the requirements we set out are meant to be generic for a class; some requirements

may be unnecessary to meet all the goals for some protocols in the class, indeed it is possible that some of

those goals be inconsistent with some of the generic requirements. The following are all properties that we

might want keys to have, and which we take to be the primary ones in this area. Freshness is the property

of having been generated or sent after the start of the present epoch. Currency is the property of being part

of the present protocol run. (Currency usually implies freshness, but it may not.) Virginity is the property

of not having been accepted for use previously (accept possibly by other principals in the protocol). So, if

we wanted to require that the receiver's agreement key be virgin we would formalize this:

Requirement 5

init accept ak(user(A; honest); user(B; honest); AKB ;M?)!

:3- (init accept ak(user(C; honest); user(D;X); AKB ;M?)_

rec accept ak(user(C1; honest); user(D1; X); AKB ;M?))

Even if we require that the session key have all of the above properties, this is generally met if either of the

agreement keys has all of them; there is no guarantee that both of the agreement keys have them.3 Thus,

the need for requirements concerning these properties may be subtle. As an example, consider ElGamal's

one pass variant on basic Di�e-Hellman [9]. In this protocol the receiver's public agreement key is expected

to be available prior to the protocol run. The run consists of a single message in which the initiator sends his

public agreement key to the receiver. Thus, in this protocol the initiator's agreement key is fresh, current,

and virgin; therefore, so is the session key. But, the receiver's key is not current, and it need not be either

virgin or fresh.

In order to demonstrate the application of our requirements language and the NRL Protocol Analyzer we

now look at a speci�c key agreement protocol to see how it meets the above requirements. The application

turned out to be illuminating for several reasons. First, it made clear an underlying assumption that was

necessary to the correct operation of the protocol. Secondly, it pointed out some situations in which our key

3In [18] and [20] we discuss key distribution protocols where the session key is accepted more than once.

15

requirements of freshness, currency, and virginity may not be adequate. We outline the protocol speci�cation

and analysis in detail below.

4.2 A Protocol Analysis Example

In [3], Aziz and Di�e present the design of \a secure communication protocol that provides for both privacy

of wireless data communications and authenticity of the communicating parties." This protocol relies on

input from both principals to form the session key. It is thus reasonable to analyze this protocol to see if

it satis�es the above requirements. The protocol runs as follows, where A is a mobile unit and B is a base

unit.

4.2.1 The Aziz Di�e Protocol

(1) A sends to B: CertA; NA; alglistA

(2) B sends to A: CertB; fAKBgKA ; algchoiceB; fmd(fAKBgKA ; algchoiceB ; NA; alglistA)gK�1
B

(3) A sends to B: fAKAgKB ; fmd(fAKAgKB ; fAKBgKA)gK�1
A

CertX is a certi�cate signed by a trusted authority containing X's public identity, public key and other

information. alglist
A
is a list that A has composed of encryption algorithms, and algchoice

B
is an algorithm

chosen from alglist
A
byB. The shared key is the exclusive-or ofAKA andAKB , that is A's andB's agreement

keys respectively. The term \md(X)" stands for a collision-free message digest function computed over X.

When B receives A's message, he veri�es A's certi�cate, and chooses an algorithm from the list of encryption

algorithms. He generates an agreement key AKB , encrypts it with A's public key and sends it to A. This

encrypted agreement key will serve double duty as a nonce. The encrypted key, the chosen algorithm, and

A's nonce, are signed with B's private key and sent to A together with the certi�cate.

When A receives B's message, she veri�es the signature and veri�es the message's recency by checking the

nonce. She then decrypts the encrypted key and accepts that as B's key agreement key. She then generates

an agreement key AKA, encrypts it with B's key, and sends this to B together with her signature computed

over hers and B's encrypted key agreement keys.

When B receives the message, he veri�es that the signature is computed over the two agreement keys. This

veri�es the recency of the key and the fact that it comes from A. B then accepts AKA as A's agreement key.

4.2.2 Speci�cation of the Aziz-Di�e Protocol

In this section we describe how we speci�ed the Aziz-Di�e protocol in the Protocol Analyzer language.

Speci�cation of Principals and Words Used in the Protocol We begin by specifying the principals

involved in the protocol. Initiators of the protocol are always mobile units, and receivers are always base

units. This di�ers from most other key distribution protocols, in which the same principal may play either

16

role. It thus rules out some multiple-role attacks that rely on the interleaving of two or more protocols in

which the same principal plays di�erent roles.

Both mobile and base units can be either honest or dishonest. Honest units obey the rules of the protocol,

and do not share information with the intruder except when it is sent in a message. Dishonest units are

assumed to be in league with the intruder and to share all information learned with the intruder. We

thus designate a mobile unit as mobile(A,H) and a base unit as base(A,H), where A is a variable uniquely

identifying a principal, and H is a variable which can be set either to \honest" or \dishonest".

We also specify a principal we call \dummy." The purpose of the dummy is to aid in specifying key

compromise. Since the Analyzer speci�es a protocol as a transition on state variables, we need a place to

hold the key as a state variable before it is compromised. It is not appropriate to hold it as a state variable

belonging to one of the relevant principals, since a key may be compromised long after it is deleted from

the memory of the relevant principals. Thus the dummy is created as a place to hold a key until it is

compromised.

Random numbers and agreement keys are written as function symbols with name and time as arguments.

The reason for this is that the Protocol Analyzer treats terms as equal if and only if they are syntactically

equal. Thus attaching a name-time stamp to nonces and keys captures the assumption that keys and nonces

generated either at di�erent times or by di�erent principals are di�erent. A key generated by U at time N

is designated by key(U ,N). A random number generated by U at time N is designated by rand(U ,N).

Public and private keys are identi�ed by their owners. The term pubkey(U) stands for U 's public key, and

the term privkey(U) stands for U 's private key.

We also develop conventions for algorithms, lists of algorithms, serial numbers and so forth in a similar way.

If only one version of a word is associated with a particular principal, the word is described as a function of

a name. If the principal can generate di�erent versions of a word at di�erent times, the word is described as

a function of name and time.

Speci�cation of Operations and Rewrite Rules We de�ne three operations: public-key encryption of

Y with key X, denoted by pke(X,Y), message digest computed over X, denoted by md(X), and exclusive-or

of X and Y , denoted by xor(X,Y). There are also several built-in operations: concatenation, (X,Y), head

and tail of list, head(X) and tail(X), and id check(X,Y), which denotes the result of checking if X and Y

are identical.

The rewrite rules for public key encryption and decryption are speci�ed as follows:

rr(1): pke(privkey(X),pke(pubkey(X),Y)) => Y.

rr(2): pke(pubkey(X),pke(privkey(X),Y)) => Y.

The Protocol Analyzer does not yet handle commutative rules, so we could give a complete speci�cation of

the properties of exclusive-or. We included only one rewrite rule describing a cancellation property:

rr(3): xor(X,xor(X,Y)) => Y.

17

The incomplete speci�cation of the properties of exclusive-or means that we should not consider our analysis

of the Aziz-Di�e protocol as a complete one. Even so, we were able to discover some interesting properties.

The built-in functions also obey rewrite rules. For example, id check(X,X) reduces to \ok."

Speci�cation of Words Known Initially The intruder is assumed to know all principal names, all

public keys, all private keys belonging to dishonest principals, and all random numbers and session keys

generated by dishonest principals. We also found it useful to specify words such as the public key certi�cates

that are easy for the intruder to learn as words known initially. This saves the Analyzer the work of having

to recreate the path by which the intruder learns the word each time it is desired.

Speci�cation of the Protocol Transitions The transitions specify the actions of the honest principals.

However, we note that in each case a principal may be dealing with an honest or dishonest principal.

In the �rst transition, an honest mobile unit mobile(A,honest) sends an initiation message to a base unit

base(B,H) who may be honest or dishonest. This is speci�ed as follows:

rule(1)

If:

count(mobile(A,honest)) = [N],

then:

count(mobile(A,honest)) = [s(N)],

intruderlearns([(serial(mobile(A,honest)),

validity(mobile(A,honest)),mobile(A,honest),pubkey(mobile(A,honest)),

keyauth),

pke(privkey(keyauth),md((serial(mobile(A,honest)),

validity(mobile(A,honest)),mobile(A,honest),pubkey(mobile(A,honest)),

keyauth))), rand(mobile(A,honest),N),alglist]),

lfact(mobile(A,honest),N,init_request,s(N)) = [base(B,H),rand(mobile(A,honest),N)],

EVENT:

event(mobile(A,honest),N,init_keyrequest,s(N)) =

[base(B,H),rand(mobile(A,honest),N)].

The mobile unit remembers the random number it generated, and who it was trying to talk to, and stores

this in the variable init request.

The next two transitions describes an honest base unit's response to a message purporting to come from an

honest or dishonest mobile unit. In the �rst transition, base(B,honest) receives the message and sets up the

veri�cation procedures, in which it performs an identity check (id check) on the result of computing the md

function on the mobile unit's public key certi�cate and applying the authorizing entity's public key to the

signature on the certi�cate. In the second transition, base(B,honest) performs the veri�cation, and, if it is

successful, sends a return message to the mobile(A,H).

This is speci�ed as follows.

18

rule(2)

If:

count(base(B,honest)) = [N],

intruderknows([X,Y,R,alglist]),

then:

count(base(B,honest)) = [s(N)],

lfact(base(B,honest),N,rec_nonce,s(N)) =

[head(tail(tail(X))),head(tail(tail(tail(X)))),R,

id_check(md(X),pke(pubkey(keyauth),Y))],

EVENT:

event(base(B,honest),N,rec_initmess,s(N)) =

[X,Y,R].

rule(3)

If:

count(base(B,honest)) = [N],

lfact(base(B,honest),M,rec_nonce,N) = [U,Key,R,ok],

then:

count(base(B,honest)) = [s(N)],

intruderlearns([(serial(base(B,honest)),

validity(base(B,honest)),base(B,honest),pubkey(base(B,honest)),

keyauth),

pke(privkey(keyauth),md((serial(base(B,honest)),

validity(base(B,honest)),base(B,honest),pubkey(base(B,honest)),

keyauth))),

pke(Key,key(base(B,honest),N)),

algtype(base(B,honest)),

pke(privkey(base(B,honest)),

md((pke(Key,key(base(B,honest),N)),

algtype(base(B,honest)),

R,

alglist)))]),

lfact(base(B,honest),M,rec_seskeyhalf1,s(N)) = [U,Key,key(base(B,honest),N)],

EVENT:

event(base(B,honest),M,rec_genkey,s(N)) = [U,Key,R,key(base(B,honest),N)].

In the next two transitions, the honest mobile unit receives the message purporting to come from the base

unit it is trying to communicate with. In the �rst transition, it receives the message and performs three

veri�cations. In the �rst, it veri�es the base unit's certi�cate. In the third, it veri�es the base unit's signature

on the message. The second veri�cation is not quite so obvious, however. The mobile unit veri�es that the

19

result of decrypting the word Randnum is of the form key(U ,J). What it is doing is a format check; it is

verifying that the result of a decryption is properly formatted as a key. In other words, if Randnum was

something other than the result of encrypting a key with the mobile unit's public key, the check would fail.

This format check turns out to be necessary to prevent a particular kind of denial of service attack. It is

not speci�ed in the protocol, but, upon contacting the authors, we found that this was an assumption that

was being made. We discuss the attack and the conditions under which it can be successful in more detail

in the section on the analysis of the protocol.

In the next transition, if the veri�cation succeeds, the mobile unit accepts the base unit's agreement key and

generates the session key using that and its own agreement key. The key is also transferred to the dummy

principal, where it is stored in the variable dummy vulnerable. This will be used to model key compromise

in a later transition.

rule(4)

If:

count(mobile(A,honest)) = [N],

intruderknows([Cert,Certsig,Randnum,Algtype,Sigrand]),

lfact(mobile(A,honest),M,init_request,N) =

[B,R],

then:

count(mobile(A,honest)) = [s(N)],

lfact(mobile(A,honest),M,init_baseinfo,s(N)) =

[head(tail(tail(Cert))),head(tail(tail(tail(Cert)))),

id_check(md(Cert),pke(pubkey(keyauth),Certsig))],

lfact(mobile(A,honest),M,init_randinfo,s(N)) =

[Randnum,pke(privkey(mobile(A,honest)),Randnum),

id_check(pke(privkey(mobile(A,honest)),Randnum),key(U,J)),

id_check(md((Randnum,Algtype,R,alglist)),

pke(head(tail(tail(tail(Cert)))),Sigrand))],

EVENT:

event(mobile(A,honest),M,init_gotkey,s(N)) =

[B,R,Cert,Certsig,Randnum,Algtype,Sigrand].

rule(5)

If:

count(mobile(A,honest)) = [N],

count(dummy) = [N1],

lfact(mobile(A,honest),M,init_request,N) = [B,R],

lfact(mobile(A,honest),M,init_baseinfo,N) = [B,Bkey,ok],

lfact(mobile(A,honest),M,init_randinfo,N) = [Rand1,BK,ok,ok],

then:

count(mobile(A,honest)) = [s(N)],

20

count(dummy) = [s(N1)],

lfact(mobile(A,honest),M,init_keyhalf,s(N)) = [key(mobile(A,honest),N)],

lfact(mobile(A,honest),M,init_key,s(N)) =

[B,xor(BK,key(mobile(A,honest),N))],

lfact(dummy,N1,dummy_vulnerable,s(N1)) =

[xor(BK,key(mobile(A,honest),N))],

intruderlearns([pke(Bkey,key(mobile(A,honest),N)),

pke(privkey(mobile(A,honest)),

md((pke(Bkey,key(mobile(A,honest),N)),Rand1)))]),

EVENT:

event(mobile(A,honest),M,init_acceptkey,s(N)) =

[B,R,Bkey,Rand1,BK,key(mobile(A,honest),N)].

The next two transitions de�ne the base unit's behavior upon receiving the last message of the protocol. In

the �rst transition, it checks the format of the encrypted key upon decryption with the base unit's private

key, and the moble unit's signature on the mobile unit's and the base unit's encrypted agreement keys. In

the next transition, if the check works out, the base unit generates the session key, and the key is transferred

to the dummy principal.

rule(6)

If:

count(base(B,honest)) = [N],

lfact(base(B,honest),M,rec_seskeyhalf1,N) = [A,Pubkey,Key1],

intruderknows([Rand2,Sigrand2]),

then:

count(base(B,honest)) = [s(N)],

lfact(base(B,honest),M,rec_testkey,s(N)) =

[A,Key1,pke(privkey(base(B,honest)),Rand2),

id_check(pke(privkey(base(B,honest)),Rand2),key(U,J)),

id_check(md((Rand2,pke(Pubkey,Key1))),pke(Pubkey,Sigrand2))],

EVENT:

event(base(B,honest),M,rec_gotkey,s(N)) = [A,Pubkey,Key1,Rand2,Sigrand2].

rule(7)

If:

count(base(B,honest)) = [N],

count(dummy) = [N1],

lfact(base(B,honest),M,rec_testkey,N) = [A,Key1,AK,ok,ok],

then:

count(base(B,honest)) = [s(N)],

count(dummy) = [s(N1)]

lfact(base(B,honest),M,rec_goodkey,s(N)) = [xor(Key1,AK)],

21

lfact(dummy,N1,dummy_vulnerable,s(N1)) = [xor(Key1,AK)],

EVENT:

event(base(B,honest),M,rec_acceptskey,s(N)) = [A,Key1,AK].

The last transition describes the transition by which a key is compromised. If a word resides in a dummy vulnerable

variable, then it can be learned by the intruder if this transition �res.

rule(10)

If:

count(dummy) = [N],

lfact(dummy,M,dummy_vulnerable,N) = [K],

then:

count(dummy) = [s(N)],

intruderlearns([K]),

lfact(dummy,M,dummy_vulnerable,s(N)) = [],

EVENT:

event(dummy,M,dummy_compromised,s(N)) = [K].

4.2.3 Mapping the Requirements to the Speci�cation

In this section we describe how the statements in the requirements for two-party key agreement protocols

can be mapped to the protocol so that they can be veri�ed using the Protocol Analyzer.

When we present a query to the Analyzer, we have several options. We can ask it to �nd a set of lfact values,

a set of words the intruder knows, a sequence of events that occurred, or some combination of the above.

We can also put conditions on the results it �nds. We can require that words have certains properties, and

require that certain sequences of events do not occur.

We use the Analyzer to attempt to prove a state is unreachable. Thus we must translate each requirement

into a description of an unreachable state. This is done in two parts. First, each requirement R is translated

into an equivalent requirement of the form not(R0). Secondly, the actions described in the requirement

are translated into the corresponding event statement used by the Analyzer, transforming R0 into a state

description R00 that can be presented to the Analyzer. The Analyzer is then used to prove R00 unreachable.

If this can be done, it has been proven that the requirement holds.

We begin by mapping action statements that describe actions of honest principals to event statements.

Again, we note that this mapping depends on the context of the protocol. We describe the mappings of all

action statements, except the intruder learns statement, in the table below. In this table na denotes the

action statement, and nb denotes the corresponding event statement.

22

1a init accept sk(A;B; xor(AKA; AKB);M)

1b event(A; M; init acceptkey; N) = [B; X1; X2;X3; AK B; AK A]

2a rec accept sk(B;A; xor(AKA; AKB);M)

2b event(B; M; rec acceptskey; N) = [A; AK A; AK B]

3a init accept ak(A;B;AKB;M)

3b event(A; M; init acceptkey; N) = [B; X1; X2;X3; AK B; X4]

4a rec accept ak(B;A;AKB;M)

4b event(B; M; rec acceptskey; N) = [A; X1; AK B]

5a init generate(A;B;AKA;M)

5b event(A; M; init acceptkey; N) = [B; X1; X2;X3; X4; AK A]

6a rec generate(B;A;AKB;M)

6b event(B; M; rec genkey; N) = [A; X1; X2; AK B]

7a request(A;B; ();M)

7b event(A; M; init keyrequest; N) = [B; X1]

8a compromise(environment; ();K;M)

8b event(dummy; M; dummy compromise; N) = [K]

Note that several action statements can map to the same event statement. The event statement init acceptkey

has no less than three action statements mapping to it, one describing acceptance of a session key, one

describing acceptance of an agreement key, and one describing generation of an agreement key. It is also

possible that an action statement can map to more than one event statement, as we shall see in the case of

the intruder learns action statement.

Mapping intruder actions to the protocol speci�cation is trickier, since intruder actions, which consist of

learning words, do not map to speci�c transitions, but instead to any transition which can produce a word of

the appropriate form. However, we recall that, in querying the Analyzer, we can ask it to produce a state in

which the intruder knows a word or words. This corresponds to asking it to �nd a state in which the intruder

learned that word in the past. If all we wish to prove is that the intruder learned that word in the past, and

we are not concerned about ordering, then this is su�cient. In most cases, we are mainly concerned with

proving that an intruder never learns a word; for example, we want to prove that the intruder never learns

a key, not that he does not learn it before or after it is used. Thus, in most cases, the way in which the

Analyzer is queried will be su�cient.

If order is important, we can change the way in which a protocol is modeled so that the variety of events

in which an intruder learns a word is reduced. Instead of having the intruder learn the work directly when

a message is sent, we create an entity called \network," and let the words of the message be entered in one

or several of network's state variables. The intruder's learning of a message could be represented in a way

similar to the compromise transition as follows:

rule(9)

If:

count(network) = [N],

lfact(network,M,network_word(Q),N) = [X],

23

then:

count(network) = [s(N)],

intruderlearns([K]),

lfact(network,M,network_word(Q),s(N)) = [],

EVENT:

event(network,M,network_tointruder,s(N)) = [K].

This would not only reduce the number of event statements corresponding to the intruder learns action

statement, but also allow us to model situations where we do not assume that the intruder learns all messages

that are sent over the network. However, it also adds complexity to the analysis, since an extra state transition

is needed before the intruder learns a word from a message. For this reason, and since we did not have any

requirements imposing conditions on the order in which the intruder learns a word, we chose not to model

things this way for the Aziz-Di�e protocol.

We now show how we would present the various requirements to the Analyzer. The Analyzer is used by

specifying an insecure state and showing that it is unreachable, so we specify the negation of the requirement

and showing that it is unreachable. In the current version of the Analyzer, it is possible to present as goals

states made up of the following:

1. A set of words known by the intruder;

2. A set of values of local state variables;

3. An sequence of events that occured; and

4. A set of sequences of events that must not have occurred.

A requirement that the occurrence of some event E implied that some other sequence of events S occurred

would be proved by taking the negation of the requirement, that is, the requirement that E occurred and S

did not occur, and proving that that is unreachable. This can easily be presented as a goal to the Analyzer,

as we see from above. A requirement that the occurence of some event E implies that S occurred previously

can be proved by showing that the state in which E occurred and (S,E) did not occur is unreachable, where

(S,E) is the sequence obtained by appending E to S. A requirement that, if E occurred then S did not occur

previously, can be proved by showing that the state in which the sequence (S,E) occured is unreachable. A

requirement that if E occurred S occurred can be proved by showing two goals unreachable: one in which

the sequence (S,E) occurred and one in which the sequence S0 occurred, where S0 is obtained by identifying

the �nal event in S with E (if possible). Finally, a requirement that if S occurred, then the intruder did

not learn a set of words W can be proved by showing that the state in which S occurred and in which the

intruder knowsW is unreachable. We have found these constructs adequate for all the protocol requirements

we have generated so far.

We now give some examples in which requirements are mapped to a state in the Aziz-Di�e protocol speci-

�cation. Consider Requirement 3, which says that, if an agreement key is accepted for communication with

another party, then it must have been previously sent by the party. For the initiatior, this is given as the

requirement

24

init accept ak(user(A; honest); user(B; honest); AKB ;M?)!

3- (send(user(B; honest); user(A; honest); AKB ;M?)

From Table 1, we get that

init accept ak(user(A; honest); user(B; honest); AKB ;M?)

maps to

E1 = event(mobile(A; honest); M1; init acceptkey; N1) =

[base(B; honest); X1; X2; X3;AK B; X4]

while

(generate(user(B; honest); user(A; honest); AKB ;M?)

maps to

E2 = event(base(B; honest); M2; rec genkey; N2) = [mobile(B; honest);X1;X2;AK B].

By our above argument, we need to show that the state in which the event E1 occurred and (E2,E1) did not

occur is unreachable.

As another example, consider Requirement 2, which says that, if a key is accepted for communication between

two parties, it should not have been accepted in the past, except by the other party in the role of receiver.

The requirement for the initiator is:

init accept sk(user(A; honest); user(B; honest);K;M1)!

:(3- init accept sk(user(C; honest); user(D;X);K;M?)^

(3- rec accept sk(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

In order to map this requirement to the Protocol Analyzer, we need to break it down into two requirements:

init accept sk(user(A; honest); user(B; honest);K;M1)!

:(3- init accept sk(user(C; honest); user(D;X);K;M?)

init accept sk(user(A; honest); user(B; honest);K;M1)!

(3- rec accept sk(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

In the �rst case, we must prove that the state in which the sequence of events (E1,E2) occurred is unreachable,

where E2 =

25

event(mobile(A; honest); M;init acceptkey; N) = [base(B; honest);X1;X2;X3; AK B; AK A]

and E1 is the event

event(mobile(C; honest); M; init acceptkey; N) = [D; Y1; Y2;Y3;AK B; AK A].

.

In the second case, we must prove that the state in which the sequence of events (E1,E2) is unreachable,

where E2 is as above, and E1 =

event(base(C; honest); M; rec acceptskey; N) = [D; AK A; AK B]

where either base(C,honest) is not equal to base(B,honest) or D is not equal to mobile(A,honest).

4.2.4 Analyzing the Requirements

After modeling the negated requirements as goals for the NRL Protocol Analyzer, we ran the Analzyer

to determine if any of the negated requirements were reachable. Although we did not discover any actual

weaknesses in the protocol, we found one hidden assumption, and one case in which our requirements may

be too lenient. We should note, however, that our analysis was not complete, since we did not model all the

algebraic properties of exclusive-or.

The hidden assumption was discovered when we ran the Analyzer on Requirement 3 for the initiator using

an earlier version of the speci�cation, a version in which format checking was not speci�ed. In that version

we found an attack that ran as follows

1. A sends to B : CertA; NA; alglistA

(intercepted by I)

2. IC sends to B: CertC ; NA; alglistA

3. B sends to C: CertB ; fAKBgKC ; algchoiceB; fmd(fAKBgKC ; algchoiceB ; NA; alglistA)gK�1
B

(intercepted by I)

4. IB sends to A : CertB; fAKBgKC ; algchoiceB ; fmd(fAKBgKC ; algchoiceB; NA; alglistA)gK�1
B

A checks the signature, and applies her private key to fAKBgKC to obtain ffAKBgKCgK�1
A

, which she then

thinks is the key from B. She then generates her own key agreement key, and accepts as the session key the

result of taking the exclusive-or of it with ffAKBgKCgK�1
A

.

We note that this attack results in at worst a denial of service, since, although the intruder convinces A that

a nonkey is a key, the intruder never learns the word that A accepts as a key, and thus cannot impersonate

A or B or read encrypted tra�c. It can also be easily foiled if the message B encrypts with A's public key

is formatted in such a way that A can determine whether or not it is an actual message after A decrypts it.

In that case, ffAKBgKCgK�1
A

is unlikely to satisfy the formatting requirements, and A will reject it. It is

26

reasonable to expect that such formatting will be used. However, by the use of the NRL Protocol Analyzer

we were able to show that this formatting was advisable in order to prevent a denial-of-service attack.

We discovered another anomaly when analyzing the virginity requirement for key agreement keys. In this

case, we discovered a path that resulted in a key agreement key from the opposite party to be accepted

twice. This did not lead to an attack on the security of the protocol, assuming that the accepting party

generates fresh key agreement keys on her own side, but it did show how the protocol could fail under certain

circumstances. It also pointed out a weakness in our requirements under certain conditions.

The situation is as follows. We assume that A �rst initiates a conversation with B, and then with I.

1. A sends to B : CertA; NA; alglistA

2. B sends to A : CertB ; fAKBgKA ; algchoiceB ; fmd(fAKBgKA; algchoiceB ; NA; alglistA)gK�1
B

3. A sends to I : CertA; N
0

A
; alglistA

4. I sends to A : CertI ; fAKBgKA; algchoiceI ; fmd(fAKBgKA; algchoiceI ; N
0

A
; alglistA)gK�1

I

5. A sends to I: fAK 0

A
gKI ; fmd(fAK

0

A
gKI ; fAKBgKA)gK�1

A

6. A sends to B: fAKAgKB ; fmd(fAKAgKB ; fAKBgKA)gK�1
A

In Step 6, A accepts AKB as a good key agreement key from B, even though she had already accepted it as

a good key agreement key from I in Step 5.

Note that it would appear that such a protocol would fail BAN analysis. As a matter of fact, it does not, and

BAN analysis is successfully applied to the protocol in [3]. This is because BAN's de�nition of freshness is

somewhat weaker than our virginity requirement. Freshness requires only that the key was not used before

the current run of the protocol. This is certainly true in this case, since the conversation between A and I

begins after the conversation between A and B.

Although A accepts AKB twice, this does not appear to cause any problems in the Aziz-Di�e protocol. The

intruder does not learn AKB , since it is encrypted with A's public key. Moreover, A takes the exclusive-or

of AKB with a di�erent key agreement key generated by herself each time she uses it. However, it is possible

to imagine scenarios where such a situation causes problems. Suppose, for example, that the requirements

of the protocol were relaxed so that A was allowed to use the same key agreement key generated by herself

more than once, perhaps because her computational resources were limited. Then the session keys generated

by A to converse with I and B would be the same. Suppose also the crypto-algorithm was one, such as a

one-time pad or a stream cipher, in which use of the same key more than once could result in compromise

of the key. Then, if A was tricked into using the key to encrypt messages to I and messages to B, I might

be able to use the information to recover the key, and hence the tra�c between A and B.

This combination of assumptions appears to be rather unlikely. Nevertheless, it is still useful to know under

what circumstances it is safe to use the protocol, even if we have not uncovered a serious weakness.

Another interesting result we found was, that, if we want to prevent anomalies such as the one we described

above, our virginity requirement is not strong enough. Indeed, if we reverse steps 5 and 6 in the above

attack, it now satis�es the virginity requirement, since when A accepts the key as coming from honest B, it

27

has not previously been accepted by anyone else. A better requirement would be to say, that, if A accepts

as a key good for communication with an honest party B, it should not have previously been accepted by

any honest party for communication with any one except possibly B for communication with A, and, if A

accepts a key as good for communication with a dishonest party, it should not previously been accepted by

any honest party for communication with another honest party.

For key agreement protocols, this requirement for session keys would be expressed as follows for the initiator

of the protocol:

init accept sk(user(A; honest); user(B; honest);K;M1)!

:(3- init accept sk(user(C; honest); user(D;X);K;M?)^

(3- rec accept sk(user(C; honest); user(D;X);K;M?)! (C = B ^D = A))

init accept sk(user(A; honest); user(B; dishonest);K;M1)!

:(3- init accept sk(user(C; honest); user(D;honest);K;M?)^

:(3- rec accept sk(user(C; honest); user(D;honest);K;M?)

Similar requirements can be developed for the receiver's accepting a session key, and for the sender's and

receiver's accepting of a key agreement key from the other party.

5 Conclusion

In this paper we have set forth a formal language for specifying requirements of cryptographic protocols

in terms of conditions on sequences of events. These requirements can then be mapped to a protocol

speci�cation in the NRL Protocol Analzyer language, after which the NRL Protocol Analyzer can be used to

determine whether or not the protocol satis�es the requirements. We developed a set of generic requirements

on key agreement protocols, and applied them to a sample protocol, the Aziz-Di�e key agreement protocol

for mobile communication. Our use of the NRL Protocol Analyzer to analyze the protocol with respect to

the requirements has shown that, not only can it be useful for determining whether or not requirements

can be met, but also for uncovering the assumptions that are necessary to determine whether or not the

requirements have been met, and for discovering limitations of the requirements themselves.

Acknowledgements

We are grateful to Ashar Aziz for useful discussions on the Aziz-Di�e protocol and to Paul Van Oorschot

for pointing out the ElGamal protocol to us.

References

[1] Mart��n Abadi. An Axiomatization of Lamport's Temporal Logic of Action. Research Report 65, Digital

Systems Research Center, October 1990.

28

[2] Mart��n Abadi and Mark Tuttle. A Semantics for a Logic of Authentication. In Proceedings of the Tenth

ACM Symposium on Principles of Distributed Computing, pages 201{216. ACM Press, August 1991.

[3] A. Aziz and W. Di�e. Privacy and Authentication for Wireless Local Area Networks. IEEE Personal

Communications, 1(1):25{31, 1994.

[4] J. Burns and C.J. Mitchell. A Security Scheme for Resource Sharing Over a Network. Computers and

Security, 9:67{76, February 1990.

[5] Michael Burrows, Mart��n Abadi, and Roger Needham. A Logic of Authentication. Research Report 39,

Digital Systems Research Center, February 1989. Parts and versions of this material have been presented

in many places includingACM Transactions on Computer Systems, 8(1): 18{36, Feb. 1990. All references

herein are to the SRC Research Report 39 as revised Feb. 22, 1990.

[6] Michael Burrows, Mart��n Abadi, and Roger Needham. Rejoinder to Nessett. Operating Systems Review,

24(2):39{40, April 1990.

[7] Whit�eld Di�e and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22(6):644{654, November 1976.

[8] D. Dolev and A. Yao. On the Security of Public Key Protocols. IEEE Transactions on Information

Theory, 29(2):198{208, March 1983.

[9] Taher ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms.

IEEE Transactions on Information Theory, IT-31(4):469{472, 1985.

[10] Robert Goldblatt. Logics of Time and Computation, 2nd edition, volume 7 of CSLI Lecture Notes. CSLI

Publications, Stanford, 1992.

[11] Leslie Lamport. A Temporal Logic of Action. Research Report 57, Digital Systems Research Center,

April 1990.

[12] C. Meadows. A System for the Speci�cation and Analysis of Key Management Protocols. In Proceedings

of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, pages 182{195.

IEEE Computer Society Press, Los Alamitos, California, 1991.

[13] C. Meadows. Applying Formal Methods to the Analysis of a Key Management Protocol. Journal of

Computer Security, 1:5{53, 1992.

[14] S.P. Miller, C. Neuman, J.I. Schiller, and J.H. Saltzer. Kerberos Authentication and Authorization

System. In Project Athena Technical Plan. MIT, Cambridge, Mass., July 1987.

[15] D. M. Nessett. A Critique of the Burrows, Abadi, and Needham Logic. Operating Systems Review,

24(2):35{38, April 1990.

[16] S.G. Stubblebine and V.D. Gligor. On Message Integrity in Cryptographic Protocols. In Proceedings of

the 1992 IEEE Computer Society Symposium on Research in Security and Privacy, pages 85{104. IEEE

Computer Society Press, Los Alamitos, California, 1992.

29

[17] Paul Syverson and Catherine Meadows. A Logical Language for Specifying Cryptographic Protocol

Requirements. In Proceedings of the 1993 IEEE Computer Society Symposium on Research in Security

and Privacy, pages 165{177. IEEE Computer Society Press, Los Alamitos, California, 1993.

[18] Paul Syverson and Catherine Meadows. Formal Requirements for Key Distribution Protocols. In

Pre-proceedings of EUROCRYPT `94, pages 325{337, University of Perugia, Italy, May 1994. Final

proceedings forthcoming from Springer-Verlag.

[19] Paul F. Syverson. The Use of Logic in the Analysis of Cryptographic Protocols. In Proceedings of the

1991 IEEE Computer Society Symposium on Research in Security and Privacy, pages 156{170. IEEE

Computer Society Press, Los Alamitos, California, 1991.

[20] Paul F. Syverson. On Key Distribution Protocols for Repeated Authentication. Operating Systems

Review, 27(4):24{30, October 1993.

[21] Johan van Bentham. The Logic of Time, volume 156 of Synthese Library. Kluwer Academic Publishers,

Dordrecht, The Netherlands, second edition, 1991.

30

