
Towards a Model of Storage Jamming

John McDermott and David Goldschlag
Center for High Assurance Computer Systems

Naval Research Laboratory, Washington, DC 20375
{mcdermott,goldschlag}@itd.nrl.navy.mil

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

Abstract

Storage jamming can degrade real-world activi-
ties that share stored data. Storage jamming is
not prevented by access controls or cryptographic
techniques. Verification to rule out storage jam-
ming logic is impractical for shrink-wrapped
software or low-cost custom applications. Detec-
tion mechanisms do offer more promise. In this
paper, we model storage jamming and a detection
mechanism, using Unity logic. We find that Unity
logic, in conjunction with some high-level opera-
tors, models storage jamming in a natural way
and allows us to reason about susceptibility, rate
of jamming, and impact on persistent values.

1. Introduction

Storage jamming [10] is malicious modification
of stored data, for the purpose of degrading real-
world operations that depend on the correctness
of the data. The jammer’s objective is to reduce
the quality of stored data below a certain level,
without being detected. We assume the person
initiating the malicious modification (frequently
via a Trojan horse) does not receive any direct
benefit, financial or otherwise, but rather is mo-
tivated by more indirect goals such as improving
the competitive position of his or her own organi-
zation. We also assume that the attacks are not
made across access control boundaries. The tar-
get data need not be data stored by a database
system, it can be any values stored for future ref-
erence. We call the values introduced into stor-
age by the jammer bogus values. We call the
values we mean to store authentic values. If a
storage object contains a bogus value, we say
that the storage object has been jammed.

In the past, the most likely motive for attacks
that modify data would have been financial gain.

The problem of fraud has been addressed by
Clark and Wilson [3], by Sandhu and Jajodia
[15], and by others [8, 12]. However, changes in
technology have made many organizations de-
pendent on information systems. It is now possi-
ble to disrupt or degrade their operations by
interfering with their supporting information
systems [4].

There are several security-oriented data integri-
ty approaches that were designed for other pur-
poses but also may hinder jamming attacks [10].
The Clark-Wilson model offers little protection
because the jammer can construct bogus values
that satisfy its constraints. The assured pipeline
of Boebert and Kain [1] also appears promising,
but really does not work for data that is not im-
mediately sent to output. Sandhu’s transaction
control expressions [14] do better because a hu-
man is required to validate changes, and be-
cause updates can be forced to go through
multiple integrity domains with separate
checks. However, to be fully effective against
storage jamming, transaction control expres-
sions require partial correctness1 of the majority
of the software. Wiseman’s extended trusted [18,
19] path does prevent storage jamming, but also
requires partial correctness of every piece of soft-
ware that accesses data, from keyboard to dis-
play. While possible in principle, these last two
approaches are unworkable storage jamming de-
fenses in a world of shrink-wrapped general-pur-

1. We use the term in its broadest sense: that
something much more rigorous and resource
consuming than conventional software engineer-
ing is required. Because it is so easily detected,
we consider nontermination to be an ineffective
storage jamming technique.

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

pose products and rapidly-developed low-cost
custom applications. Since jamming can occur
upstream of any encryption process, direct appli-
cation of cryptographic techniques does not seem
to be workable either.

The most promising defense against jamming is
detection [10]. Even then, the detection mecha-
nisms must be suited to the problem; the various
intrusion detection approaches will not work be-
cause the necessary audit and reduction would
be computationally infeasible, if even decidable.
Instead, we propose detection objects as a suit-
able defensive mechanism.

This paper presents our work to date on formu-
lating a satisfactory model of storage jamming.
First we provide an example of jamming, then
we look at the criteria a good model of storage
jamming should satisfy. We then present our
current model and use it to describe an example.
Then we show how to add a defense to our exam-
ple. We conclude by discussing how our model
meets our criteria.

At this point, an example will clarify our presen-
tation. Suppose we have a simple word processor
with three commands: new, to create a new docu-
ment, edit, to enter or change text and figures,
and delete, to remove a document and return its
associated file handle to the file system. The
jammer is attached to the word processor. Fol-
lowing certain edit operations, it overwrites the
authentic file with an earlier version, thus de-
stroying the results of any intervening sessions.
(This kind of repeat-back attack cannot be de-
tected with conventional or cryptographic se-
quence numbers because the malicious software
is not a third party. Since the malicious software
is part of the program that originates authentic
files, the malicious software can obtain an arbi-
trary number of new, valid sequence numbers to
associate with earlier versions of word process-
ing documents.) The jammer is not intended to
destroy all editing sessions, only a small fraction
of them. The jammer does not attempt to write
bogus values in any files outside its current ac-
cess control domain.

2. Criteria for Modeling

We want to use our model to describe and predict
three things: the strategies that might be em-
ployed by specific jammers, the susceptibility of
target systems, and the effectiveness of protec-
tion mechanisms we might adopt.

2.1. Strategies for the Jammer

It is helpful to characterize storage jamming in
terms of the possible strategies. There are many
possible characteristics, we consider eight here
that are applicable to models:

Persistence Of Bogus Values: The unauthorized
changes can be persistent or the jammer can re-
store the changed values after an arbitrary
length of time. One useful variation of this,
shown in our example, is to save deleted objects
or values and reintroduce them at a later time.
Temporary bogus values would be harder to de-
tect than persistent ones but may still be read by
critical applications or system programs.

Security Attributes Of The Jamming Program:
The jamming may be done by an authorized pro-
gram or by an unauthorized program. If it is
done by an authorized program it may be done
as part of an authorized invocation, i.e., the pro-
gram simply writes incorrect values, or the jam-
mer may be able to cause an unauthorized
invocation of a legitimate application.

Means Of Choosing Bogus Values: The jammer
can adopt a number of basic algorithms for gen-
erating the data to write. For example, the bogus
values can be chosen arbitrarily, randomly, by
interpolation, by replay, or by permutation. Arbi-
trary choices may be easier to detect, but can be
performed by small programs that may be easier
to insert into a system.

Means of Choosing Target Storage Objects: The
jammer can select targets randomly, via some se-
lection criteria, or by simply piggybacking on an
application program. The latter approach lets
the application chose the target for the jammer.
As we said in the introduction, the data can be
application data, linkage data, metadata, or sys-
tem data. Others important target selection
characteristics are the level of abstraction and
target granularity. For example, the units of tar-

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

get data (storage objects) could be data in a rela-
tional database or they could be disk blocks in
the nodes of a B+tree. The jammer could target
entire sets or lists of data, or select components
of a single storage object.

Rate Of Change In Target Data: If there are
many updates to the data, then jamming may be
easier. There will be more opportunities and
more checks will be required to detect the jam-
ming.

Rate Of Jamming: The rate at which bogus
changes are made is significant. A jammer may
be designed to jam as fast as possible without be-
ing detected, with the expectation that the jam-
mer will only be triggered at a critical moment.
Alternatively, the jammer may run continuously
and make changes infrequently.

Extent Of Jamming: A slow jammer can still do
much damage by using a cumulative strategy of
jamming slowly but widely, i.e. ultimately
change every value stored in a system. This type
of jamming is called barrage jamming. On the
other hand, a jammer can hope to escape detec-
tion but still disrupt operations by only modify-
ing a critical subset of the stored data. This kind
of jamming is called spot jamming.

Adaptability Of The Jammer: An enemy may
hope to do more damage by having the jamming
software change its strategy. This may be a sim-
ple adaptation, such as changing the constraints
that are checked when generating bogus values.
The adaptation may be more complex; for exam-
ple the jammer might try adapt to detection
mechanisms that might be present. On defense,
we may have to prevent the jammer from read-
ing the data or code of a detection mechanism, in
order to frustrate this adaptability.

2.2. Vulnerability to Jamming

A system’s vulnerability to electronic warfare is
often characterized in terms of interceptibility,
accessibility, and susceptibility [17]; this seems
appropriate for storage jamming as well. Inter-
ceptibility is a measure of the ease with which an
enemy can determine the existence, function,
and location of a system. Accessibility is a mea-
sure of the ease with which an enemy can reach
a system with an effective electronic warfare at-

tack. Susceptibility is a measure of system prop-
erties that determines the effect of various
attacks on the system. In our models we are pri-
marily concerned with susceptibility.

Performance criteria for measuring susceptibili-
ty can include

1. mission failure rate: the rate at which
activities supported by the system
fail,

2. query error rate: the rate at which
queries are not processed according
to the system data model, database
design, and the authentic history of
the system,

3. record error rate: the rate at which er-
roneous records, object instances,
etc., occur in storage,

4. field error rate: the rate at which er-
roneous fields of a record, attributes
of an object, etc., occur in storage, and

5. bit error rate: the rate at which erro-
neous bits occur in the representa-
tion of data.

We want our model to be able to predict vulnera-
bility criteria two through five. Since prediction
of criterion one measurements requires subject
matter expertise from the application domain
and heuristics taken from the realm of artificial
intelligence, mission failure rate is outside the
scope of this paper.

2.3. Effectiveness of Protection Mecha-
nisms

Our third criterion for a model is ability to de-
scribe and predict the effectiveness of defenses
we might employ. The most promising approach
is detection of jamming [10]. If the jamming is
detected, we may often assume that it will cease
to be effective. So a system that allows easy de-
tection of jamming may not be very susceptible
to it, even though the system has no way of pre-
venting or tolerating the jamming that may oc-
cur before detection. Thus we want to be able to
describe detection of jamming, both in possibilis-
tic terms and in probabilistic terms (to construct
statistics for rate and extent).

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

3. Modeling

The critical factor in storage jamming is the as-
signment of values to data objects: which storage
objects are changed and are the changes authen-
tic or bogus? For this reason, the operations and
structure of our model are based on assignment
to variables.

We adopt the Unity [2] model of computation as
our starting point. Unity programs have assign-
ments but no control flow. The control flow is re-
placed by unbounded nondeterministic iteration.
Unity defines both a notation for writing concur-
rent programs, and a logic for reasoning about
computations (executions of those programs).
Besides its freedom from flow-control, Unity has
two important characteristics:

Unity provides predicates for specifications
and proof rules to derive specifications
directly from the program text. This type
of proof strategy is often clearer and more
succinct than an argument about a
program’s operational behavior.

Unity separates the concerns of algorithm
and architecture. It defines a general
semantics for concurrent programs and
encourages the refinement of architecture
independent programs to architecture
specific ones.

As an example of the Unity notation, consider
the following program which sorts an array of n
elements X[1]…X[n] into non-decreasing order.
(This introduction to Unity is from Goldschlag
[6].) The program consists of an assign section,
lines 2-4. Unity programs are organized into sev-
eral sections: declare, initially, always, as-
sign. The assign section contains all of the
assignments. We shall see examples of the other
sections as they become necessary.

This program contains n(n-1)/2 statements, each
of which swaps an out-of-order pair of array ele-
ments. Unity uses the interleaved model of con-
currency, so the execution of this program is as
follows: Some statement is chosen. The condition

(guard) following the if is evaluated. If the condi-
tion is false, the statement’s execution is equiva-
lent to a skip statement. If the condition is true,
the statement is executed, and the out-of-order
pair is swapped. Another statement is then cho-
sen, and the process is repeated. The only re-
striction on the scheduling of statements is a
fairness restriction, which requires that every
statement be scheduled infinitely often. Al-
though execution never terminates, a fixed point
may be reached when all statements are equiva-
lent to skip’s.

To demonstrate the correctness of this program,
we must first present the specification. We will
do this somewhat informally. The specification is
broken down into two parts. The first states that
the final array is a permutation of the original
array. This is a consequence of the following
property: the bag of values that fills the array X
is unchanged throughout the computation. This
sort of property is an invariant, specified as: in-
variant bag(X) = K. This means, roughly, that if
the bag of values in array X is equal to K before
executing any statement in the program, then
the bag of values in that array is unchanged sub-
sequent to executing any statement in the pro-
gram. Since every statement at most swaps
array values and no values are ever lost, this in-
variant is true.

The second part of the specification states that
the array will eventually become sorted. This is
a liveness (or a progress) property. In Unity, this
is stated by true leads-to sorted(X). The value
true simply states that there are no precondi-
tions on this property. To prove this liveness
property, we use the following measure: Imagine
a lexicographic less than relation on n elements.
If the array is not sorted, then every statement
in the program either modifies the array to one
with a smaller lexicographic order, or does not
change the array at all. Furthermore, if the ar-

1 program prg
2 assign
3 < [] i, j : 0 < i < j ≤ n :: X[i], X[j] := X[j], X[i] if X[j]<X[i]
4 >
5 end // prg //

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

ray is not sorted, some statement modifies the
array. By fairness, the array’s lexicographic or-
der will eventually decrease. The fact that this
lexicographic order decreases may be repeatedly
applied by induction, to conclude that eventually
the array becomes sorted.

The Unity logic differs from other temporal logic
proof systems for reasoning about concurrency
because it is really only a subset of temporal log-
ic. Unity’s specification predicates provide a sim-
ple and powerful vocabulary to specify and
reason about the behavior of concurrent pro-
grams. They permit the specification of many
temporal properties without introducing all of
temporal logic. However, the specification predi-
cates invariant and leads-to are operators that
take predicates as arguments, and are not quan-
tifiers like ∀, ∃, or temporal logic’s always or
eventually. This means that these operators may
not be nested, and that Unity is less expressive
than full first-order temporal logic. Unity pro-
vides proof rules for taking large formal proof
steps, and is (relatively) complete, even though
it contains fewer proof rules than other temporal

logics. The soundness and completeness of Unity
are discussed in [5,9,11].

To see how we use Unity to model storage jam-
ming, let us return to our example jammer, now
modeled in Unity logic as program wj. We begin
by describing the file system as an array of files
and the user input as a tuple that contains the
intended word-processor operation and the name
of its operand. The define section is a natural
extension to Unity that allows us to define new
data types to model complex storage structures.

Now that we have established the structure of
the data, we can present the word processor it-
self, with the attached jammer.

We model the jammer and the word processor as
a concurrent program with only one statement
that covers lines 16 through 20. This one state-
ment is composed of three assignment state-
ments separated by the concurrent operator ||,
which means that the three assignments are ex-
ecuted concurrently. The variables that are be-
ing assigned must appear only once, to avoid
conflicts. The new values of these variables are
computed by evaluating the expressions on the

1 program wj
2 define
3 command = tuple of (
4 op : operation; // the name of the word processor operation to be applied to //
5 file : int // the specified file //
6)
7 declare
8 f = array[0 .. MAX] of filetype // the part of the filesystem that is accessible to us //
9 t = array[0 .. MAX] of filetype // simplistic temporary storage for the jammer //
10 in : command // the command input by the user //
11 initially
12 t = f // jammer copies the initial values of the file system //
13 count = 0 // jammer initializes its counter //
14 in = EMPTY // word processor waits for user input //
15 assign
16 f[in.file], count := in.op(f[in.file]), count+1if count < JAM ∧ in ≠ EMPTY
17 ∼ in.op(f[in.file]), 0 if count ≥ JAM ∧ in.op ≠ edit ∧ in ≠ EMPTY
18 ∼ t[in.file], 0 if count ≥ JAM ∧ in.op = edit
19 || in := EMPTY if in ≠ EMPTY
20 || t := f if in ≠ EMPTY
21end // wj //

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

right hand sides of the assignment operator first,
and then doing the assignments. The first as-
signment statement, beginning on line 16, has
three sets of expressions controlled by guards
separated by ∼. The guard that is true defines
which set of expressions is evaluated. At most
one guard may be true at a time. If no guard is
true, the statement is equivalent to a skip state-
ment.

The third assignment statement, on line 20, cop-
ies the array f to array t, modeling the tempo-
rary storage of old values for rewrite attacks.
For simplicity, we do not test individual files to
see if they have changed. The second assignment
statement, on line 19, makes the program work
in lockstep with the user: it “waits” for a com-
mand, performs the request and then “waits” for
another command. We say “waits” because, in
our model of execution, program wj could be cho-
sen to run an arbitrary number of times before
any other program could set the value of in to
some nonempty tuple. Then every execution of
wj would be equivalent to a skip. In execution
histories where in is set to something other than
EMPTY, then wj operates on a file once for each
time in is set, and then resets it to EMPTY.

We call this jammer a counting jammer because
it uses a counter to control its operation, rather
than, say, a random number generator. We de-
signed this jammer not to act when changes to
the file system are deletes or resets because we
are assuming, on the part of the adversary, that
restoring deleted or empty files would attract too
much attention.

A proof that the jammer jams is simple. We want
to show that, if the trigger condition is satisfied,
line 18 of program wj is the one that sets the val-
ue of the file f[in.file], using a value from array t.
The trigger condition requires that some opera-
tion whose index in the input sequence is divisi-
ble by JAM+1 be an (edit, f[in.file]) command.
The proof itself is accomplished by superposing a
variable Xc to count the number of times a bogus
value is written. Initially Xc is zero and we show
that it must be positive if the trigger condition is
satisfied. We superpose Xc by adding a line || Xc
:= Xc+1 if count ≥ JAM ∧ in.op = edit, to the
one statement in the assign section. Since the

value of Xc is not read by any part of the original
program, this superposed variable does not
change the behavior of the original program.

We also want to be able to reason about the rate
and extent of the jamming by program wj. To do
this we superpose variable Yc to count the num-
ber of times an edit operation is input just when
count ≥ JAM. Then we show that Yc=Xc is an in-
variant of program wj. Given this relationship,
we can now define simple random variables X
and Y to correspond to the program variables Xc
and Yc. Then we can assign a distribution (for
example, a binomial distribution) to Y, allowing
us to make probability statements P{Y≤k}=y,
for appropriate values of k. Since Yc=Xc is an in-
variant, we can say that random variable X has
the same distribution function as random vari-
able Y.

This completes our discussion of modeling jam-
mers and their targets. The next step is to ex-
pand our example to show how we model a
defensive mechanism. We choose to model a
quarantine-subsystem detection-object defense
[10]. A detection object is an abstract mechanism
that is intended to detect the actions of mali-
cious software that jams storage. It overcomes
the difficulty of checking the computation per-
formed by a program, by always being in a pre-
computed (i.e., predictable) state. If the
detection object is not in its proper, predicted
state, then it was probably modified by a jam-
mer. We call the storage objects that are intend-
ed to store legitimate data, i.e. not detection
objects, protected storage objects. Protected stor-
age objects and detection objects are defined in
terms of jammers that might target them. Detec-
tion objects satisfy two properties

1. Detection objects are indistinguish-
able, to the jammer, from their corre-
sponding protected storage objects,
that is, they satisfy the jammer’s tar-
get selection rules. We call this condi-
tion indistinguishability.

2. The only legitimate process that
modifies detection objects is the jam-
ming detection process. We call this
condition sensitivity.

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

A quarantine subsystem detection object defense
avoids the defensive problem of distinguishing
detection objects from protected storage objects.
In a quarantine subsystem the entire subsystem
contains only detection objects, thus achieving
complete sensitivity. An example would be a fake
user implemented by a workstation. The work-
station software would log on, create new direc-
tories and files, perform word processing edits,
etc.

The program detector is our model of a quaran-
tine subsystem. It runs interleaved with pro-
gram wj, that is, wj [] detector. The program wj []
detector is equivalent to the program obtained by
appending the corresponding sections of the two
programs, with the interleaved operator [] be-
tween the statements of the assign sections.

Program detector shares the i/o tuple in and the
file system array f with program wj. Detector is
designed to run in lock-step synchronization
with the jammer, because of the way it uses the
shared variable in; the detector only submits a
new command when the previous one has been
removed and carried out. Detector submits a se-
quence of commands from a script and checks
the results by computing a checksum on the en-

tire filesystem, using the function check. (We
check the entire file system in case the jammer
attacks a file other than the current operand.) As
it repeats, the script must restore the file system
to the same initial state, in order for the check-
sums to work. The success of this approach re-
quires two assumptions: 1) that we had a good
copy of the word processor when we generated
the checksum values stored in array ok, and 2)
that function check has the property that
check(f1)≠check(f2) iff f1≠f2. It would be difficult
to show that either of these assumptions were
generally true, but it is reasonable to assume
that we can approximate either of them well
enough for practical application. In some cases
that we do not have room to describe, we can use
a Byzantine generals protocol on scripts and
check values to ensure that we are using a good

copy of the application program to generate the
script.

The detector’s script is stored in two arrays, one
a list of operations op and the other a list of file-
names file. Just like program wj, detector is a
single concurrent assignment. The variable state
represents the state of the detector and is used
to index both the script and the checksums

1 program detector
2 declare local
3 op = array[0 .. LASTSTATE] of operation// script of operations to perform //
4 file = array[0 .. LASTSTATE] of int // script of filenames to be performed upon //
5 ok = array[0.. LASTSTATE] of checksum// precomputed checksums for script states //
6 var state : int
7 var alarm : Boolean
8 function check(var f : array of filetype) : checksum
9 initially
10 state = 0
11 alarm = false
12 <∀ i : 0 ≤ i ≤ MAX :: f[i] = NEW >
13 assign
14 in.op, in.file, state := op[state], file[state], state+1if state ≤ LASTSTATE ∧ in = EMPTY
15 ∼ op[state], file[state], 0 if state > LASTSTATE ∧ in = EMPTY
16 || alarm := check(f) ≠ ok[state] if alarm = false ∧ in = EMPTY // latch alarm//
17end //detector//

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

stored in the array ok. The detector cycles
through the script, checking each result as it
goes. We have attached the modifier local to the
declare section to indicate that variables op,
file, ok, alarm, state, and function check() are pri-
vate to detector and cannot be accessed by the
jammer.

To define our checksum array ok, we use the
well-known notation for updates to data struc-
tures, where a data structure like an array is
treated as a function. Thus (f; i : u) is an array
whose ith element is u, with all other elements
the same as the corresponding elements of f. By
applying the script arrays op and file, k times to
file system f, we get

ak = ((…((f; file[0] : op[0](file[0])); file[1] :
op[1](file[1]));…file[k] : op[k](file[k]))

This is the authentic value of our file system, af-
ter k steps of the detector’s script. This allows us
to say

ok[k] = check(ak)

So after each command to the word processor, we
compare the check of our current file system f to
the precomputed check value that f should have.
Our program detector should set alarm to true if
any check of the file system fails to return the
precomputed value stored in array ok.

To guard against counterdetection of the fixed
script cycle, we can interleave arbitrary don’t-
care operations that are either compensatable or
undoable. For example, between script operation
op[i] and op[i+1] we could have the detector sub-
mit don’t-care[0] … don’t-care[k] followed by un-
do[k] … undo[0], such that the value of f
following undo[0] is the proper value for op[i+1],
that is ai. The significance of the don’t-care oper-
ations is that we don’t check them and thus don’t
care what values they produce, as long as we can
undo or compensate them away before running a
checked operation and we can have different
don’t care operations each time we chose to in-
terleave them.

We want to prove that our defense will detect the
jammer. The the condition we want to prove is f
≠ astate ∧ in=EMPTY leads to alarm=true. The
operator p leads to q means that once p becomes
true q is or will become true. The proof is quite

simple. The precondition of the leads-to makes
program wj a skip statement. Then we can show
that program detector makes the alarm true, as
long as we can demonstrate that f ≠ astate im-
plies that check(f)≠ok[state]. That implication
follows from the definition of ok[state]. (For the
reader familiar with Unity, proving stable
alarm is also simple, and shows that the alarm
latches.)

4. Conclusions

Storage jamming is a new security problem. Un-
like confidentiality, information flow is not a cen-
tral issue. Fraud may also be viewed as a
problem of unauthorized flow of assets with the
perpetrator being concerned with maintaining
the integrity of the assets as they flow the wrong
way. In the case of storage jamming, flows are of
lesser importance because information is being
destroyed at its source. Unlike denial of service,
where there is little concern with avoiding detec-
tion, storage jamming generally only makes
sense if it is not detected. So storage jamming
lies between the boundaries of fraud, unautho-
rized leakage, and denial of service. It is a threat
to complicated mission-critical systems where
jammers can easily hide. We believe it is possible
to provide reasonable protection against such at-
tacks.

4.1. Meeting the Modeling Criteria

The Unity paradigm allows us to construct mod-
els of jamming in which the architectural fea-
tures are limited to only data objects and data
flows, the most critical aspect of storage jam-
ming. The proof rules and the proof steps are
based on data objects and data flows, so the rea-
soning is relatively close to our intuitive view of
the jamming problem.

We have shown that reasoning about the actions
of our example jammer and proposed defense is
natural; assignment to variables lets us reason
about jamming and detection when and where it
happens in a system. We also showed how we
can make simple probability statements about
these examples. The probability statements are
useful in modeling jammer rate and extent char-
acteristics. Extending these probability state-
ments to model susceptibility as bit, field, or

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

record error rates is relatively easy. We expect to
be able to extend our present model to reason
about query error rates. Because we use assign-
ments, it is easy to model persistence of values
stored in specific data objects. Likewise, model-
ing selection of targets and generation of bogus
values can be done in a natural way.

From our perspective, one of the nicest features
of the Unity paradigm is the unbounded fair in-
terleaving of the scheduler. This emphasizes any
synchronization aspects of a jamming problem.
This is particularly interesting for building sim-
ple high-level models of real systems, to analyze
their vulnerability and the effectiveness of pro-
spective defenses. Both the jammer and the de-
fense will probably be limited in the protocols
and interprocess communication primitives they
use to synchronize their actions with other pro-
grams.

We have yet to investigate the impact of security
attributes on our model. Many effective attacks
do not need to cross access control boundaries;
this can be devastating in production informa-
tion systems where sharing and interoperation
are mission critical requirements. However, we
need to understand what kind of attacks might
be able to cross access control boundaries.

Our proof sketches showed us that a quarantine
subsystem detection object defense would benefit
from a script that has two characteristics: 1) new
values for the target data objects of each script
operation are unique and 2) script operations ap-
plied to rewritten values do not result in an au-
thentic file system state. These characteristics
keep the detector from skipping over a specific
jamming attack because the attack accidentally
wrote a correct value or a script-generated up-
date accidentally corrected a bogus value.

4.2. Future Extensions

We would like to be able to model the complex
data structures and operations found in practi-
cal systems. To do this, we plan to extend the
Unity model in two ways: by adding an explicit
data model and by incorporating well-defined
high-level functions on the right-hand sides of
assignments.

Our first extension adds a set-and-tuple con-
structor data model for describing complex stor-
age structures. We start with a set of base data
objects; we plan to use the fundamental types
char, int, and float. From the base objects we
plan to construct complex objects from sets and
tuples.

We have already used our second extension in
the example jammer and in the detection pro-
gram. Our second extension allows us to have
abstract operations on the complex data struc-
tures introduced by the first extension. We plan
to enrich the assignment semantics by allowing
more powerful expressions to appear on the
right. To model low-level operations that might
be used for jamming, we include bitwise opera-
tions (e.g. left shift << , exclusive-or ⊕). The
problem with allowing the high-level operators
is that, in the unbounded nondeterministic itera-
tive approach, we must assume termination of
programs that compute the value of an expres-
sion that uses the high-level operators. This is
not a serious problem because we are not inter-
ested in the possible effects of jamming in the
presence of nonterminating operators.

References

1. BOEBERT, W.E. and KAIN, R.Y. A practical al-
ternative to hierarchical integrity policies. In Pro-
ceedings of the 8th National Computer Security
Conference (Gaithersburg, Maryland, 1985). 18-
28.

2. CHANDY, K.M. and MISRA, J. Parallel Program
Design: A Foundation. Addison-Wesley, 1988.

3. CLARK, D.D. and WILSON, D.R. A comparison of
commercial and military computer security poli-
cies. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland, California, April
1987). 184-194.

4. DEFENSE SCIENCE BOARD. Report of the
Summer Study Task Force on Information Archi-
tecture for the Battlefield, December 20, 1994.

5. GERTH, R. and PNUELI, A. Rooting UNITY. In
Proceedings of Fifth International Workshop on
Software Specification and Design, ACM SIG-
SOFT Engineering Notes, 14, 3, 1989, 11-19.

6. GOLDSCHLAG, D. Mechanically verifying con-
current programs. Dissertation, University of
Texas at Austin, 1992. Also available from Com-
putational Logic, Inc. as TR 71.

preprinted from the Proceedings of the Ninth Computer Security Foundations Workshop
Kenmare, Ireland, June 1996, pp. 176-185

7. JUNEMAN, R.R. Integrity controls for commer-
cial and military applications, II. In Report of the
Invitational Workshop on Data Integrity (RUTH-
BERG, Z.G. and POLK, W.T. editors), NIST, Spe-
cial Publication 500-168 (September 1989).

8. KATZKE, S.W. and RUTHBERG, Z.G. (editors).
Report of the Invitational Workshop on Integrity
Policy in Computer Information Systems (WIP-
ICS), NIST, Special Publication 500-160, (Janu-
ary 1989).

9. KNAPP, E. Soundness and Relative Completeness
of Unity Logic. Technical Report, University of
Texas at Austin, Dept. of Computer Science, Octo-
ber, 1990.

10. MCDERMOTT, J. and GOLDSCHLAG, D. Stor-
age jamming. In Database Security IX: Status
and Prospects (D. SPOONER, S. DEMURJIAN,
and J. DOBSON, editors). Chapman and Hall,
1996.

11. PACHL, J. A Simple Proof of a Completeness Re-
sult for leads-to in UNITY Logic, Technical Report
RZ 2060 No. 72085, IBM Research Division, No-
vember, 1990.

12. RUTHBERG, Z.G. and POLK, W.T. (editors). Re-
port of the Invitational Workshop on Data Integri-
ty, NIST, Special Publication 500-168 (September
1989).

13. SANDHU, R.S. Terminology, criteria and system
architectures for data integrity. In Report of the
Invitational Workshop on Data Integrity (RUTH-

BERG, Z.G. and POLK, W.T. editors), NIST, Spe-
cial Publication 500-168 (September 1989)

14. SANDHU, R.S. Separation of duties in computer-
ized information systems. In Database Security
IV: Status and Prospects (JAJODIA, S. and
LANDWEHR. C.E., editors). North-Holland 1991,
179-189.

15. SANDHU, R.S. and JAJODIA, S. Integrity mech-
anisms in database management systems. In Pro-
ceedings of the 13th NIST-NCSC National
Computer Security Conference (Washington, DC,
October 1990), 526-540.

16. THOMSEN, D.J. and HAIGH, J.T. A comparison
of type enforcement and Unix setuid implementa-
tion of well-formed transactions. In Proceedings of
Sixth Annual Computer Security Applications
Conference (Tucson, Arizona, December 1990),
304-312.

17. VAN BRUNT, L. The Glossary of Electronic War-
fare, EW Engineering, Inc., 1984.

18. WISEMAN, S., TERRY, P., WOOD, A., and HAR-
ROLD, C. The trusted path between SMITE and
the user. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland, California,
April 1988). 147-155.

19. WISEMAN, S. The control of integrity in databas-
es. In Database Security IV: Status and Prospects,
(JAJODIA, S. and LANDWEHR. C.E., edi-
tors).North-Holland 1991, 191-203.

