
An Implementation of the Pump:

The Event Driven Pump

Bruce Montrose and Myong H. Kang

Information Technology Division | CHACS: Code 5542

NAVAL RESEARCH LABORATORY

Washington, D.C. 20375

Abstract

As computer systems become more open and interconnected, the need for reliable and

secure communication also increases. In this report, we discuss a communication device, the

NRL Pump, and introduce an implementation of the Pump: the Event Driven Pump that

balances the requirements of reliability and security. The Pump provides acknowledgments

(Acks) to the message source to insure reliability. These Acks are also used for
ow control

to inhibit the Pump's bu�er from becoming or staying full. This is desirable because once the

bu�er is �lled there exists a huge covert communication channel.

We have prepared this report for system designers and programmers who want to under-

stand the basic structure of the event-driven Pump. We also hope this report is helpful to

the people who will maintain the Pump code. In this report, we assume that the reader is

familiar with the material presented in [2] and [3].

1 Introduction

Sharing information between computer systems is undeniably the wave of the future. As com-

puter systems become more open and distributed, the security concerns relating to information

exchange between di�erent systems will grow.

Two security concerns are paramount:

1. There should be no intrusion of unauthorized entities. Research on access control, virus

detection and prevention, etc. focus on this aspect of security.

2. No unauthorized information
ow between computer systems.

1

2

In this report, we address the second concern|security means no unauthorized information

ows. In a multilevel secure system information from Low should be able to be passed to High

but information from High is prohibited to be passed down to Low (i.e., the Bell-LaPadula

requirements (BLP) [1, 8]). Hence, if two systems, which are at di�erent security levels, are

connected then a mechanism is needed to guarantee that no information
ows down.

At �rst glance, there seems to be no problem meeting the BLP requirements. Simply

design a system so that information only
ows up, not down (i.e., read-down and blind write-

up methods [1]). However, secure communication mechanisms should also satisfy functional

requirements (e.g., reliability, performance).

When Low sends a message, the Pump provides an Ack to Low. This Ack gives us the

assurance that our message will be safely delivered to High. Without Acks how does Low

know that High is ready to receive messages? How does Low know that a message arrived at

High? The Acks also provide
ow control capability.

However, the propagation of Acks from High to Low violates BLP. Hence we should care-

fully analyze the capacity, in Shannon's sense, of the potential information
ow from High to

Low. This analysis was presented in [3].

A brief description of the basic Pump, one sender/Low and one receiver/High, is presented

in section two. An application of the Pump in secure networks or more dynamic system

con�guration, using the foundations developed here, is dealt with in separate papers[4, 5].

2 The Basic Pump

A secure one-way communication device should satisfy two equally important types of re-

quirements: the security requirements (e.g., no information
ow from High to Low) and the

functional requirements (e.g., reliability and performance). Even though blind write-up and

the similar read-down methods may satisfy the security requirements [2, 3], they do not satisfy

the functional requirements.

Let us discuss a problem inherent in blind write-up under the optimistic assumption of

error-free message transmission. Low sends messages to High, and these messages reside in a

(intermediate) bu�er until High can receive them. If Low sends messages too fast or, similarly,

has periods of extreme burstiness [7] the bu�er can �ll. Blind write-up sends no Acks back

to Low, hence Low has no way of knowing that the bu�er is full; therefore under the blind

write-up paradigm messages will be dropped and never reach High. Therefore, we need some

feedback from High to Low. However, if this feedback is under the control of High, then the

feedback can be used as a covert channel. Hence the feedback must be modi�ed. This is what

the Pump1 does.

Kang and Moskowitz introduced the (NRL) basic Pump as a device that balances all

1The term Pump, without any further modi�cation, refers to the theory behind the basic, network, and generalized

Pumps.

3

requirements [2, 3]. Note that no device can totally satisfy all requirements [6]. The basic

Pump can handle only one sender and one receiver. An abstract view of the basic Pump is as

follows:

. . .

n
messages messages

ACK

Pump

Low High
ACK

MA

buffer

Figure 1: The basic Pump

The basic Pump places a non-volatile bu�er (size n) between Low (the transmitter/input)

and High (the receiver/output). The Pump sends Acks to Low at probabilistic times based

upon a moving average of the past m High Ack times [2, 3]. A High Ack time is the time

from when the Pump sends a message to High to the time when the Pump receives an Ack

from High. Low uses a handshake protocol and does not send a new message until a previous

message has been Acked.

If we consider the basic Pump to be at the high level, the Acks from the basic Pump to

Low do violate the security requirements. However, the basic Pump is designed so that even

though the security requirements are violated the covert channel capacity can be kept within

speci�ed bounds (as small as desired) while still satisfying the functionality requirements.

In brief, the basic Pump balances requirements as follows:

� The basic Pump is reliable, unlike blind write-up, because it sends an Ack to Low in

response to each message from Low. Further, Low waits for an Ack before sending its

next message (handshake protocol).

� The basic Pump impacts performance minimally because:

1. If High's Ack rate is faster than Low's message input rate then the basic Pump does

not add any random delay.

2. If High's Ack rate is slower than Low's message input rate then the basic Pump

adds random delay to slow down Low, so that Low's input rate is approximately

the same as the High's Ack rate (service rate).

Since, in general, the input rate cannot exceed the service rate the basic Pump does not

hurt performance.

� The controlling of the Ack time to Low is the key to controlling covert channel capacity.

This scheme keeps the bu�er from �lling up. If the bu�er were to become full, it would

open up a huge covert channel, the full bu�er channel [3], which the basic Pump avoids.

The basic Pump's covert channel capacity can be controlled by the sizes of the bu�er (n)

and how many past High Ack times are used to compute the moving average (m) [3].

4

3 Implementation|Event Driven Pump

In this section we present an implementation of the basic Pump which we call the Event

Driven Pump. We will discuss the chosen development platform, software architecture, and

�nally we will present the pseudo code which was used to build the working version of the

Event Driven Pump.

3.1 Development Platform

The XTS-300 was chosen to implement the Event Driven Pump because of its (1)|availability,

and (2)|its operating system (STOP 4.1) has a B3 rating. The use of a certi�ed operating

system preempts the need for certifying the system services (e.g., interprocess communication,

�le-system, etc.) used by the Event Driven Pump.

r i ng- 3
r i ng- 2

r i ng- 1
r i ng- 0

Secur i t y Ker nelTCB
Syst em Ser v i cesTr

u
s

t
e

d
S

o
f

t
w

a
r e

Commodi
t
y

A
p

p
l

i
c

a
t

i
o

n
S

y
s

t
e

m
S
e
r
vices

Appl i cat i on Sof t war e

Figure 2: STOP security ring structure

The security kernel provides basic system operating services (e.g., resource management,

process scheduling, interrupt, trap handling) and enforcement of system security (e.g., secu-

rity and integrity rules). Privileged software known as Trusted Software provides additional

security services outside the kernel. Commodity Application System Service (CASS) provides

untrusted operating system services to application programs on the XTS-300 2.

The XTS-300 supports trusted processes. A process is trusted if the process has privileges

that exempt it from speci�c access control rules (e.g., no read-up or no write-down rule).

Since the basic Pump sends Acks back to Low, a portion of the basic Pump must have trusted

processes.

2This a B3 rated machine from Wang (HFSI).

5

3.2 Software Architecture

Ideally the entire Event Driven Pump should be implemented as trusted ring-2 processes.

Since ring-2 processes on the XTS-300 currently cannot access TCP/IP, it was necessary to

have portions of the Pump that needed to access TCP/IP to be implemented in ring-3. The

only mechanism available for ring-3 and ring-2 processes to communicate on the XTS-300

is the �le-system. We used special �les with a �rst-in-�rst-out protocol called FIFOs as the

communication channel between the ring-2 and ring-3 components of the Event Driven Pump.

We conceptually refer to each component of the Event Driven Pump as an Object. Each

Object was implemented as a separate process designed to accomplish a speci�c task when

certain events occurred. An event is either a message sent by another Object or the completion

of an I/O operation. Inter-Object message passing was accomplished via the Interprocess

Communication (IPC) interface provided by the operating system.

Two store and forward bu�ers (SAFB) were used; one in volatile shared memory and the

other is in non-volatile disk storage. All ring-2 Objects have access to both SAFBs. The

non-volatile SAFB was required for recovery purposes in the event the XTS-300 should halt

during operation. The volatile SAFB serves as the I/O bu�er for data transferred to the

non-volatile SAFB, the Output FIFO, and the Input FIFO.

In this paper we refer to the packets of data that are propagated through the Pump as

messages. A message is composed of a length �eld specifying the number of bytes in the

message, and the actual message content. These messages, along with a checksum �eld are

stored in the SAFB as records. This checksum �eld is computed from the content of the

message and is needed in order to have reliable recovery procedures in place. The SAFB has

a �xed size which is determined by the maximum queue size and the maximum length of a

message; Both of which are con�guration parameters. Each SAFB record has a unique ID

from 0 to MAXRECID. The location of a record within the SAFB is easily computed from

the ID since the records have a �xed size. Note that the �xed record size merely imposes a

maximal length for messages and does not require messages to be a �xed size. An occupied

ag is associated with each record to indicate a record's availability. After a message has

been successfully propagated through the Pump the occupied
ag in the associated record is

set to FALSE so that the record may be used by another message. Appended to the end of

the non-volatile SAFB are two pointers containing the message IDs of the last Acked records

on the low and high side of the Pump respectively. After a system failure has occurred the

recovery process will use this information to help establish a recovery order for un-delivered

records.

6

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
S

T
A

R
T

T
IM

E
R

_
S

T
O

P

T
IM

E
R

_
P

E
E

K

T
IM

E
R

_
P

E
E

K

DATA_SYNC

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
A

L
A

R
M

T
IM

E
R

_
S

T
A

R
T

T
IM

E
R

_
S

T
O

P

T
IM

E
R

_
P

E
E

K

T
IM

E
R

_
P

E
E

K

DATA_READY

Moving
Average

Hi
Timer

DATA_R
EADY

PUMP_READY

PUMP_READY

DATA_S
YNC

Memory
Reader

Memory
Writer

Free
Record

Disk
Writer

Lo
Timer

S2F

F2S

S
H
A
R
E
D

M
E
M
O
R
Y

D

I

S

K

High
ACK

Output
Data

Input
Data

Low
ACK

ACK

D
A

T
A

_
R

E
A

D
Y

PUMP_TIMEOUT

M
O

V
_

A
V

G

RECORD_AVAILABLE

A
ck

A
ck

A
ck

 o
r N

ac
k

Ack or Nack

Legend

IPC msg

FIFO msg

Data msg

Process Object

FIFO Object

SAFB

RECORD_AVAILABLE

Zap

Hdr

Figure 3: The Event Driven Pump

7

A brief description of each Object is as follows. The pseudo code which is presented in the

following section has a more detailed description of each Object's functionality.

S2F It delivers data from the Low Client Application (LCA) to the Input

Data FIFO and relays the Pump's Ack from the Low Ack FIFO to LCA.

Memory Writer It reads data from the Input Data FIFO, stores the data into Shared

Memory, and sends IPC messages to the Disk Writer and Memory Reader

Objects informing them that there is data to be processed. It also sends

an IPC message to the Ack Object so that it can keep track of timing

(e.g., time-out, disk writing overhead).

Memory Reader It reads data from Shared Memory and writes the data to the Output

Data FIFO. It also sends an IPC message to the Moving Average Object

to trigger the moving average computation.

Ack It computes the randomized delay based on the moving average and

sends an Ack to the Low Ack FIFO after data is safely stored in the

non-volatile SAFB.

Lo Timer It is the timer for the Ack Object.

Moving Average It computes the moving average and sends the updated moving average

to the Ack Object.

Hi Timer It is the timer for the Moving Average Object.

Disk Writer It writes data to the disk and sends an IPC message to the Ack Object

which indicates that the data is safely stored in the non-volatile SAFB.

Free Record It reads an Ack from the High Ack FIFO, sends an IPC message to

the Moving Average Object so that the new moving average can be

computed, and removes the data from the disk. After it frees the bu�er

space it sends an IPC message to the Memory Writer Object to indicate

the space is now available.

F2S It delivers data from the Output Data FIFO to the High Client Appli-

cation (HCA) and sends Acks to the High Ack FIFO upon successful

delivery of the data to the HCA.

Not shown in Figure 3 are two additional processes called the Recovery Object and the Create

Pump Object. The Recovery Object is responsible for the orderly recovery from system failure.

The Create Pump Object sets up all data structures and creates all the other Objects described

above including the Recovery Object. Unlike the other Objects described above, the Recovery

Object and Create Pump Object will terminate after their tasks have been completed.

8

3.3 Pseudo Code

Here we present the Pseudo Code for all the Objects of the Event Driven Pump. The code

was meant to convey enough detail so that system designers could validate conceptual mod-

els. The C-like syntax was chosen since the C programming language would be used during

implementation. Many abstract data types such as \Access" were left unde�ned since their

de�nitions are irrelevant to the understanding of the concepts being presented here.

Create Pump Object

The Create Pump Object is �rstly responsible for setting up and initializing all resources

required by an operational Event Driven Pump. Secondly, the Create Pump Object must

activate all process Objects that make up the Event Driven Pump. Finally, the Create Pump

Object begins the transaction cycles of both the low and high interface of the Pump.

Local Storage:

RecordID ID;

Event event;

Access lo_access, hi_access;

int output_fifo, input_fifo;

PumpInfo pump_info;

DeterminePortAccess (&lo_access, &hi_access);

SetupFIFOs (lo_access, hi_access);

SetupSharedMemory();

CreateDiskBuffer();

RegisterEvents (PUMP_READY_EVENT);

RegisterObject (CREATE_PUMP_OBJECT);

LoadProcess (F2S_PROGRAM, hi_access);

LoadProcess (S2F_PROGRAM, lo_access);

LoadObject (RECOVERY_OBJECT);

LoadObject (MEMORY_WRITER_OBJECT);

LoadObject (MEMORY_READER_OBJECT);

LoadObject (DISK_WRITER_OBJECT);

LoadObject (FREE_RECORD_OBJECT);

LoadObject (LO_TIMER_OBJECT);

LoadObject (HI_TIMER_OBJECT);

LoadObject (ACK_OBJECT);

LoadObject (MOVING_AVERAGE_OBJECT);

AwaitEvent (&event, PUMP_READY_EVENT); /* sent by RECOVERY_OBJECT */

SignalEvent (MEMORY_WRITER_OBJECT, PUMP_READY_EVENT);

SignalEvent (MEMORY_READER_OBJECT, PUMP_READY_EVENT);

9

UnRegisterObject (CREATE_PUMP_OBJECT);

GetPumpInfo (&pump_info);

WriteFile (input_fifo, &pump_info, sizeof(PumpInfo));

WriteFile (output_fifo, &pump_info, sizeof(PumpInfo));

CloseFile (output_fifo);

Recovery Object

The task of the Recovery Object is to scan the non-volatile SAFB looking for records with

a non-zero length speci�cation and correct checksum values. A non-zero length record with

an incorrect checksum occurs when a system halt prevented the Pump from completing the

transfer from volatile SAFB to non-volatile SAFB. After determining which records are to be

recovered, the Recovery Object writes the corresponding messages to the Output Data FIFO

where the F2S Object will be expecting them. The length of each record is set to zero after

it has been recovered.

Global Storage:

Record Rec[MAXRECORDS];

Local Storage:

Char notify;

Integer input_fifo,output_fifo,recover_count;

RecordID ID;

RecordHeader hdr;

RegisterObject (RECOVERY_OBJECT);

OpenDiskBuffer();

recover_count = 0;

DoForAll (ID = 0 to MAXRECID)

SeekRecord (ID);

ReadRecordHeader (ID);

ReadRecordData (ID);

If (Rec[ID].hdr.occupied == TRUE) Then

If (Rec[ID].hdr.CRC == RecordChecksum(ID)) Then

++recover_count;

Else

UnsetOccupiedFlag (ID);

SignalEvent (MEMORY_WRITER_OBJECT, RECORD_AVAILABLE_EVENT, ID);

EndIf

Else

SignalEvent (MEMORY_WRITER_OBJECT, RECORD_AVAILABLE_EVENT, ID);

EndIf

10

EndForAll

input_fifo = OpenFile (INPUT_FIFO);

output_fifo = OpenFile (OUTPUT_FIFO);

hdr.reclen = 0;

ID = GetLastHiRecordID();

If (ID != NO_RECID) Then

WriteFile (output_fifo, &Rec[ID].hdr.reclen, sizeof(Rec[ID].hdr.reclen));

WriteFile (output_fifo, Rec[ID].dta, Rec[ID].hdr.reclen);

Else

WriteFile (output_fifo, &hdr.reclen, sizeof(hdr.reclen));

EndIf

ID = GetLastLoRecordID();

If (ID != NO_RECID) Then

WriteFile (input_fifo, &Rec[ID].hdr.reclen, sizeof(Rec[ID].hdr.reclen));

WriteFile (input_fifo, Rec[ID].dta, Rec[ID].hdr.reclen);

Else

WriteFile (input_fifo, &hdr.reclen, sizeof(hdr.reclen));

EndIf

CloseFile (output_fifo);

CloseFile (input_fifo);

If (recover_count > 0) Then

ID = (ID + 1) mod MAXRECORDS;

DoWhile (Rec[ID].hdr.occupied == FALSE)

ID = (ID + 1) mod MAXRECORDS;

EndWhile

SignalEvent (FREE_RECORD_OBJECT, PUMP_READY_EVENT, ID);

DoWhile (Rec[ID].hdr.occupied == TRUE)

SignalEvent (MEMORY_READER_OBJECT, DATA_READY_EVENT, ID);

ID = (ID + 1) mod MAXRECORDS;

EndWhile

Else

SignalEvent (FREE_RECORD_OBJECT, PUMP_READY_EVENT, 0);

EndIf

SignalEvent (CREATE_PUMP_OBJECT, PUMP_READY_EVENT);

UnRegisterObject (RECOVERY_OBJECT);

Memory Writer Object

The task of the Memory Writer Object is to secure an available record, to read a message

from the Input Data FIFO into the volatile SAFB, and to inform both the Memory Reader

11

Object and the Disk Writer Object when the resulting SAFB record is ready to be processed.

The Memory Writer Object also informs the Ack Object when to begin the timing of the Low

delivery rate.

Global Storage:

Record Rec[MAXRECORDS];

Local Storage:

Event event;

RecordID ID;

Integer input_fifo;

Record rec;

Boolean timeout;

RegisterEvents (PUMP_READY_EVENT,

PUMP_TIMEOUT_EVENT,

RECORD_AVAILABLE_EVENT);

RegisterObject (MEMORY_WRITER_OBJECT);

input_fifo = OpenFile (INPUT_FIFO);

timeout = FALSE;

DoForever

If (timeout == FALSE) Then

AwaitEvent (&event, PUMP_READY_EVENT);

DiscardEvent (PUMP_TIMEOUT_EVENT);

Else

timeout = FALSE;

EndIf

ReadFile (input_fifo, &rec.hdr.reclen, sizeof(rec.hdr.reclen));

SignalEvent (ACK_OBJECT, DATA_READY_EVENT);

AwaitEvent (&event, ANY_REGISTERED_EVENT);

Case (event.type)

RECORD_AVAILABLE_EVENT:

ID = event.recID;

SignalEvent (ACK_OBJECT, RECORD_AVAILABLE_EVENT);

ReadFile (input_fifo, Rec[ID].dta, rec.hdr.reclen);

Rec[ID].hdr.reclen = rec.hdr.reclen;

SignalEvent (DISK_WRITER_OBJECT, DATA_READY_EVENT, ID);

SignalEvent (MEMORY_READER_OBJECT, DATA_READY_EVENT, ID);

PUMP_TIMEOUT_EVENT:

ReadFile (input_fifo, rec.dta, rec.hdr.reclen);

timeout = TRUE;

EndCase

12

EndForever

Memory Reader Object

The task of the Memory Reader Object is to transfer records from the volatile SAFB into the

Output Data FIFO as messages, and to let the Moving Average Object know when to begin

timing the high delivery rate.

Global Storage:

Record Rec[MAXRECORDS];

Local Storage:

Event event;

Integer output_fifo;

RecordID ID;

RegisterEvents (PUMP_READY_EVENT, DATA_READY_EVENT);

RegisterObject (MEMORY_READER_OBJECT);

output_fifo = OpenFile (OUTPUT_FIFO);

DoForever

AwaitEvent (&event, PUMP_READY_EVENT);

If (event.value == ACK_OK) Then

AwaitEvent (&event, DATA_READY_EVENT);

ID = event.recID;

EndIf

SignalEvent (MOVING_AVERAGE_OBJECT, DATA_READY_EVENT);

WriteFile (output_fifo, &Rec[ID].hdr.reclen, sizeof(Rec[ID].hdr.reclen));

WriteFile (output_fifo, Rec[ID].dta, Rec[ID].hdr.reclen);

EndForever

13

Disk Writer Object

The task of the Disk Writer Object is to transfer a record from the volatile SAFB into the

non-volatile SAFB and to inform the Ack Object that a low delivery has been completed after

the transfer has �nished. It is the Disk Writer Object which actually computes the checksums

stored in the non-volatile SAFB.

Global Storage:

Record Rec[MAXRECORDS];

Local Storage:

Event event;

RecordID ID;

RegisterEvents (DATA_READY_EVENT);

RegisterObject (DISK_WRITER_OBJECT);

OpenDiskBuffer();

DoForever

AwaitEvent (&event, DATA_READY_EVENT);

ID = event.recID;

Rec[ID].hdr.occupied = TRUE;

Rec[ID].hdr.CRC = RecordChecksum (ID);

RecordSeek (ID);

WriteRecordHeader (ID);

WriteRecordData (ID);

SetLastLoRecordID (ID);

SignalEvent (ACK_OBJECT, DATA_SYNC_EVENT);

SignalEvent (MEMORY_WRITER_OBJECT, PUMP_READY_EVENT);

EndForever

Free Record Object

The task of the Free Record Object is to await Acks from the High Ack FIFO, to write a

zero length speci�cation into the record for which the Ack applies, and to inform the Memory

Writer Object of the availability of this record.

Local Storage:

Event event;

RecordID ID;

Integer hiack_fifo;

AckCode acode;

RegisterEvents (PUMP_READY_EVENT);

RegisterObject (FREE_RECORD_OBJECT);

hiack_fifo = OpenFile (HIACK_FIFO);

14

OpenDiskBuffer();

AwaitEvent (&event, PUMP_READY_EVENT); /* RECOVERY_OBJECT will send */

ID = event.recID;

DoForever

ReadFile (hiack_fifo, &acode, sizeof(AckCode));

If (acode == ACK_OK) Then

WriteNullRecordHeader (ID);

SetLastHiRecordID (ID);

SignalEvent (MEMORY_WRITER_OBJECT, RECORD_AVAILABLE_EVENT, ID);

EndIf

SignalEvent (MOVING_AVERAGE_OBJECT, DATA_SYNC_EVENT);

SignalEvent (MEMORY_READER_OBJECT, PUMP_READY_EVENT, ID, acode);

If (acode == ACK_OK) Then

ID = (ID + 1) mod MAXRECORDS;

EndIf

EndForever

Moving Average Object

The task of the Moving Average Object is to compute the moving average of the high delivery

rate and to relay this value to the Ack Object so that it may adjust its Low Ack rate accordingly

(
ow control).

Local Storage:

Event event;

Integer Hm;

Boolean timeout;

RegisterEvents (DATA_READY_EVENT,

DATA_SYNC_EVENT,

TIMER_PEEK_EVENT,

TIMER_ALARM_EVENT);

RegisterObject (MOVING_AVERAGE_OBJECT);

SetEventHandler (TIMER_ALARM_EVENT, AlarmHandler);

DoForever

If (timeout == FALSE) Then

AwaitEvent (&event, DATA_READY_EVENT);

EndIf

SignalEvent (HI_TIMER_OBJECT, TIMER_START_EVENT);

SignalEvent (HI_TIMER_OBJECT, TIMER_ALARM_EVENT,

MOVING_AVERAGE_OBJECT, PUMP_TIMEOUT_VALUE);

timeout = FALSE;

15

AwaitEvent (&event, DATA_SYNC_EVENT, PUMP_TIMEOUT_VALUE);

If (timeout) Then

Hm = MovingAverage (PUMP_TIMEOUT_VALUE);

Else

SignalEvent (HI_TIMER_OBJECT, TIMER_PEEK_EVENT, MOVING_AVERAGE_OBJECT);

AwaitEvent (&event, TIMER_PEEK_EVENT);

If (event.value > PUMP_TIMEOUT_VALUE) Then

event.value = PUMP_TIMEOUT_VALUE;

EndIf

Hm = MovingAverage (event.value);

SignalEvent (HI_TIMER_OBJECT, TIMER_STOP_EVENT);

EndIf

SignalEvent (ACK_OBJECT, MOV_AVG_EVENT, Hm);

EndForever

AlarmHandler()

timeout = TRUE;

return;

Ack Object

The task of the Ack Object is to insure that an Ack or a Nack is written to the Low Ack FIFO

before the designated Pump timeout period, to insure that the Low Ack rate has a modi�ed

exponential distribution with a mean equivalent to the mean High Ack rate, and to inform

the Memory Writer Object should a Pump timeout occur. A Pump timeout will occur when

there are no available records in the SAFB.

Local Storage:

Event event;

Boolean timeout;

Integer Si, compute_time, time_left, lag_time, loack_fifo;

Floating Mu, Hm, Di, R1, R2, R3;

AckCode acode;

RegisterEvents (MOV_AVG_EVENT,

TIMER_ALARM_EVENT,

TIMER_PEEK_EVENT,

DATA_READY_EVENT,

DATA_SYNC_EVENT,

RECORD_AVAILABLE_EVENT);

RegisterObject (ACK_OBJECT);

SetEventHandler (MOV_AVG_EVENT, MovAvgHandler);

16

SetEventHandler (TIMER_ALARM_EVENT, AlarmHandler);

timeout = FALSE;

loack_fifo = OpenFile (LOACK_FIFO);

DoForever

If (timeout == TRUE) Then

SignalEvent (LO_TIMER_OBJECT, TIMER_STOP_EVENT);

SignalEvent (MEMORY_WRITER_OBJECT, PUMP_TIMEOUT_EVENT);

acode = ACK_RESEND;

WriteFile (loack_fifo, &acode, sizeof(acode));

timeout = FALSE;

EndIf

AwaitEvent (&event, DATA_READY_EVENT);

SignalEvent (LO_TIMER_OBJECT, TIMER_START_EVENT);

SignalEvent (LO_TIMER_OBJECT, TIMER_ALARM_EVENT,

ACK_OBJECT, PUMP_TIMEOUT_VALUE);

AwaitEvent (&event, RECORD_AVAILABLE_EVENT, PUMP_TIMEOUT_VALUE);

If (timeout == TRUE) Continue;

SignalEvent (LO_TIMER_OBJECT, TIMER_PEEK_EVENT, ACK_OBJECT);

AwaitEvent (&event, TIMER_PEEK_EVENT);

If (timeout == TRUE) Continue;

lag_time = event.value;

time_left = PUMP_TIMEOUT_VALUE - lag_time;

AwaitEvent (&event, DATA_SYNC_EVENT, time_left);

If (timeout == TRUE) Continue;

SignalEvent (LO_TIMER_OBJECT, TIMER_ALARM_EVENT, ACK_OBJECT);

SignalEvent (LO_TIMER_OBJECT, TIMER_PEEK_EVENT, ACK_OBJECT);

AwaitEvent (&event, TIMER_PEEK_EVENT);

Si = event.value;

time_left = PUMP_TIMEOUT_VALUE - Si;

Mu = Hm - Si;

If (Mu <= 0) Mu = EPSILON;

R1 = RandomExp (Mu, PUMP_TIMEOUT_VALUE);

If (LagTime < EPSILON or Si >= Hm) Then

Di = (R1 > excess_time) ? excess_time : R1;

Else

R2 = Random (0, PUMP_TIMEOUT_VALUE - Hm);

If (R1 <= R2) Then

Di = R1;

Else

17

R3 = Random (R2 + Hm, PUMP_TIMEOUT_VALUE);

Di = R3 - Si;

EndIf

EndIf

SignalEvent (LO_TIMER_OBJECT, TIMER_PEEK_EVENT, ACK_OBJECT);

AwaitEvent (&event, TIMER_PEEK_EVENT);

compute_time = event.value - Si;

time_left = PUMP_TIMEOUT_VALUE - event.value;

delay_time = Di - compute_time;

If (delay_time >= time_left) delay_time = time_left - lag_time;

If (delay_time >= 1) Sleep (delay_time);

SignalEvent (LO_TIMER_OBJECT, TIMER_STOP_EVENT);

timeout = FALSE;

acode = ACK_OK;

WriteFile (loack_fifo, &acode, sizeof(AckCode));

EndForever

AlarmHandler()

timeout = TRUE;

return;

MovAvgHandler(event)

Hm = event.value;

return;

Timer Object

The task of the Timer Object is to function as a stop watch used by both the Ack Object

and the Moving Average Object to time Low and High delivery rates respectively. The Timer

Object also provides an alarm function whereby a client Object can specify an alarm value

and then be noti�ed via an alarm event when the speci�ed alarm time interval has elapsed.

This same Object is used for both the Low Timer Object and the High Timer Object.

Local Storage:

Event event;

Boolean stop;

Integer timer, alarm, alarm_object;

SetEventHandler (TIMER_STOP_EVENT, TimerStopHandler);

SetEventHandler (TIMER_PEEK_EVENT, TimerPeekHandler);

SetEventHandler (TIMER_ALARM_EVENT, TimerAlarmHandler);

DoForever

18

AwaitEvent (&event, TIMER_START_EVENT);

stop = FALSE;

timer = 0;

alarm = 0;

DoWhile (stop == FALSE)

SuspendExecution (TIMER_INTERVAL);

timer = timer + 1;

If (alarm > 0 && timer >= alarm) Then

SignalEvent (alarm_object, TIMER_ALARM_EVENT, timer);

alarm = 0;

EndIf

EndWhile

EndForever

TimerStopHandler ()

stop = TRUE;

return;

TimerPeekHandler (Event event)

SignalEvent (event.value, TIMER_PEEK_EVENT, timer);

return;

TimerAlarmHandler (Event event)

alarm = event.value;

If (alarm > 0) alarm_object = event.value;

return;

F2S Object

The task of the F2S Object is to read a message from the output FIFO, and relay the message

to a socket which is used by a High application expecting to read data from the Pump, to write

an Ack to the High Ack FIFO after the High application receives the data, and to remember

the last message that was Acked from the High application. When a High application initiates

communication with the F2S Object, the F2S Object must send some Pump information back

to the High application. This Pump information should include Pump version, maximum

queue size, maximum message length, and the last message that was Acked.

Local Storage:

AckCode acode;

Record record;

Integer output_fifo, hiack_fifo;

19

Integer hitcpip_socket;

PumpInfo pump_info;

Boolean have_data;

output_fifo = OpenFile (OUTPUT_FIFO);

hiack_fifo = OpenFile (HIACK_FIFO);

hitcpip_socket = OpenSocket (HITCP_SOCKET);

ReadFile (output_fifo, &pump_info, sizeof(PumpInfo));

DoForever

AwaitConnection (hitcpip_socket);

WriteFile (hitcpip_socket, &pump_info, sizeof(PumpInfo));

acode = ACK_OK;

have_data = FALSE;

DoWhile (Connected(hitcpip_socket))

If (acode == ACK_OK) Then

If (have_data == TRUE) Then

WriteFile (hiack_fifo, &acode, sizeof(AckCode));

pump_info.record = record;

EndIf

ReadFile (output_fifo, &record.hdr.reclen, sizeof(Integer));

ReadFile (output_fifo, record.dta, record.hdr.reclen);

acode = ACK_RESEND;

have_data = TRUE;

Else

WriteFile (hitcpip_socket, &record.hdr.reclen, sizeof(Integer));

WriteFile (hitcpip_socket, record.dta, record.hdr.reclen);

ReadFile (hitcpip_socket, &acode, sizeof(AckCode));

EndIf

EndWhile

EndForever

S2F Object

The task of the S2F Object is to read messages from the socket used by the Low application

and relaying those messages into the Input Data FIFO, and to read and relay the Acks that

come back via the Low Ack FIFO. The S2F Object must keep track of the last Acked message

so that it may send it along with other Pump information after a socket connection has been

established with the Low application.

Local Storage:

AckCode acode;

Record record;

20

Integer input_fifo, loack_fifo, lotcpip_socket;

PumpInfo pump_info;

Boolean have_data;

loack_fifo = OpenFile (LOACK_FIFO);

input_fifo = OpenFile (INPUT_FIFO);

lotcpip_socket = OpenSocket (LOTCP_SOCKET);

ReadFile (input_fifo, &pump_info, sizeof(pump_info));

DoForever

AwaitConnection (lotcpip_socket);

WriteFile (lotcpip_socket, &pump_info, sizeof(pump_info));

acode = ACK_OK;

have_data = FALSE;

DoWhile (Connected(lotcpip_socket))

If (acode == ACK_OK) Then

If (have_data == TRUE) Then

WriteFile (lotcpip_socket, &acode, sizeof(AckCode));

pump_info.record = record;

EndIf

ReadFile (lotcpip_socket, &record.hdr.reclen, sizeof(Integer));

ReadFile (lotcpip_socket, record.dta, record.hdr.reclen);

acode = ACK_RESEND;

have_data = TRUE;

Else

WriteFile (input_fifo, &record.hdr.reclen, sizeof(Integer));

WriteFile (input_fifo, record.dta, record.hdr.reclen);

ReadFile (loack_fifo, &acode, sizeof(AckCode));

EndIf

EndWhile

EndForever

21

4 Con�guration

In this section we discuss the parameter and con�guration �les used to con�gure the Event

Driven Pump. The =etc=pump param �le contains parameter de�nitions used to modify the de-

fault behavior of the Event Driven Pump. It contains entries of the form <param>=<value>.

All values must be either TEXT or INTEGER depending upon <param>. The following are

the parameters with their default values shown:

TIMER INTERVAL=8

The granularity of the two timers used by the Pump. There are 7812 time units in a

second, so 8 is roughly a millisecond. Decreasing this value may degrade global system

performance as the timers approach constant looping with no yielding of CPU cycles.

Increasing this value may degrade the Pumps performance. All other parameters that

make reference to time will use TIMER INTERVAL as the basic unit of time.

ACK TIMEOUT=50

This is the number of TIMER INTERVALS to expire before which the Ack module must

send an Ack otherwise the Ack module will send a NACK. See NRL Pump paper for

more details.

EXEC PATH=/epump/bin

This is where the ring-3 Pump executables (s2f & f2s) reside.

FILE PATH=/epump/�les

This is where the FIFO �les are located.

IPC INTERVAL=500

This parameter speci�es the number of TIMER INTERVALS to wait between inter-

module communication attempts. See IPC RETRIES below.

IPC RETRIES=1000

It is possible during the Pump's startup process for one module to attempt communica-

tion with another module which is not ready for communications yet. This parameter

speci�es how many times an attempt should be made before aborting.

MOVAVG EPSILON=500

This number is divided by 1000, yielding .0625ms. This is the smallest allowed mean

for the modi�ed exponential distribution (this prevents a singularity at zero). See [3] for

details.

MOVAVG ORDER=50

This is the number of transactions over which the moving average will be taken when

determining high's rate of delivery.

MOVAVG SEED=5

This is the initial moving average rate of high delivery. Should have little a�ect on the

pump unless it is set very high.

22

SAFB PATH=/usr/local/epump

This is where the Store And Forward Bu�er (SAFB) �le will reside. It will be created

by the Pump and will be approx QUESIZE * RECSIZE bytes in length.

SAFB QUESIZE=50

This is the maximum number of transactions that can be pending within the Pump. This

default value represents the maximum possible with STOP 4.1 due to IPC MESSAGE

queuing restrictions.

SAFB RECSIZE=65535

This is the maximum bytes of data that can be processed for a single transaction by the

Pump. This default value represents the maximum possible with STOP 4.1 due to FIFO

restrictions.

The /etc/pump_config contains Pump de�nitions. A Pump de�nition must specify a low

and high (host, port) pair to de�ne the low and high side of each Pump. The host must

be a valid host name found in the /etc/hosts �le, and the port must be an unused port

number or name found in the /etc/services �le. An example Pump de�nition might be:

genser,pump0-in:sci,pump0-out, where (genser,pump0-in) are the (host, port) on the low

side and (sci,pump0-out) are the (host, port) on the high side.

5 Interface

In this section we present a de�nition of the Event Driven Pump's Interface. Any application

which intends to use the Event Driven Pump must adhere to the following protocol:

1. A client application must initiate a socket connection on the port allocated for Pump

communication.

2. After a connection is established the following information will be sent to the client

application by the Event Driven Pump:

� Major version of Event Driven Pump (1 byte)

� Minor version of Event Driven Pump (1 byte)

� Ack timeout in milliseconds (4 bytes)

� Connection timeout in seconds (4 bytes)

� Maximum bytes for a message (4 bytes)

� Last Acked message (2 byte length and then data)

3. All data transactions must be in the form of a message which is a 2 byte length �eld

followed by the variable length message data. The length of the data message cannot

exceed the value speci�ed for the SAFB RECSIZE parameter.

4. The Pump guarantees delivery of a message that it Acks with an AckCode of zero.

23

5. It is recommended that the client application include a block ID or similar bookkeeping

�eld within the message so that duplicate messages can be recognized and handled

appropriately.

6 Summary

We have presented arguments justifying the importance of balancing security and functional

requirements for secure communication devices. A device which meets these requirements

called the Basic Pump is presented and speci�ed in some detail. An implementation of the

Basic Pump called the Event Driven Pump was described and the pseudo code presented.

References

[1] D. Bell and L. LaPadula. \Secure computer systems: Mathematical Foundation," ESD-

TR-73-278, Vol.1, Mitre Corp, 1973.

[2] M. H. Kang and I. S. Moskowitz. \A Pump for rapid, reliable, secure communication,"

Proceedings ACM Conf. Computer & Commun. Security '93, pp. 119 - 129, Fairfax, VA,

1993.

[3] M. H. Kang and I. S. Moskowitz. \A data Pump for communication," Submitted for pub-

lication. http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS/index1995.html

[4] M.H. Kang, I. S. Moskowitz and D. Lee.\A network version of the Pump," Proc. of the

IEEE Symposium on Research in Security and Privacy, Oakland, Ca, May 1995.

[5] Myong H. Kang and I. S. Moskowitz, \A generalized Pump," In preparation.

[6] I. S. Moskowitz and M. H. Kang. \Covert channels | Here to stay?,"Proceedings COM-

PASS '94, pp. 235 - 243, Gaithersburg, MD, 1994.

[7] I. S. Moskowitz and M. H. Kang. \The Modulated-Input Modulated-Output model,"

Proceedings IFIP WG 11.3 working conference on database security, Rensselaerville, NY,

August 1995.

[8] R.S. Sandhu. \Lattice-based access control models," Computer (IEEE), Vol. 26, No. 11,

pp. 9-19, Nov. 1993.

