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Abstract

We set out a modal logic for reasoning about multilevel security of probabilistic systems.

This logic includes modalities for time, probability, knowledge, and permitted-knowledge.

Making use of the Halpern-Tuttle framework for reasoning about knowledge and probability,

we give a semantics for our logic and prove that it is sound. We give two syntactic de�nitions

of perfect multilevel security and show that their semantic interpretations are equivalent to

two earlier, independently motivated characterizations. We also discuss the relation between

these characterizations of security and between their usefulness in security analysis.

�A portion of this work was performed while the �rst author was at the Naval Research Laboratory in
Washington, DC.
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Figure 1: The General Form of a System

1 Introduction

Multilevel security is the aspect of computer security concerned with protecting information

that is classi�ed with respect to a multilevel hierarchy (e.g., UNCLASSIFIED, SECRET,

TOP SECRET). A probabilistic system is a hardware or software system that makes proba-

bilistic choices (e.g., by consulting a random number generator) during its execution. Such

probabilistic choices are useful in a multilevel security context for introducing noise to reduce

the rate of (or eliminate) illicit communication between processes at di�erent classi�cation

levels. In this paper, we are concerned with de�nitions of perfect (information-theoretic)

multilevel security in the sense that the de�nitions rule out all illicit communication without

relying on any complexity-theoretic assumptions. That is, our model allows the system pen-

etrators to have unlimited computational power and yet, our de�nitions are still su�cient

to ensure that there can be no illicit communication.1

The systems that we address can be depicted in the form shown in Figure 1. This general form

is intended to represent systems including physical hardware with hard-wired connections

to other systems, an operating system kernel with connections to other processes provided

by shared memory, and processes executing on a multiprocessor with connections to other

systems provided by an interprocess communication (IPC) mechanism.

� There is a system, called �, that provides services to the other systems. For example,

in the case of a multiuser relational database, � would store and control access to a set

1Of course in practice we do not have true random number generators|merely pseudo-random number
generators|and so, systems that depend on random number generators for their security will not be able
to achieve the ideal of perfect multilevel security. In such cases, one would want to prove, e.g., that under
the assumption that penetrators are limited to a polynomial amount of time, the pseudo-random number
generator is as good as random. We relegate such considerations to a lower level of analysis.
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of relations. � is the system with respect to which we will be reasoning about multilevel

security.

� There is a set of systems (labeled S1, S2; : : :, Si in the �gure), called the \covert senders",

that have access to secret information. These systems are called \covert senders" because

they may attempt to covertly send secret information, via �, to other systems that are not

authorized to see the information. It is these attempts with which we are concerned. As is

commonly done in the literature, we will often refer to the covert senders as high systems

(referring to the situation where the covert senders have access to highly classi�ed informa-

tion). We will also refer to the set of covert senders collectively as the high environment ,

denoted H. These systems are part of \the environment" in the sense that they are in the

environment of the central system, �.

� There is a second set of systems (labeled R1, R2; : : :, Rj in the �gure), called the \covert

receivers", that are not authorized to see the secret information that is available to the covert

senders. We will often refer to the covert receivers as low systems, or collectively as the low

environment , denoted L.

If the covert senders are able to use � to communicate information to the covert receivers,

we will say that � has a covert channel, or equivalently (for our purposes) that � is insecure.

A few notes are in order.

1. It is important to bear in mind that the threat that we are concerned with is not that

the users (i.e., the human users) of the covert sender systems are attempting to send

secret information to the covert receivers. We assume that if they wanted to, they could

more easily pass notes in the park and entirely bypass �. Rather, we are concerned that

the covert senders are actually trojan horses (i.e., they appear to be something that the

user wants, but actually contain something else that is entirely undesirable to the user)

and that these trojan horses are attempting to send secret information to the covert

receivers. This is a legitimate concern since system developers do not want to incur the

cost of verifying every component of a conglomerate system with respect to multilevel

security requirements. Ideally, only a small number of components in the system (e.g.,

in our case only �) have security requirements, and so require veri�cation; while the

remaining components can be implemented by o�-the-shelf hardware and software that

are unveri�ed with respect to security (and therefore may be trojan horses).
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We assume a worst case scenario, where all of the covert senders and covert receivers

are trojan horses. Indeed, we assume that all of the trojan horses are cooperating in

an attempt to transmit information from the covert senders to the covert receivers.

2. It is also important to bear in mind that in our intended application, the covert senders

will not be able to communicate directly to the covert receivers (i.e., by bypassing �).

Typically, there are hardware or software controls to prevent this. For example, non-

bypassability is one of the well-known principles of a \reference monitor" (see [Gas88]),

which is one of the typical applications we have in mind.

3. Our model contrasts sharply with much other work on security (e.g., [Mea92], [DDWY93])

in that we consider a set of untrusted agents (viz, the covert senders and receivers)

that are connected via a trusted agent, whereas these other works consider a set of

trusted agents connected via an untrusted agent. This di�erence in our model re
ects

the di�erence in the respective applications. The work of [Mea92] and [DDWY93] is

intended to be used to analyze a set of legitimate (and trusted) agents that are at-

tempting to establish secure communication over an untrusted network. In that work,

the assumption is that the penetrator is able to subvert the network (i.e., the central

component of the system), but not the trusted (lateral) agents.

In contrast, our work is intended to be used to analyze a centralized server that serves

a set of untrusted entities. Correspondingly, our assumption is that the penetrator

may be able to subvert the untrusted (lateral) agents, but not the central server.

4. The fact that we have partitioned the set of systems external to � into two sets,

high and low, may seem to indicate that we are limiting ourselves to two levels of

information (e.g., SECRET and UNCLASSIFIED). However, this is not the case. In

a more general setting, information is classi�ed (users are cleared, resp.) according

to a �nite, partially ordered set (see e.g., [Den76]); that is, there is a �nite set of

classi�cation levels (clearance levels, resp.) that is ordered by a re
exive, transitive, and

anti-symmetric relation, which we call dominates. A given user is permitted to observe

a given piece of information only if the user's clearance dominates the classi�cation of

the information. In the case where there are more than two levels, a separate analysis

would be performed for each level, x; in each analysis, the set of levels would be

partitioned into those that are dominated by x (i.e., the \low" partition) and the set
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of levels that are not dominated by x (i.e., the \high" partition). Thus, we have lost

no generality by restricting our attention to two levels.

Our problem is to develop a logic that can be used to reason about the multilevel security

of a given system �. In particular, we would like to be able to verify whether or not a given

(probabilistic or deterministic) system has any covert channels. Our approach is similar to

Glasgow, MacEwen, and Panangaden's [GMP90] and Bieber and Cuppens' [BC92] in that

our primary de�nition of security is given in terms of modal logic. In particular, as in [BC92],

we say that a system is secure with respect to the set of low processes, denoted L, if and

only if for any logical formula ', the following formula is derivable from the given premises,

describing e.g., the behavior of the system �.

2(KL(')! RL(')) (1)

where 2( ) is intuitively regarded as always  ,2 KL(') is intuitively regarded as \L knows

'" and RL(') is intuitively regarded as \L is permitted to know '." Our work extends that

of [GMP90] and [BC92] in that our logic includes explicit means to specify and reason about

the probabilistic behavior of systems. That is, in our logic, the formula ' may say e.g., \the

probability of a given high process's input is :99". For such a ', the formulaKL(')! RL(')

says that if L knows that the probability of a given high process's input is :99, then L is

permitted to know that the probability of that high process's input is :99.

The motivation for reasoning about the probabilistic behavior of systems has appeared in ex-

amples and discussions of many authors (cf. [Bro91, Gra92, MR88, McC88, McL90, WJ90]).

Essentially, the motivation is that it is possible for a probabilistic system to satisfy many

existing de�nitions of security (e.g., Sutherland's Nondeducibility [Sut86], McCullough's Re-

strictiveness [McC90], etc.) and still contain probabilistic covert channels.

Others have developed logics to reason about knowledge and probability in the areas of

arti�cial intelligence (viz, Ruspini [Rus87]) and protocol analysis (viz, Fagin and Halpern

[FH94]). Semantically, the framework of Halpern and Tuttle ([HT93]) encompasses the other

two and, in fact, we are also able to make use of their framework to give a semantics to our

logic.

A primary contribution of the present paper is the uni�cation of the logical approach to

multilevel security developed by Glasgow, MacEwen, and Panangaden [GMP90] and Bieber

2For technical reasons, Bieber and Cuppens' de�nition omitted the 2 operator.
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and Cuppens [BC92] with the work on security of probabilistic systems done by McLean

[McL90], Browne [Bro89], and the �rst author [Gra92]. In particular, we prove that the

semantic interpretation of (1) is equivalent to Gray's Probabilistic Noninterference (which

is itself equivalent to Browne's Stochastic Non-Interference). We also give a veri�cation

condition (in our logic) and prove that it is equivalent to Gray's Applied Flow Model (which

is closely related to McLean's Flow Model). These results are doubly advantageous. On the

one hand they constitute a formalization of the just cited information-theoretic approaches

to security. On the other hand, to the extent that the just cited logical works are viewed

not just as formalizations but as another basic approach to security, the results in this paper

amount to a demonstration of the equivalence of independently motivated characterizations

of security. We consider this to be strong evidence that both characterizations have `got

things right'. For a discussion of the importance of such equivalences see, e.g., [McL87].

The remainder of the paper is organized as follows. In x2 we set out our model of computa-

tion. In xx3 and 4, we set out the syntax and semantics of our logic, and in x5, we prove its

soundness. In x6 we state our primary de�nition of security and prove that it is equivalent

to Probabilistic Noninterference. In x7 we state our veri�cation condition and show that it

is equivalent to the Applied Flow Model. Finally, in x8, we give some conclusions of this

work.

2 System Model

In this section, we describe our system model. This is the model by which we will (in x4)

give semantics to our logic. First, we describe the general system model, which is taken

from Halpern and Tuttle [HT93]. Then, we will tailor the model to our needs by (in Halpern

and Tuttle's terminology) choosing the \adversaries". Finally, we impose some additional

structure on the model, resulting in our application-speci�c model.

2.1 General System Model

In this subsection we review the general system model of Halpern and Tuttle. A complete

description of their model can be found in [HT93].

We have a set of agents, P1; P2; : : : ; Pn, each with its own local state. The global state is an n-
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tuple of the local agents' states.3 A run of the system is a mapping of times to global states.

We assume that time is discrete because we are dealing with security at the digital level of

the system. We are not, for example, addressing security issues such as analog channels in

hardware. Therefore, as in [HT93], we will assume that times are natural numbers.

The probabilities of moving among global states are represented in the model by means of

labeled computation trees. The nodes of the trees represent global states. For any given

node in a tree, the children of that node represent the set of global states that could possibly

come next. Each arc from a node to one of its children is labeled with the probability of

moving to that state. Thus, from any given node, the sum of the probabilites on its outgoing

arcs must be one. As in [HT93], we also assume that the set of outgoing arcs is �nite and

that all arcs are labeled with nonzero probabilities. This �nal assumption can be viewed as

a convention that if the probability of moving from state x to state y is zero, then state y is

not included as a child of state x.

Certain events in a system may be regarded as nonprobabilistic (while still being nondeter-

ministic). The typical example occurs when a user is to choose an input and in the analysis

of the system, we do not wish to assign a probability distribution to that choice; in such a

case, we regard that choice as nonprobabilistic. All nonprobabilistic choices in the system

are lumped into a single choice that is treated as being made by an \adversary" prior to the

start of execution. Thus, after this choice is made, the system's execution is purely prob-

abilistic. In Halpern and Tuttle's words, the nonprobabilistic choices have been \factored

out".

In the model of computation, each possible choice by the adversary corresponds to a labeled

computation tree. In other words, a system is represented as a set of computation trees,

each one corresponding to a di�erent choice by the adversary. There is no indication how

the adversary's choice is made, just that it is made once and for all, prior to the start of

execution.

2.2 Application-Speci�c System Model

In this section, we impose some additional structure on the general model described in the

previous section. We �x the set of agents, �x our model and intuitions regarding commu-

3Halpern and Tuttle also include the state of the \environment" as part of the global state. However, we
will not be needing this for our application and so we omit it.
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nication, place some (environmental) constraints on the agents, and �x the set of choices

available to the adversary.

AGENTS As indicated in Figure 1 and the surrounding discussion, we can limit our model

to three agents: (1) the system under consideration, denoted �, (2) the covert senders (or

alternatively, the high environment), denotedH, and (3) the covert receivers (or alternatively,

the low environment), denoted L. In the remainder of the paper, we will tacitly assume that

the global system is comprised of these three agents.

MODEL OF COMMUNICATION Our model of communication is similar to those

of [BC92], [Gra92], and [Mil90]. We view �'s interface as a collection of channels on which

inputs and outputs occur. Since we consider the agentH (resp., L) to consist of all processing

that is done in the high (resp., low) environment, including any communication mechanism

that delivers messages to �, we will not need to model messages in transit or, in Halpern and

Tuttle's terminology, the state of the environment; rather, these components of the global

state will be included as part of H's and L's state.

In many systems of interest, the timing of events is of concern. (See [Lam73] for an early

description of covert communication channels that depend on timing; see [Wra92] for more

recent work.) In such cases, we model the passage of time by taking the set of times (i.e., the

domain of the runs) to be the ticks of some clock that is independent of the covert senders'

and receivers' processing. For example, we may think of this clock as being �'s system clock.

In this way, covert channels that depend on time can be properly accounted for.

Since the mechanisms of high-level4 I/O routines may introduce covert channels (see, e.g.,

[McC88, x2.3]), we take a very low-level view of I/O. In particular, we assume one input and

one output per channel per unit time. That is, for each time we have a vector of inputs (one

for each channel) and a vector of outputs (one for each channel). If a given agent produces

no new data value at a given time, it may in fact serve as a signal in a covert channel

exploitation. Hence, we treat such \no new signal" events as inputs. Similarly, we do not

consider the possibility that the system can prevent an input from occurring. Rather, the

system merely chooses whether to make use of the input or ignore it. Any acknowledgement

that an input has been received is considered to be an output.

Given these considerations, we �x our model of communication as follows. We assume the

4In this context, \high-level" means highly abstract rather than highly classi�ed .
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following basic sets of symbols, all nonempty:

C: a �nite set of input/output channel names, c1; : : : ; ck,

I: representing the set of input values,

O: representing the set of output values.

IN+: representing the set of positive natural numbers. This set will be used as our set of

\times".

Since there is one input per channel at each time, we will be talking about the vector of

inputs that occurs at a given time. We will denote the set of all vectors of inputs by I[C].

Typical inputs vectors will be denoted a; a0; a1; : : : 2 I[C].

Similarly, we will denote the set of all output vectors by O[C] and typical output vectors

will be denoted b; b0; b1; : : : 2 O[C].

Now, to talk about the history of input vectors up to a given time, we introduce notation

for traces. We will denote the set of input traces of length k by IC;k. Mathematically, IC;k

is a shorthand for the set of functions from C � f 1; 2; : : : k g to I. Therefore, for a trace

� 2 IC;k, we will denote the single input on channel c 2 C at time k0 � k by �(c; k0).

We will also need to talk about in�nite traces of inputs. For this we use the analogous

notation IC;1, which is short hand for the set of functions from C � IN+ to I

Similarly, we will denote the set of output traces of length k by OC;k and the set of in�nite

output traces by OC;1. Naturally, for an output trace �, �(c; k) represents the output on

channel c at time k.

There will be situations when we want to talk about vectors or traces of inputs or outputs

on some subset of the channels, S � C. In such cases we will use the natural generalizations

of the above notations, viz, I[S], IS;k, IS;1, etc..

ENVIRONMENTAL CONSTRAINTS Any given agent will be able to see the inputs

and outputs on a subset of the channels. We make this precise by \restricting" vectors and

traces to subsets of C. Given an input vector a 2 I[C] and a set of channels S � C, we

de�ne a � S 2 I[S] to be the input vector on channels in S such that a � S(c) = a(c) for all

c 2 S.
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Similarly, given an input trace � 2 IC;k and a set of channels S � C, we de�ne ��S 2 IS;k

to be the input trace for channels in S such that ��S(c; k0) = �(c; k0) for all c 2 S and all

k0 � k.

We assume that the set of low channels, denoted L, is a subset of C. Intuitively, L is the

set of channels that the low environment, L, is able to directly see. In particular, L is able

to see both the inputs and the outputs that occur on channels in L.

In practice, there will be some type of physical or procedural constraints on the agent L to

prevent it from directly viewing the inputs and outputs on channels in C �L. For example,

those channels may represent wires connected to workstations that are used for processing

secret data. In this case, the secret workstations might be located inside a locked and guarded

room. In addition, periodic checks of the wires might be made to ensure that there are no

wiretaps on them. In this way, L is prevented from directly viewing the data that passes

over the channels in C � L.

On the other hand, we place no constraints on the set of channels that H is able to see. In

particular, we make the worst-case assumption that H is able to see all inputs and outputs

on all channels.

The above considerations are consistent with what we've called the \Secure Environment

Assumption" in previous work [Gra92, GS92]. In the present paper, this assumption is made

precise in terms of our de�nition of the adversary to be given next.

THE ADVERSARY As discussed above, in Halpern and Tuttle's framework, all nonprob-

abilistic choices are factored out of the execution of the system by �xing an adversary at

the start of execution. To make use of this framework, we must de�ne the set of possible

adversaries from which this choice is made.

The \adversary" in our application is the pair of agents, H and L, that are attempting to

send data from the high environment across the system � to the low environment. To be

fully general, we model these agents as mixed strategies (in the game-theoretic sense). That

is, at each point in the execution of the system the strategy gives the probability distribution

over the set of next possible inputs, conditioned on the history up to the current point. In

the next section, we present an example to motivate the need for such generality. Before

doing that, we make the adversary precise with the following two de�nitions.
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De�nition 2.1 An adversary is a conditional probability function, A(a j �; �; k). Here

a 2 I[C] and k is some time such that there is a time k0 with k � k0 � 1, and � 2 IC;k0 and

� 2 OC;k0 . (The k indicates that the probability of a is conditional only on the restriction of

� and � to k.) Intuitively, the adversary describes the environment's conditional distribution

on the next input vector, given the previous history of inputs and outputs. 2

Later in this section, we describe how a given adversary A and the description of a particular

system, �, are used to construct the corresponding computation tree TA.

De�nition 2.2 We say that an adversary A satis�es the Secure Environment Assumption

with respect to a set of channels L � C i� there exists a pair of conditional probability

functions H and L such that for all a 2 I[C], k 2 IN+, all � 2 IC;k, and all � 2 OC;k,

A(a j �; �; k) = H(a�(C � L) j �; �; k) � L(a�L j ��L; ��L; k)

(where � denotes real multiplication). 2

The Secure Environment Assumption can be intuitively understood as saying that the input

on channels in (C � L) at time k is (conditionally) statistically independent of the input on

channels in L at time k, and the input on channels in L at time k depends only on previous

inputs and outputs on channels in L. For the remainder of this paper, we will assume

that all adversaries from which the initial choice is made satisfy the Secure Environment

Assumption.

Since there is one tree for each possible adversary, we can think of the set of trees as being

indexed by the adversaries. Therefore, we will often write TA, TA0, TAi
, etc.

It is clear that for an adversaryA that satis�es the Secure Environment Assumption (wrt L),

the conditional probability functions H and L that must exist are, in fact, unique. Further,

given H and L, there is a unique adversary, A, for which H and L are the probability

functions that satisfy the corresponding constraint. We will therefore sometimes write TH;L,

TH0;L0, etc. when we want to refer to the parts of the adversary individually.

Note that our de�nition of an adversary is not meant to be as general as the adversary

discussed by Halpern and Tuttle. (In fact, Halpern and Tuttle give no structure at all

to their adversary.) Rather, our adversary is application-speci�c; in particular, it is for
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reasoning about multilevel security of probabilistic systems and is not designed to be used

outside that domain.

On the other hand, this particular adversary represents a novel application of Halpern and

Tuttle's framework. In their examples, the adversary represents one or both of two possible

things:

� the initial input to the system; and

� the schedule according to which certain events (e.g., processors taking steps) occur.

In contrast, our adversary does not represent a given input to the system. Rather, it repre-

sents a mixed strategy for choosing the inputs to the system. In some sense, we can think

of this as a generalization on the �rst item above; however, our application still �ts within

the framework set out by Halpern and Tuttle.

THE STATE OF THE SYSTEM At any given point, P , in any given computation tree,

TA, there should be a well-de�ned state of the system. For our purposes, the state includes

the following information.

1. All inputs and outputs that have occurred on all channels up to the current time.

2. In [HT93], Halpern and Tuttle make the assumption that all points in all trees are

unique. They suggest (and we adopt) the following idea to ensure that this is true.

The state encodes the adversary. That is, all nodes in tree TA encode A. Note that

we do not assume that any given agent knows the adversary; just that it is somehow

encoded in the state. We can think of the high part of the adversary, H, as being

encoded in the high environment and the low part, L, as being encoded in the low

environment.

3. Typically, there are additional components of the global state representing the internal

state of �. For example, in describing �, it is often convenient to use internal state

variables. The state of these variables can be thought of as a vector of values, one

value for each state variable. Thus, the internal state, when it exists, will be denoted

c, and the history of internal states will be denoted 
.
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COMPUTATION TREES Now that we have set out the possible states of the system

(i.e., the points of computations), we can talk about the construction of the computation

trees.

For each reachable point, P , we assume that �'s probability distribution on outputs is given.

For example, this can be given by a conditional probability distribution, O(b; c j �; �; 
; k),

where c is the vector representing values of all internal state variables (i.e., the internal

system state) at time k + 1, b 2 O[C] is the vector of outputs produced by the system at

k + 1, and �; �; 
 give the history through k of inputs, outputs, and internal state values,

respectively.

Given O(b; c j �; �; 
; k) and the adversary, A we can construct the corresponding computa-

tion tree by starting with the initial state of the system (i.e., the point at the root of the tree

with empty histories of inputs, outputs, etc.) and iteratively extending points as follows.

Let P be a point in the tree with internal system history 
, input history �, and output

history �. We will make P 0 a child of P i�

1. P 0 is formed from P by modifying the internal system state to c and extending P 's

input history (output history, resp.) with a (b, resp.); and

2. both O(b; c j �; �; 
; k) and A(a j �; �; k) are positive.

In such cases, we label the arc from P to P 0 with O(b; c j �; �; 
; k) � A(a j �; �; k), i.e., the

system, �, and the environment, A, make their choices independently.

RUNS OF THE SYSTEM A run of the system is an in�nite sequence of states along a

path in one of the computation trees. When we want to talk about the particular run, �,

and time, k, at which a point P occurs, we will denote the point by the pair (�; k). Further,

if we wish to talk about the various components of the run, i.e., the trace of the inputs, �,

outputs, �, or other variables, 
, we will denote the run by (�; �; 
) and denote the point,

P , by (�; �; 
; k).

For a given tree, T , we denote the set of runs (i.e., in�nite sequences of states), formed by

tracing a path from the root, by runs(T ).

For security applications we are concerned with information 
ow into and out of the system

rather than with information in the system per se. Thus, though our system model is
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adequate to represent internal states and traces thereof, in subsequent sections it will be

adequate to represent systems entirely in terms of input and output. For example, system

behavior at time k can be represented by `O(b j �; �; k)' rather than `O(b; c j �; �; 
; k)'.

3 Syntax

In this section we set out our formal language and use it to describe two simple systems.

Then we give the axioms and rules of our logic.

3.1 Formation Rules

To describe the operation of the system under consideration (viz, �), we use a variant of

Lamport's Raw Temporal Logic of Actions (RTLA) [Lam91].5 The primary di�erence is that

we add a modal operator Pri(') that allows us to specify and reason about the probabilistic

behavior of the system.

From the previous section, we assume the following basic sets of symbols, all nonempty: C,

I, O, and IR . Members of IR will have the usual representation|e.g., 43:5 2 IR .

We will also be talking about the subjects (or agents) of the system. Formally, a subject ,

S � C, is identi�ed with the process's view of the system, i.e. the set of channels on which

it can see the inputs and outputs.

Formulae in the language are built up according to the following rules.

� constants from the set of basic symbols are terms.

� state variables (representing the value of that variable in the current state) are terms.

Among the state variables, there are two reserved for each communication channel.

For each c 2 C, we have a state variable cin that takes values from I, and another

state variable cout that takes values from O. Note that, implicitly, inputs are from the

covert senders and receivers into the system (�) and outputs are from the system to the

covert senders and receivers. This is because � is the system under consideration (i.e.,

with respect to which we are reasoning about security). We have no mechanism (and

5Roughly speaking, Raw Temporal Logic of Actions (RTLA) is the same as Lamport's Temporal Logic
of Actions (TLA) without the treatment of stuttering [Lam91]. Since we are not, in this paper, concerned
with re�nement, we omit the considerations of stuttering and use RTLA.

13
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no need) to specify communication between agents not including the system under

consideration.

� primed state variables (e.g., c0in) are terms. (These represent the value of the variable

in the next state.)

� We use standard operators among terms (e.g., + and � for addition and multiplication,

respectively), with parentheses for grouping subterms, to form composite terms.

� an atomic predicate is an equation or inequality among terms not containing primed

state variables.

� an atomic action is an equation or inequality among terms (possibly including primed

as well as unprimed state variables). (Note that all predicates are actions.)

� for any action, ', and for any subject S � C, PrS(') is a real-valued term (representing

the subjective probability that S assigns to the formula ').

� For any predicate, ', ' is a temporal formula.

� For any action or temporal formula ', 2' is a temporal formula (to be read intuitively

as always ').

� We build up composite predicates, actions, and temporal formulae, resp., in the usual

recursive fashion using ^, _, :, and !.

Now, to specify and reason about our security properties of interest, we add three �nite

sets of modal operators on formulae: k1; : : : ; kn, K1; : : : ;Kn, and R1; : : : ; Rn, represent-

ing knowledge of a (relatively) weak adversary, knowledge of a powerful adversary, and

permitted-knowledge respectively for each subject (represented by the subscript of the op-

erator). Therefore, we add the following additional formation rules to our syntax.

� For any action (temporal formula, resp.) ', and for any subject S � C, kS(') (rep-

resenting that the weak adversary S knows '), KS(') (representing that the powerful

adversary S knows ') and RS(') (representing that S has permitted knowledge of ')

are actions (temporal formulae, resp.).

14
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Later in the paper, we will make the meaning of these three operators precise. For now, we

merely mention that the weak-adversary knowledge operators (kS) will be given the standard

semantics (e.g., as in [HT93]); the powerful-adversary knowledge operators (KS) will be given

semantics that imply greater knowledge on the part of the subject (viz, knowledge of the

probability of certain future events).

3.2 Examples

We now give two simple examples of how to describe systems in our language. Ultimately,

we will have su�cient formal machinery to show that one of these systems is secure and the

other is not; however, here we simply set them out formally. These descriptions are meant

to give the reader an intuitive feel for the meaning of expressions in the language. Precise

meanings will be given in x4. Also, the second of these examples will motivate our choice of

modeling adversaries as strategies.

Example 3.1 The �rst example is a simple encryption box that uses a \one-time pad"

[Den82]. It has two channels, high and low . At each tick of the system clock, it inputs a 0 or

1 on the high channel and outputs a 0 or 1 on the low channel. The low output is computed

by taking the \exclusive or" (denoted �) of the high input and a randomly generated bit. It

is well known that this results in an output stream that is uniformly distributed. Therefore,

we can describe this system as follows.

Let C = fh; lg, I = f0; 1g, and O = f0; 1g. Then, the system is speci�ed by the following

formula.

2 (Pr(l0out = 0) = Pr(l0out = 1) = 0:5)

In this formula, lout is a state variable representing the output on the low channel, l. There-

fore, l0out is the output on l at the next time. Further, Pr(l0out = 0) denotes the probability

that the output on l is a 0 at the next time. Hence, the entire formula says that at all times,

the probability of � producing a one (1) on the next clock tick is equal to the probability

of producing a zero (0), which is equal to 0:5. Note that we have not speci�ed inputs per se

since these constitute environment behavior rather than system behavior.

2
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Example 3.2 The second example is an insecure version of the simple encryption box. This

system was �rst described by Shannon in [Sha58].

As in the �rst example, at each tick � computes the \exclusive or" of the current high input

and a randomly generated bit and outputs that value on the low channel. However, in this

system, the randomly generated bit used at any given tick is actually generated and output

on the high output channel during the previous tick of the clock.

This can be expressed in our formalism as follows. Let C = fh; lg, I = f0; 1g, and O = f0; 1g.

The following formula speci�es the system.

2(Pr(h0out = 0) = Pr(h0out = 1) = 0:5 ^ l0out = hout � h0in)

Note that in the second conjunct, hout is unprimed, indicating that the output on l at the

next time is the \exclusive or" of the current output on h with the next input on h.

Now note that if the high agent ignores its output, then this system acts exactly as the

system from the previous example (and can be used for perfect encryption). In particular,

suppose we were to model an adversary as an input string|the input to be provided by the

high agent. Then, it is easy to prove that for any adversary (i.e., any high input string) �xed

prior to the start of execution, the output to low will be uniformly distributed and, in fact,

will contain no information about the high input string.

However, the bit that will be used as the one-time pad at time t is available to the high agent

at time t�1. Therefore, (due to the algebraic properties of \exclusive or", viz, x�x�y = y)

the high agent can use this information to counteract the encryption. In particular, the high

agent can employ a (game-theoretic) strategy to send any information it desires across the

system to the low agent.

For example, suppose the high agent wishes to send a sequence of bits, b1; b2; : : :. We'll

denote the high input (resp., output) at time k by hin(k) (resp., hout (k)). The appropriate

strategy for the high agent is as follows.

The high agent chooses its input for time k + 1 as hin(k + 1) = hout (k)� bk.

Thus, the output to low at time k + 1, denoted lout(k + 1) is computed as follows.

lout(k + 1) = hout (k)� hin(k + 1) [by the system description]
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= hout (k)� hout(k)� bk [by the high strategy]

= bk [by the properties of �]

Thus, by employing the correct strategy, the high agent can noiselessly transmit an arbitrary

message over � to the low agent. This, of course, motivates our choice of strategies as the

adversary, rather than, e.g., input strings.

2

We now have some sense of the formal language, with the exception of the modal operators

kS , KS, and RS. As previously mentioned, these operators will be used to formalize the

security property that interests us; so, we will illustrate their use in a later section. First, we

will describe the logical axioms and inference rules that are used to prove properties about

systems.

3.3 The Logic

We now give the axioms of our logic. In the following, we will use `'' and ` ' to refer to

formulae of our language.

Propositional Reasoning All instances of tautologies of propostional logic.

Temporal Reasoning The following are standard axioms for temporal reasoning about

discrete systems. The logic they constitute is generally called S4.3Dum or sometimesD.

(See [Gol92] for details. Note also that these are the formulae Abadi uses to axiomatize

Lamport's TLA [Aba90].) We have labelled the axioms with their historical names.

Let ' and  be formulae of our language.

K 2('!  )! (2'! 2 )

4 2'! 22'

D 2'! 3'

L 2(' ^2'!  ) _2( ^2 ! ')

Z 2(2'! ')! (23'! 2')

17



J.W. Gray, III and P.F. Syverson. Epistemology of Information Flow in the Multilevel Security of Probabilistic Systems.

NRL Memo Report 5540{95-7733, May 12, 1995

`3'' can be interpreted roughly as saying that at some point ' is true. Formally,

it is viewed as notational shorthand: for all formulae ', 3'
4
= :2:'. K basically

guarantees that the temporal operator respects modus ponens. Each of the other

axioms captures a feature of time that we desire. 4 gets us transitivity. D guarantees

that we don't run out of time points (seriality). L guarantees that all points in time

are connected. And, Z guarantees that time is discrete. (Between any two points in

time there are at most �nitely many other points.)

Real Number Axioms Standard �eld and order axioms for the real numbers (to apply

to members of IR and function terms with range IR .) We will not enumerate these

axioms. (See any elementary real analysis book for enumeration, e.g., [Mar74] or

[Rud].)

Epistemic Reasoning The (nonredundant) axioms of the Lewis system S5. (cf. [Che80] or

[Gol92]) apply to the strong knowledge operators (Ki), the weak knowledge operators

(ki), and the permitted-knowledge operators (Ri). We state them only for the (strong)

knowledge operators. As for temporal axioms, we give the axioms their historical

names. Let S be a subject, and let ' and  be formulae of our language.

K [KS(') ^KS('!  )]!KS( ) (Knowledge respects modus ponens.)

T KS(')! ' (What one knows is true.)

5 :KS(') ! KS:KS(') (If you don't know something, then you know that you

don't know it.)

We also have two axioms for relating weak knowledge to permitted knowledge and

permitted knowledge to strong knowledge.

kR kS(')! RS(')

RK RS(')! KS(')

Random Variable Axioms The standard requirements for random variables (in the prob-

ability theoretic sense).

PM (Positive Measure) for any formula, ', and any subject, S, PrS(') � 0 (The

probability of any event is greater than or equal to zero.)
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NM (Normalized Measure) for any channel, c, and any subject, S,

P
a2I PrS(cin = i) = 1 (The probability of all possibilities sums to one.)

P
b2O PrS(cout = o) = 1

Input/Output Axioms for knowledge and permitted-knowledge of inputs and outputs. Let

S be a subject, let c 2 S be a channel that is visible to S, and let a 2 I be an input,

b 2 O be an output, and r 2 IR be a real number.

KO PrS(c
0
out = o) = r! KS(PrS(c

0
out = o) = r)

RI PrS(c
0
in = i) = r! RS(PrS(c

0
in = i) = r)

Intuitively,KO say that a subject knows the distribution on its own outputs conditioned on

the previous history of inputs and outputs that it has seen. Similarly, a subject knows the

distribution on its own inputs conditioned on the previous history of inputs and outputs it

has seen. However, we need no corresponding axiom KI since it follows trivially from RI

and RK. From theorems KI and KO we can inductively show that every subject knows the

probability of any event that it can see in �nite time. RI says that a subject is permitted

to know the conditional distribution on its own inputs. But, a subject is permitted to

know the conditional distribution on its own outputs only if the system is secure|e.g., for

a low subject, only if knowing that distribution does not reveal any information about the

distribution on high inputs. The absence of an axiom RO, corresponding to KO, is what

syntactically captures this.

The above are all of our axioms. We now give the rules of our logic, which are all standard.

MP (Modus Ponens) From ' and '!  infer  .

Nec (Necessitation) This rule applies to all of the modal operators we have introduced: 2,

KS, kS, and RS . (It is called `necessitation' because it was originally applied to a

necessity operator.) We set it out for 2 only. From ` ' infer ` 2'

Note that in the above, `` '' indicates a derivation of ' from the axioms alone, rather than

from a set of premises. (Derivations will be formally de�ned below.) Thus, in the case of

knowledge (strong or weak) for example,Nec says that if ' is a theorem (derivable without

any premises) then all subjects know '.

We now have su�cient machinery to give a characterization of a formal derivation.
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De�nition 3.3 Let � be a �nite set of formulae of our language. A �nite sequence of

formulae '1; '2; '3; : : : ; 'n is called a derivation (of 'n from �) i� each 'k (k = 1; : : : ; n)

satis�es one of the following:

� 'k 2 �

� 'k is an axiom.

� 'k follows from some theorem by Nec.

� For some i; j < k, 'k results from 'i and 'j by MP.

We write `� ` '' to indicate a derivation of ' from �, and we write `` '' to indicate a

derivation of ' from the axioms alone. 2

This completes our statement of the formal system.

4 Semantics

In the last section we presented a syntactic system. So far we have only intuitive meanings

to attach to this formalism. In this section we provide semantics for our system in terms of

the Halpern-Tuttle framework and our application-speci�c model set out in x2.

4.1 Semantic Model

A model M is a tuple of the form:

hIR ;+; �;�;W;T ; C; I;O; v; �powerful1 ; : : : ; �
powerful

jP(C)j ; �
weak
1 ; : : : ; �weakjP(C)j; �1; : : : ; �jP(C)j; i

Here, IR and its operations and ordering relation gives us the real numbers; W is the set of

worlds (i.e., global states); T is the set of labeled computation trees (with nodes from W );

C, I, and O are the sets of channels, possible inputs, and possible outputs, respectively; v

is the assignment function, which assigns semantic values to syntactic expressions at each

world; (values of v at a particular world P , will be indicated by the projection `vP '); the

�
powerful
iS

and �weakiS
are knowledge accessibility relations, one each for each subject S; and

the �iS are permitted-knowledge accessibility relations, also one for each subject. In the

20



J.W. Gray, III and P.F. Syverson. Epistemology of Information Flow in the Multilevel Security of Probabilistic Systems.

NRL Memo Report 5540{95-7733, May 12, 1995

remainder of this paper we will generally denote the accessibility relations corresponding to

subject S by `�
powerful
S ', `�weakS ', and �S'. These will each be further explained when we come

to the assignment function.

In assigning meaning to our language, it is of fundamental importance to associate a proba-

bility space with each labeled computation tree. In particular, for each labeled computation

tree TA we will construct a sample space of runs, RA, an event space, XA (i.e., those subsets

of RA to which a probability can be assigned) and a probability measure �A that assigns

probabilities to members of XA.

Our construction of this probability space is quite natural and standard (see, e.g., [Sei92] as

well as [HT93] for two instances). We will not go into detail explaining the basic concepts

of probability and measure theory here (cf. [Hal50] or [Shi84]).

De�nition 4.1 For a labeled computation tree TA, the associated sample space RA is the

set of all in�nite paths starting from the root of TA.

The set e � RA, is called a generator i� it consists of the set of all traces with some

common �nite pre�x. The generators are the probability-theoretic events corresponding to

�nite traces. We can now de�ne the event space, XA, to be the (unique) �eld of sets

generated by the set of all generators (i.e., XA is the smallest subset of P(RA) that contains

all of the generators and is closed under countable union and complementation).

Suppose e is a generator corresponding to the �nite pre�x given by (�; k). Then, the prob-

ability measure, �A, is de�ned for e as the product of the transition probabilities from the

root of the tree, along the path �, up to time k. Further, there is a unique extension of �A

to the entire event space [Hal50]. 2

4.2 Assignment Function

For a given point, P , we will assign truth values to temporal formulae ' at this point. In

addition, we assign values to variables, for example the input on a channel, at this point.

The assignment function that does both of these is denoted by vP .

To de�ne vP , we will need to assign truth values to action and temporal formulae. Therefore

we will also de�ne functions v(P1;P2) (where P1 and P2 are points) and v� (where � is a run)

to assign truth values to action formulae over a pair of points and temporal formulae on a

run, respectively.
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We de�ne vP , v(P1;P2), and v� mutually recursively below. First we present some additional

notation.

Since nodes are unique even across trees, for a given node P , there is no ambiguity in referring

to \the tree that contains P". In the following, we will use tree(P ) to denote that tree.

We use the notation succ(P ) to denote the set of nodes that succeed P in tree(P ).

We use the notation extensions (P ) to denote the set of in�nite sequences of states starting

at P in tree(P ).

As discussed in [HT93], to each subject, S, and point, P , we need to associate a sample space,

SS;P . Each such sample space will be a set of points from tree(P ). Intuitively, these are the

points (within the tree that contains the current execution) that the subject S considers

possible. We will set out these sample spaces below. For the time being, we simply make

use of the notation SS;P to refer to them.

We will be rather abusive in the use of our probability measures �A. In particular, when we

have a �nite set of points, x, we will write �A(x) to denote the probability (as assigned by

�A) of passing through one of the points in x. Technically, this is wrong, since �A is de�ned

for (certain) sets of runs; not for sets of points. However, the mapping between the two

is extremely natural; the set of runs correspondings to a point is the set of runs that pass

through that point. Further, by the construction of our probability spaces, all sets of runs

corresponding to �nite sets of points are measureable. Therefore, there is no danger in this

abuse of notation and it greatly simpli�es our presentation.

As is standard (see, e.g., [HT93]), we will be using accessibility relations|one for each

subject|on points to give semantics to our three knowledge operators. We de�ne these

relations below. For the time being, we simply make use of the notation �powerfulS to refer to

the powerful-adversary knowledge accessibility relation, �weakS to refer to the weak-adversary

knowledge accessibility relation, and �S to refer to the permitted-knowledge accessibility

relation.

We now de�ne vP , v(P1;P2), and v�. Let P be a point at time k in the execution � = (�; �; 
)

in computation tree TA.

� Numbers are assigned to number names.

� Members of I and O are assigned to their syntactic identi�ers.
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� For any channel c 2 C,

vP (cin)
4
= �(c; k)

� For any channel c 2 C,

vP (cout)
4
= �(c; k)

� For any variable name, X, excluding channel variables (such as cin or cout )

vP (X)
4
= 
(X; k)

� To assign truth values to actions, we need to assign values to terms at pairs of points.

Constants do not change their values when we move to pairs of points. However,

primed and unprimed variables are evaluated di�erently. For any state variable, X,

and any pair of points (P1; P2),

v(P1;P2)(X)
4
= vP1(X)

In contrast,

v(P1;P2)(X
0)

4
= vP2(X)

v(P1;P2)(')
4
= vP1 jP2(')

where vP1 jP2(') follows vP1 except that all primed terms are assigned according to vP2.

� Composite terms are assigned values at a point and at a pair of points in the natural

way. For example,

vP (X + Y )
4
= vP (X) + vP (Y )

and

v(P1;P2)(X + Y )
4
= v(P1;P2)(X) + v(P1;P2)(Y )

� Similary, predicates and action formulae are assigned truth values at a point and at a

pair of points, respectively, in the natural way. For example,

vP (X � Y ) = true i� vP (X) � vP (Y )

and

v(P1;P2)(' ^  ) = true i� v(P1;P2)(') = true and v(P1;P2)( ) = true
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� An action formula, ', is true at a point, P , i� it is true for all pairs of points emanating

from P . More precisely,

vP (') = true i� 8P 0 2 succ(P ); v(P;P 0)(') = true

(Since we have not needed to include quanti�cation in our language we are free to use

`8' and `9' as metalinguistic shorthand.)

� To interpret the probability of an action ' at a point P , we will take the set of all pairs

of points, (P1; P2) emanating from points in SS;P . Restricting to this set, we compute

the probability of those pairs such that v(P1;P2)(') evaluates to true. More precisely,

for any action formula, ', and for any subject S � C,

vP (PrS('))
4
= �A(P )(SS;P ('))

where

SS;P (')
4
= fP2 j 9P1 2 SS;P ^ P2 2 succ(P1) ^ v(P1;P2)(') = true g

and A(P ) is the adversary corresponding to tree(P ).

� For any predicate, ', and run, �,

v�(')
4
= v�(1)(')

� For any (action or temporal) formula, ', and run, �,

v�(2') = true i� 8i; v�(i)(') = true

� A temporal formula is true at a point i� it is true in all runs extending from that point.

More precisely, for any temporal formula, ',

vP (')
4
= 8� 2 extensions (P ); v�(')

� Composite action formulae and temporal formulae are assigned truth values at points

in the natural way. For example,

vP (' ^  ) = true i� vP (') = true and vP ( ) = true
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� Our three knowledge operators are all S5 modal operators and are given semantics in

terms of the accessibility relations (on points) in the standard way; viz, for powerful-

adversary knowledge,

vP (KS(')) = true i� 8P 0; �powerfulS (P;P 0)) vP 0(') = true

for weak-adversary knowledge,

vP (kS(')) = true i� 8P 0; �weakS (P;P 0)) vP 0(') = true

and for permitted knowledge,

vP (RS(')) = true i� 8P 0; �S(P;P
0)) vP 0(') = true

To complete our semantics for probability formulas, we need to choose the sample spaces SS;P

for each subject at each point. Our approach is quite straightforward. We will choose SS;P

to be the set of points within tree(P ) that have the same history of inputs and outputs on

channels S as occur on the path to point P . More precisely, we have the following de�nitions.

De�nition 4.2 Let S 2 C be a subject and let �1 = (�1; �1; 
1) and �2 = (�2; �2; 
2) be two

runs (not necessarily in the same tree). We say that �1 and �2 have the same S-history up

to time k if and only if

8i; 1 � i � k; 8c 2 S; �0(c; i) = �(c; i) ^ �0(c; i) = �(c; i)

2

De�nition 4.3 Let S 2 C be a subject and let P1 = (�1; k1) and P2 = (�2; k2) be two points

(not necessarily in the same tree). We say that P1 and P2 have the same S-history if and

only if the following two conditions hold.

1. k1 = k2.

2. �1 and �2 have the same S-history up to time k1.

2
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De�nition 4.4 Let S 2 C be a subject and P be a point; the sample space for S at point

P is given by

SS;P
4
= f P 0 j tree(P 0) = tree(P ) ^ P 0 and P have the same S-history g

2

In a more general setting, we would also want to consider the possibility that a subject S

has internal state variables and could use these to make �ner distinctions between points.

However, in our application, all of the internal processing of the relevant subjects (viz, H

and L) is encoded in the adversary and is thus factored out of the computation tree. We

therefore do not lose any needed generality in making the above de�nition.

Now, to complete our description of the assignment function we need only describe the

relations �powerfulS , �weakS , and �S for all S � C.

De�nition 4.5 Our de�nition of �weakS (and hence our de�nition of weak-adversary knowl-

edge) is the standard de�nition of knowledge in a distributed system. In particular, for any

two points, P1 and P2 (not necessarily in distinct trees) and any subject, S � C, We say

that P2 is weak-adversary-accessible from P1, denoted `�weakS (P1; P2)' if and only if P1 and P2

have the same S-history. 2

Our de�nition of �powerfulS (and hence, our de�nition of powerful-adversary knowledge) is

novel. In the analysis of distributed protocols and in other areas of computer science, it is

typical to use the above weak-adversary knowledge accesibility relation (or something roughly

equivalent). Our de�nition of accessibility for powerful-adversary knowledge will require

more|in other words, using this de�nition subjects know more. In particular, subjects

\know" the probability distribution over the future inputs and outputs on the channels that

they can see. That is, if the probability of a given future output on a low channel is x,

then (assuming a powerful adversary) the low environment knows that. To make this notion

precise, we need some de�nitions.

De�nition 4.6 Let S � C be a subject and let e be a set of runs, f�ig, (not necessarily

taken from any one computation tree). We say that e is an S-event if and only if there exists

a time k 2 IN+ such that for any two runs, �1 and �2, having the same S-history up to time

k, �1 2 e i� �2 2 e.
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For an S-event, e, we will refer to the least k such that above condition holds as the length

of e. 2

Intuitively, an event e is an S-event if and only if there is some �nite time k (i.e., its length)

after which S can always determine whether or not e has occurred.

Note that in general, an S-event contains runs from more than one computation tree. There-

fore, such \events" will not be measurable in any of our probability spaces. Rather, we think

of them as meta events and we will be interested in the measure of the subset of the runs that

are contained in a given computation tree. To make this precise, we introduce the following

de�nition.

De�nition 4.7 Given a computation tree, TA, and an S-event, e, the projection of e onto

TA, denoted eA, is given by:

eA
4
= runs(TA) \ e

2

Observation 4.8 Every projection of every S-event is measurable. That is, for any S-event,

e, and any computation tree, TA,

eA 2 XA

This is due to the restriction on S-events that they be observable within some �nite time.

In particular, the projection of an S-event onto a tree, T , must also be observable within a

�nite time and so, it must be formable from a �nite number of unions and complementations

of the generators of T . 2

Now we are ready to give the de�nition of the knowledge accessibility relation.

De�nition 4.9 Let P1 and P2 be two points in (not necessarily distinct) trees TA1
and TA2

,

respectively and let S � C be a subject. We say that P2 is powerful-adversary-accessible

from P1, denoted `�powerfulS (P1; P2)' if and only if

1. P1 and P2 have the same S-history; and

2. for any S-event e, �A1
(ejSS;P1) = �A2

(ejSS;P2)
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2

Thus, when two points are �
powerful
S -accessible, this implies not only that the two points have

the same S-history, but also, conditioned on the current S-history, the probability distribu-

tion on all S-events, including future events, is the same. As mentioned previously, using

this de�nition, subjects \know more" than when using the standard de�nition. However,

we view this as another case where we've adopted the worst-case scenario; that is, we've

given the penetrators, H and L, the greatest conceivable knowledge at any given point in

the execution of the system. We will see later in the paper that this choice corresponds to

some existing information-theoretic de�nitions of perfect multilevel security.

Our de�nition of permitted knowledge is also novel. From our viewpoint, a subject's permit-

ted knowledge does not change over the course of the system's execution. That is, a given

subject's permitted knowledge is set prior to the start of execution. (It is only a subject's

knowledge that changes during the system's execution.) Thus, we can capture a subject's

permitted knowledge by de�ning an accessibility relation on computation trees. We will say

that two points are accessible if and only if they have the same S-history and their two

containing trees are accessible; roughly speaking, two computation trees, TA1
and TA2

, will

be accessible if and only if the parts of the adversaries, A1 and A2, that correspond to S

\act the same" in both trees. We make this precise as follows.

De�nition 4.10 Let S be a subject and TA1
and TA2

be two computation trees. We say

that TA2
is �S-accessible from TA1

, denoted `�S(TA1
; TA2

)' if and only if for any point P1 in

TA1
there is a point P2 in TA2

such that

1. P1 and P2 have the same S-history; and

2. for any channel c 2 S and any input i 2 I, vP1(PrS(c
0
in = i)) = vP2(PrS(c

0
in = i)).

2

De�nition 4.11 Let S be a subject and P1 and P2 be two points. We say that P2 is

�S-accessible from P1, denoted `�S(P1; P2)' if and only if

1. P1 and P2 have the same S-history; and
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2. �S(tree(P1); tree(P2)).

2

Thus, the �S relation re
ects the fact that subjects are permitted to know the conditional

probability distribution on their inputs: two points are �S-accessible (i.e., as far as S is

permitted to know they are the same point) if and only if the conditional distribution on

inputs visible to S is the same at both points.

There is a close relationship between our de�nition of permitted knowledge and the Secure

Environment Assumption. In particular, recall that for any adversary, A, that satis�es the

Secure Environment Assumption wrt L (viz, de�nition 2.2), there is a one-to-one correspon-

dence between A and the two components of the environment, H and L.

Let A1 = (H1;L1) andA2 = (H2;L2) be two adversaries that satisfy the Secure Environment

Assumption wrt L. Since the low environment determines the probabilities with which inputs

occur on channels in L, it is clear that �S(TA1
; TA2

) if and only if L1 = L2.

Intuitively, this relationship can be understood as follows. A subset, L, of the interface of �

has been partitioned o�. By our de�nition of permitted knowledge, we will say that the low

environment, L, is permitted to know how the inputs on L are chosen, but not how other

(high) inputs are chosen. By the Secure Environment Assumption, we are saying that L

cannot get any information about how high inputs are chosen via any means outside of �.

With these two de�nitions in place, we have e�ectively isolated the question that interests

us, \Can the low environment (L) come to know, via the system of interest (�), something

about the activity of the high environment (H)?"

In the remainder of the paper, for a point P , formula ', and set of formulae �, we will use

`P j= '' to indicate that ' is true at P , and P j= � to indicate that all members of � are

true at P . Finally, we will use `� j= '' to indicate that ' is true at all worlds at which all

members of � are true.

5 Soundness

In x6 and x7 below we give a syntactic characterization of security and show that the semantic

interpretation of our syntactic characterization of security is equivalent to certain previously
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developed characterizations. However, the signi�cance of these results is greatly reduced

unless the logic is sound. For, without soundness there is no guarantee that any formal

proof of security we might give for a system implies any independently motivated notion of

security. A soundness theorem gives us just such a correspondence.

Theorem 5.1 [Soundness] Given a set of formulae of our language � and a formula ',

If � ` '; then � j= ':

Proof: In order to prove soundness we must show that the axioms are valid and the rules

are truth preserving (except Nec which need only be theorem preserving). For most of the

axioms and all of the rules the results are completely standard. (Cf. [Che80] and [Gol92].)

Hence, we do not set them out here. We speci�cally assumed a semantics in which all

the rules and axioms concerning logical connectives preserve soundness. Since we assume

the real numbers are part of our models, the axioms concerning them must all be valid.

Likewise, because the Pr(') terms are interpreted as conditional probabilities of events,

the RV axioms are valid in our semantics since they re
ect basic facts about probability

measures. The accessibility relations, set out above in x4, are clearly equivalence relations.

Thus, by a standard result of modal logic, the S5 axioms are all valid and Nec (for the

knowledge operators) is theorem preserving (cf. [Che80]). The temporal reasoning axioms

are similarly valid and Nec for the temporal operator is theorem preserving based on the

time structure of our model of computation (cf. [Gol92]). Validity of kR is immediate and

that of RK is direct from the de�nition of an S-event. Therefore, the only axioms that need

be checked are the I/O axioms. Let S � C be a subject, c 2 S a channel, i 2 I an input,

o 2 O an output, and r 2 IR be a real number.

RI PrS(c
0
in = i) = r! RS(PrS(c

0
in = i) = r)

Given a world P1, suppose that vP1(PrS(c
0
in = i)) = r. Let P2 be a world such

that �S(P1; P2). Then P1 and P2 have the same S-history and �S(tree(P1); tree(P2)).

Thus, there exists a point P 02 2 tree(P2) such that P1 and P
0
2 have the same S-history,

and vP 0

2
(PrS(c

0
in = i)) = vP1(PrS(c

0
in = i)) = r. But, the de�nition of vP (PrS('))

guarantees that if there is such P 02 then for any P 2 tree(P2) that has the same S-

history as P1, vP (PrS(c
0
in = i)) = r, in particular vP2(PrS(c

0
in = i)) = r. So, by the

truth conditions for RS , vP1(RS(PrS(c
0
in = i)) = r) = true . So, by truth conditions

for the conditional, RI is true at every world P , hence valid.
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KO PrS(c
0
out = o) = r! KS(PrS(c

0
out = o) = r)

Given a world P1, suppose that vP1(PrS(c
0
out = o)) = r. Let P2 be a world such that

�
powerful
S (P1; P2). Since c 2 S, c0out = o is clearly an S-event. So, by de�nition of the

�
powerful
S relation, vP2(PrS(c

0
out = o))

4
= �A2

(SS;P2(c
0
out = o) = �A1

(SS;P1(c
0
out = o)

4
=

vP1(PrS(c
0
out = o)) = r. So, by the truth conditions for KS, vP1(KS(PrS(c

0
out = o)) =

r) = true . So, by truth conditions for the conditional, KO is true at every world P ,

hence valid.

2

This completes our discussion of the logic itself. In the remainder of the paper we focus on

security and applications of the logic thereto.

6 Formal De�nition of Security

In this section, we give a de�nition of security|which we call the Syntactic Security Con-

dition (SSC)|using the powerful-adversary-knowledge and permitted-knowledge operators

of our logic. This de�nition is based on the de�nition of \Causality" given by Bieber and

Cuppens [BC92], which was based on the work of Glasgow, MacEwen, and Panangaden

[GMP90]. Although the statement of SSC is almost syntactically identical to Bieber and

Cuppens' de�nition of Causality, due to the di�erences in the semantics of the respective

logics, the meanings of (i.e., the semantic interpretations of) SSC and Causality are di�erent.

In fact, it is straightforward to show that for deterministic systems, the meaning of SSC is

equivalent to the meaning of Causality. Thus, since SSC additionally applies to probabilistic

systems, SSC can be viewed as a generalization of Causality. In the second subsection, we

show that the meaning of SSC is equivalent to the de�nition of Probabilistic Noninterference

given in [Gra92].

6.1 The Syntactic Security Condition

For a given subject L, the syntactic security condition intuitively says that at all times and

for any fact ' (i.e., ' is a formula in our logic), if L knows ', then L is permitted to know

'. As mentioned above, this intuitive explication of security was �rst suggested by Glasgow,
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MacEwen, and Panangaden [GMP90] and further re�ned by Bieber and Cuppens [BC92].

We state SSC in our formalism as follows.

De�nition 6.1 Let L � C be a subject. Suppose a system � is described by a set of

formulae in our logic, �. We say that � satis�es the Syntactic Security Condition (SSC) with

respect to L if and only if for any formula ',

� ` 2(KL(')! RL('))

2

It is illuminating to consider for what kinds of formulae, ', the sentence KL(') is derivable

but the formula RL(') is not (i.e., what kind of formulae distinguish secure systems from

insecure ones). There are two ways in which this might occur. First, we may be able to

derive the formula KL(') from the set of premises � and the standard S5 axioms for the

KL operator but not be able to derive RL(') from � and the standard S5 axioms for RL.

Since the S5 axioms are the same for KL and for RL, this would mean that the premises

fairly directly imply that L knows ' but L is not permitted to know '. However, in what

we envision as the typical application of our logic, the set of premises, �, consists of a set of

formulae saying that subjects always know that the system description always holds|where

`know' refers to weak-adversary knowledge. Given the axioms of our logic, from � we can

also derive the set of formulae actually describing the system and the various other relevant

temporal and epistemic formulae concerning the system description itself. Therefore, the

formula KL(') will be derivable from � and the standard S5 axioms only in the case that

RL(') is derivable from � and the standard S5 axioms. Hence, we do not expect that the

premises and the standard S5 axioms alone will determine whether or not a system is secure.

The second way in which the formula KL(') may be derived but not the formula RL(') is

by using axiomKO (in conjunction with the other axioms, rules, and premises). Intuitively,

axiomKO says that subjects always know the (conditional) distribution on the outputs that

they can see. Recall that there is no corresponding axiom RO. Thus, subjects always know

the (conditional) distribution on the outputs that they can see, but it is not necessarily

the case that they are permitted to know that distribution. This is the essential di�erence

between the two operators. And further, understanding this di�erence illuminates the nature

of proving SSC; that is, proving SSC (with respect to some subject L) requires a proof
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that L is permitted to know the (conditional) distribution on outputs to L. This would

typically involve showing that this (conditional) distribution is logically derivable from other

facts that L is permitted to know. In the typical application, these \other facts" would

be the (conditional) distribution on inputs from L and the system description. Therefore,

in the typical application, a system satis�es SSC (with respect to some subject L) only if

the (conditional) distribution on outputs to L is logically derivable from the (conditional)

distribution on inputs from L and the system description. As will be seen in x7, this point

is important for practical veri�cation purposes.

6.2 Relationship to Probabilistic Noninterference

In this subsection, we recall the de�nition of Probabilistic Noninterference (PNI) and prove

that the semantic interpretation of SSC is equivalent to PNI. First, let's state the semantic

interpretation of SSC.

De�nition 6.2 Let L � C be a subject. Suppose a system � is described by a set of

formulae in our logic, �. We say that � satis�es the Semantic Interpretation of the SSC with

respect to L if and only if for any formula ',

� j= 2(KL(')! RL('))

2

Now, we state the de�nition of PNI in terms of our model.

De�nition 6.3 Let A1 and A2 be two adversaries that satisfy the Secure Environment

Assumption. We will say that A1 and A2 agree on L behavior i� there exist H1, H2,

and L such that H1 and L are the unique probability functions that describe A1 (as in

De�nition 2.2) and H2 and L are the unique probability functions that describe A2. 2

Observation 6.4 If TA1
and TA2

are �L-accessible, then A1 and A2 agree on L behavior.

2

De�nition 6.5 Let � be a system with computation trees T (�). We say that � satis�es

Probabilistic Noninterference (PNI) with respect to a subject L � C i� for any two trees
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satisfying the Secure Environment Assumption, TA; TA0 2 T (�) and any L-event, e, if A

and A0 agree on L behavior, then

�A(e) = �A0(e)

2

PNI is equivalent to Browne's (independently developed) Stochastic Non-Interference [Bro89].

The signi�cance of PNI is that it is arguably a necessary and su�cient condition for a system

to be free of covert channels (cf. [Bro91]).

Before we prove the main result of this section, we state and prove a lemma.

Lemma 6.6 Suppose that TA and TA0 are two trees that agree on L behavior (and satisfy

the Secure Environment Assumption). Further suppose that for any two points, P1 2 TA,

P2 2 TA0, and any low output vector, b 2 O[L], if P1 and P2 have the same L-history, then

vP1(PrL(L
0
out = b)) = vP2(PrL(L

0
out = b))

Then, for any L-event, e,

�A(eA) = �A0(eA0)

Proof: First we prove this lemma for a certain subset of L-events, namely those L-events

corresponding to a �nite L-history.

Let e be an L-event such that there exists a time, k, (the length of e) and a characteristic

run, �, such that for any run, �0, �0 2 e i� �0 has the same L-history as � up to time k. That

is, e corresponds to the �nite L-history characterized by � up to time k.

We now prove the lemma (for this subclass of L-events) by induction on the length of e.

Base case: The length of e is zero.

Since all runs have the same L-history up to time 0, the only two L-events of length 0 are

the empty set, ;, and the set of all runs from all trees, R. In the former case,

�A(;A) = 0 = �A0(;A0)

and in the latter case,

�A(RA) = 1 = �A0(RA0)
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Thus, the base case is proved.

Induction case: Assume the lemma holds for all L-events (corresponding to �nite L-

histories) of length k. Let e be an L-event corresponding to a �nite L-history of length k+1.

Suppose that � is a run that (up to time k + 1) characterizes e.

Now, let e0 be the L-event characterized by � up to time k. Intuitively, e0 corresponds to the

�nite L-history obtained by truncating e at time k. By the induction hypothesis,

�A(e
0
A) = �A0(e0A0) (2)

We have two cases.

Case 1: �A(e
0
A) = 0.

Note that e � e0. That is, every run that has the same L-history as � up to time k + 1 also

has the same L-history as � up to time k. Thus,

�A(e) � �A(e
0) and �A0(e) � �A0(e0)

Further, since no event can have a negative measure, making use of Equation 2 we have that

�A(e) = �A(e
0) = �A0(e0) = �A0(e) (3)

Case 2: �A(e
0
A) > 0.

By Equation 2, we also have that �A0(e0A) > 0. Thus, by the de�nition of conditional

probability,

�A(e) = �A(e
0) � �A(e j e

0) (4)

and

�A0(e) = �A0(e0) � �A0(e j e0) (5)

Let � 2 IL;k and � 2 OL;k be the low input and output history, resp., that characterize e0

and let a 2 I[L] and b 2 O[L] be the low input and output vectors at time k + 1 that are

needed to additionally characterize e. Then, by our construction of the probability measures

(�A) and by the Secure Environment Assumption, we have that

�A(e j e
0) = �A(b; j e

0) � L(a j �; �; k) (6)

and

�A0(e j e0) = �A0(b; j e0) � L0(a j �; �; k) (7)
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where L is the low environment of A and L0 is the low environment of A0.

Since A and A0 agree on L-behavior,

L(a j �; �) = L0(a j �; �; k) (8)

Further, since �A(e
0) > 0 and �A0(e0) > 0, there exists points in both trees, P1 2 TA and

P2 2 TA0, each of whose L-histories are (�; �). By the assumptions in the lemma,

vP1(PrL(L
0
out = b)) = vP2(PrL(L

0
out = b))

But notice that SL;P1 = e0 = SL;P2 . Therefore, by our de�nition of the assignment function,

�A(b j e
0) = �A0(b j e0) (9)

Thus, by Equations 6, 7, 8, and 9, we have that

�A(e j e
0) = �A0(e j e0) (10)

and �nally, by Equations 2, 4, 5, and 10, we have that

�A(e) = �A0(e)

Thus, in both cases �A(e) = �A0(e) and the induction case is proved.

Now, we can complete the proof by observing that every L-event can be constructed by

taking a �nite number of unions and complementations of L-events that correspond to �nite

L-histories. That is, the L-events that correspond to �nite L-histories are analogous to the

generators of our event spaces. Thus, the desired result that for an arbitrary L-event, e,

�A(e) = �A0(e) follows from the fact that the measures are equal on all of the L-events, feig,

that are used to construct e in this fashion. 2

We can now prove the following theorem relating PNI and SSC.

Theorem 6.7 Let � be a set of formulae describing � and let L � C be a subject. Then, �

satis�es PNI with respect to L i� � satis�es the semantic interpretation of SSC with respect

to L.
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Proof: First we show the forward direction. Suppose � satis�es PNI and let P1 be a point

such that P1 j= �. We must show that for any formula ',

vP1(2(KL(')! RL('))) = true (11)

Applying the semantic assignment function, vP1 , to Formula 11, we get

For any point, P2, reachable from P1,

if for any point P3; �
powerful
L (P2; P3) implies vP3(') = true

then for any point P3; �L(P2; P3) implies vP3(') = true

(12)

Let P2 be a point reachable from P1 and assume that

for any point P3, �
powerful
L (P2; P3) implies vP3(') = true (13)

Now, let P3 be an arbitrary point. To prove Formula 11, it is su�cient to show that

�L(P2; P3) implies vP3(') = true (14)

If �powerfulL (P2; P3), then by Formula 13, vP3(') = true and so Formula 14 holds. Therefore,

assume that not �
powerful
L (P2; P3); that is, assume that either

1. P2 and P3 do not have the same L-history; or

2. for some L-event e, �A(P2)(ejSL;P2) 6= �A(P3)(ejSL;P3) (where A(P2) is the adversary

corresponding to the tree containing P2 and A(P3) is the adversary corresponding to

the tree containing P3).

Assuming that P2 and P3 do not have the same L-history (i.e., item 1 above), by the de�nition

of �L we have not �L(P2; P3) and so Formula 14 is true. Therefore, assume that P2 and

P3 do have the same L-history, but that item 2 holds. Let e be an L-event for which item 2

holds. We have two cases.

1. �A(P2)(e) 6= �A(P3)(e). Since e is an L-event, PNI implies that TA(P2) and TA(P3) di�er

on L behavior.

2. �A(P2)(SL;P2) 6= �A(P3)(SL;P3). Since, by assumption, P2 and P3 have the same L-

history, SL;P2 and SL;P3 represent projections of the same L-event onto their respec-

tive computation trees. Let e0 be that L-event. Therefore, in this case, �A(P2)(e
0) 6=

�A(P3)(e
0) and, again, PNI implies that TA(P2) and TA(P3) di�er on L behavior.
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Thus, in either case, TA(P2) and TA(P3) di�er on L behavior and therefore, by Observa-

tion 6.4, TA(P2) and TA(P3) cannot be �L-accessible. Further, by the de�nition of �L we have

not �L(P2; P3). Hence, Formula 14 is true.

Therefore, Formula 14 is true in all cases and � satis�es the semantic interpretation of SSC.

Now we show that if � satis�es the semantic interpretation of SSC (with respect to L), then

� sati�es PNI (with respect to L). Suppose that � does not satisfy PNI; that is, there exist

adversaries, A and A0, that satisfy the Secure Environment Assumption and that agree on

L behavior, and an L-event, e, such that

�A(e) 6= �A0(e)

We want to show that � does not satisfy the semantic interpretation of SSC. To do so, it

is su�cient to exhibit a point, P and a formula ' such that P j= � and P =j= 2(KL(') !

RL(')). We choose P and ' as follows.

Since A and A0 agree on L behavior and there exists an L-event, e, such that

�A(e) 6= �A0(e)

by Lemma 6.6, there must exist two points, P1 2 TA, P2 2 TA0, and a low output vector,

b 2 O[L], such that P1 and P2 have the same L-history and

vP1(PrL(L
0
out = b)) 6= vP2(PrL(L

0
out = b))

Let P1 and P2 be such points and suppose that, in fact,

vP1(PrL(L
0
out = b)) = r 6= vP2(PrL(L

0
out = b))

Therefore, choose P = P1 and choose ' = PrL(L
0
out = b) = r.

By axiom KO, and the soundness of our logic, vP (KL(')) = true . But, we have that

�L(P;P2) and vP2(') = false . Therefore, vP (RL(')) = false , and hence vP (KL(') !

RL(')) = false .

Since � speci�es � and TA is a computation tree for �, P j= � and the theorem is proved.

2

The signi�cance of this theorem is that (given soundness) verifying that a system satis�es

SSC is su�cient to show that it satis�es PNI, which (as was previously mentioned) is a

necessary and su�cient condition for a system to be free of covert channels. In the next

section, we discuss the issue of verifying SSC.
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7 Veri�cation

Thus far in the paper, we have given a logic that can be used to specify a computer system

and verify that it sati�es PNI. This process consists of two steps: (1) specify the system

under consideration as a set of premises �. (2) prove that � ` KL(') ! RL(') for every

formula '.6

Since we do not quantify over formulae, it is impossible to formally deduce that for every

formula ', � ` KL(') ! RL(') as this would require an in�nite number of deductions.7

Perhaps this shows that the veri�cation e�ort is not pointed in the right direction. After all,

many of formulae of the language, e.g., 2 + 2 = 4, will have nothing to do with the security

of a given system.

It thus seems desirable to �nd a veri�cation condition that (1) is entirely expressible within

our logic (i.e., it does not require metalinguistic variables such as '), and (2) does not

require the veri�ers to prove things that have nothing to do with security. In the following

two subsections, we give such a condition and discuss its relationship to previous work.

7.1 Syntactic Statement

In [McL90], McLean de�nes the Flow Model (FM) with the motivation of providing an

abstract, but precise, explication of information 
ow security. McLean's intent for FM is

to provide a characterization of security against which more concrete security models can

be evaluated. In [Gra92], the �rst author studies a more concrete version of FM, called the

Applied Flow Model (AFM), and it is shown therein that AFM captures a strictly stronger

notion of security than PNI.

In this paper, we have another reason for studying AFM: it is more easily veri�ed than

SSC. It was already discussed above that proving SSC requires a proof that for any ', the

formula KL(') ! RL(') can be derived from the set of premises, �. The usual technique

for such a proof is to proceed by induction on the structure of '. (For example, one case

of such a proof would be where ' is of the form  ^  0, and where the inductive hypothesis

6Actually, this would be done for each security class c by partitioning the set of communication channels
into those that are dominated by c (which are called L) and those that are not dominated by c (which are
called H).

7We can of course give an informal inductive proof on the structure of '. But, this would not be a proof
in the logic.
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allows us to assume that both KL( ) ! RL( ) and KL( 
0) ! RL( 

0) are derivable from

�.) Such a proof requires the prover to consider one case for each way that a formula ' can

be constructed, and as noted above, many of these cases may have nothing to do with the

security of the system under consideration.

As discussed in x6.1, the crucial di�erence between the K and R operators is that there is

no axiom for R that corresponds to axiom KO. In particular, it is always the case that

PrS(c
0
out = o) = r! KS(PrS(c

0
out = o) = r)

(for any given S � C, c 2 S, b 2 O, and r 2 IR ) but it is not necessarily the case that

PrS(c
0
out = o) = r! RS(PrS(c

0
out = o) = r)

Thus, if we can give a condition (i.e., a formula in our logic) that is su�cient to ensure that

PrL(c
0
out = o) = r ! RL(PrL(c

0
out = o) = r)

is derivable from a set of premises �, then our intuition suggests that such a condition would

be su�cient to ensure that KL(') ! RL(') is derivable from �, for any formula '. The

following de�nition provides such a condition.

De�nition 7.1 Let L � C be a subject. Suppose � is a set of premises that describe a

system �. We say that � satis�es the Syntactic Veri�cation Condition (SVC) with respect

to L if and only if, for every b 2 O[L], the formula

2(PrC(L
0 = b) = r! kL(PrL(L

0 = b) = r))

is derivable from �. 2

Intuitively, SVC says that at all times, assuming that the low environment is a weak adver-

sary, he still knows the probability distribution on his next output.

In the next section, we will show that this statement is equivalent to a statement about

conditional statistical independence. Namely, conditioned on the previous L-history, the

next output on L is statistically independent of the previous non-L (i.e., high) history.
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7.2 Relationship to Previous Formulations

In this section we show that � j= SVC if and only if the system speci�ed by � satis�es AFM

(i.e., the relationship between SVC and AFM is analogous to the relationship between SSC

and PNI).

De�nition 7.2 Let � be a system with computation trees T (�) and let L � C be a subject.

We will say that � satis�es the Applied Flow Model (AFM) with respect to L i� for any tree,

TA 2 T (�) (satisfying the Secure Environment Assumption with respect to L), any point

P 2 TA, and any low output vector, b 2 O[L],

�A(SC;P (L
0 = b)) = �A(SL;P (L

0 = b))

2

This de�nition is, except for minor notational di�erences, exactly the de�nition of AFM as

given in [Gra92]. Now we can prove the following theorem.

Theorem 7.3 Let � be a set of formulae describing � and let L � C be a subject. Then,

� satis�es AFM with respect to L i� � satis�es the semantic interpretation of SVC with

respect to L.

Proof: Let T (�) be the set of computation trees for �. Suppose that � satis�es the semantic

interpretation of SVC with respect to L. That is, for any point P1 in any tree in T (�),

vP1 (2(PrC(L
0 = b) = r! kL(PrL(L

0 = b) = r))) = true

By applying the semantic assignment function, we have for any point P2 2 � 2 extensions (P1)

that

vP2(PrC(L
0 = b) = r)) vP2(kL(PrL(L

0 = b) = r)))

Applying the semantic assignment function again, we have,

�A(P2)(SC;P2 (L
0 = b)) = r) (8P3; �

weak
L (P2; P3)) �A(P3)(SL;P3(L

0 = b)) = r)

(where A(P3) is the adversary corresponding to the tree containing P3), which is equivalent

to

8P2; P3
h
�weakL (P2; P3)) �A(P2)(SC;P2(L

0 = b)) = �A(P3)(SL;P3(L
0 = b))

i
(15)

41



J.W. Gray, III and P.F. Syverson. Epistemology of Information Flow in the Multilevel Security of Probabilistic Systems.

NRL Memo Report 5540{95-7733, May 12, 1995

Thus, Formula 15 is equivalent to the statement that � satis�es the semantic interpretation of

SVC with respect to L. By choosing P2 = P3 = P and by the re
exivity of �weakL , Formula 15

implies that � satis�es AFM with respect to L.

We will now show that if � satis�es AFM with respect to L, then Formula 15 holds.

Suppose, for reductio, that �weakL (P2; P3), but �A(P2)(SC;P2(L
0 = b)) 6= �A(P3)(SL;P3(L

0 = b)).

Since TA(P2); TA(P3) 2 T (�), we may apply AFM (wrt L) to conclude that

�A(P2)(SL;P2(L
0 = b)) 6= �A(P3)(SL;P3(L

0 = b))

Recall from [Gra92] that any system satisfying AFM satis�es PNI (wrt the same subject).

We will now show that the above equation is inconsistent with PNI, hence with AFM.

Suppose that TA(P2) and TA(P3) agree on low behavior. Then PNI is contradicted since

SL;P (L
0 = b) is the tree(P )-projection of an L-event for any point P . So, suppose that TA(P2)

and TA(P3) disagree on low behavior. By the secure environment assumption, A(P2) and

A(P3) can be given by

A(P2)(a j �; �; k) = H2(a�(C � L) j �; �; k) � L2(a�L j ��L; ��L; k)

A(P3)(a j �; �; k) = H3(a�(C � L) j �; �; k) � L3(a�L j ��L; ��L; k)

We can de�ne a new adversary A4, which satis�es the Secure Environment Assumption, by

A4(a j �; �; k) = H3(a�(C � L) j �; �; k) � L2(a�L j ��L; ��L; k)

Thus, we also have TA4
2 T (�). We now show by induction on pre�xes of the C-history

of P3 that TA4
contains a point P4 with the same history on all channels as P3, i.e., such

that �weakC (P3; P4). Obviously TA4
contains the empty trace. Suppose that the time of P3 is

k and that there is a point in TA4
with the same C-history as P3 through time k0 < k. By

construction of the computation trees, and since �weakL (P2; P3), the input and output vectors

that extend the subhistory of P3 to k
0+ 1 are assigned a positive branch probability in TA4

.

Therefore, by the structure of trees, there is a point P4 2 TA4
with the same C-history as P3

through time k0 + 1.

Thus, by construction, A(P2) and A(P4) agree on L behavior, but

�A(P4)(SL;P4(L
0 = b)) = �A(P3)(SL;P3(L

0 = b)) 6= �A(P2)(SL;P2(L
0 = b))
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However, this contradicts PNI, hence AFM, and our supposition is discharged.

2

Since, as remarked, AFM is stronger than PNI [Gra92], the foregoing theorem shows that

SVC is a su�cient condition for a system to satisfy PNI.

7.3 Examples, continued

We note here that the security of the encryption box of Example 3.1 with respect to a

subject L � C is formally derivable. In fact, once the assumptions are written down, there

is virtually nothing to prove. Recall the system speci�cation: If C = fh; lg, I = f0; 1g, and

O = f0; 1g, then, the system is speci�ed by the following formula.

2 (PrC(l
0
out = 0) = PrC(l

0
out = 1) = 0:5)

(In the initial speci�cation relativisation to C was left implicit for simplicity since it is

tantamount to relativising to the system, �.) Recall also that subjects are assumed to

always know that the system description holds at all times. Thus,

� = f2kL2 (PrL(L
0
out = 0) = PrL(L

0
out = 1) = 0:5)g

The only b 2 O[L] are O and 1; hence, the only antecedents for the SVC schema that are

consistent with � are PrC(L
0
out = 0) and PrC(L

0
out = 1). Thus, SVC with respect to L for

this system is:

2 (PrC(L
0
out = 0) = 0:5 ^ PrC(L

0
out = 1) = 0:5) !

kL (PrL(L
0
out = 0) = 0:5 ^ PrL(L

0
out = 1) = 0:5)

But, this is obviously derivable from �.

We also observe that for the insecure encryption box of Example 3.2 � =̀ SSC (where �

encompasses those formulae that embody the system description and our assumptions about

knowledge thereof). It is obvious that the insecure encryption box fails to satisfy PNI. By

the attack described in the original example, we can easily �nd two adversaries that satisfy

the Secure Environment Assumption and agree on low behavior and yet disagree on the

probability of certain low events. Indeed, the low environment can assign 0=1 probabilities
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to any output sent by the high part of the adversary. By theorem 6.7, we thus have that

� =j= SSC. And, by soundness (theorem 5.1), it follows that � =̀ SSC.

8 Conclusions

We have given a logic for specifying and reasoning about the multilevel security of proba-

bilistic computer systems. Beside the practical bene�ts of providing a logic to reason about

probabilistic systems, we have established connections between previous logical formulations

of security (viz, [GMP90] and [BC92]), information-theoretic formulations of security (viz,

[Bro89] and [Gra92]), and logical formulations of knowledge and probability in distributed

systems (viz, [HT93]). These connections serve to increase our con�dence that each formu-

lation is correct.
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