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Abstract

In this paper we discuss why message acknowledgements are an appropriate

engineering approach to meet system functionality. The data replication problem

in database systems is our motivation. We introduce a new queueing theoretic

model, the MIMO model, that incorporates burstiness in the sending side and busy

periods in the receiving side. Based on simulation results derived from this model,

we show that the bu�er requirements from M/M/1/N queues are too optimistic.
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1 Introduction

In [6, 9] Kang and Moskowitz described a method for reliable, high performance commu-

nication between a low security class (Low) and a high security class (High) by means

of the NRL Pump concept, or, more simply put, the Pump. Initially we developed the

Pump as a communications interface between Low and High in NRL's replicated archi-

tecture database project SINTRA1 [7, 8]. Since the writing of [6, 9], Kang, Moskowitz,

and Lee have advanced the Pump concept to deal with multiple Lows and multiple

Highs [10].

The Pump uses message ACKs for reliability of communication between Low and

High. While these ACKs form a covert channel from High to Low, the probabilistic

nature of the Pump ACKs keeps channel capacity within speci�ed bounds without

penalizing performance. Also, the Pump uses a \handshake" protocol so Low does not

send a new message until the previous message has been ACKed2. Thus, the Pump also

uses ACKs for ow control by slowing down message arrivals at an intermediary bu�er

between Low and High.

HighBuffer
messages

acks modulated acks
Stochastically

messages
Low

Figure 1: The Pump

McDermott presented work on the big bu�er [13] as a Pump alternative. We are

taking this opportunity to further contrast the Pump approach with his.

1.1 Why acknowledge?

This question might better be phrased as|Why not acknowledge? We believe that the

burden of proof is upon those who advocate not using ACKs. The standard in computer

communications is to use ACKs. Of course, when we add security to the picture we have

the problem that ACKs can cause an illicit information ow. Thus, the standard use of

ACKs must somehow be modi�ed. The ACKs give us the reliability that our message

1Secure Information Through Replicated Architecture.
2The Pump uses timeout for the NAK.
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has been safely received by High. Even if the transmission medium insured 100% error

free transmission (�ber optics come close [2]), errors can occur in the systems themselves.

How does Low know that High is ready to receive messages? How does Low know that

a message arrived at High? These are just some of the reliability issues that concern us.

Therefore, there must be some ACK/NAK passed from High back to Low.

The ACKs may also be used for ow control (as in the Pump). In this paper we will

not discuss reliability issues in detail. Instead, we focus on one particular objection we

have to ACK-free transmission; that of bu�er management (size) under the paradigm

of no ACKs. Bu�er size is very important because of di�erent \rates" between Low and

High (High's ability/inability to receive messages can cause bu�er overow under the

no-ACK paradigm).

1.2 Motivation: Replicated Architecture Database

The SINTRA approach uses physical separation and data replication as the primary

protection mechanisms for a database system that provides both high assurance and

multilevel security. Low level data is replicated in the high level DBMS so it will be

available to high level users. Thus, messages must pass from Low DBMS to High DBMS,

as shown in �gure 2.

Low DBMS High DBMS

Low Data
High Data

+

Low Data

Data Replication

Device
Secure

Physical Separation

Low Users High Users

Figure 2: The SINTRA Architecture

DBMSs and Replication servers are reliable and recoverable. However, the \secure

device" in �gure 2 may or may not be reliable. Not satis�ed with read-down3 nor

3Similar to blind write-up, see [6, 9] for a discussion.
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blind write-up (discussed in section 1.3), which do not provide reliability, we developed

the Pump as a secure device. Since DBMS, replication server, and the Pump provide

reliability and recoverability, the whole data replication path becomes reliable and re-

coverable.

Let us consider DBMSs (i.e., Low and High). Sometimes, Low DBMS has lots of

data to send within a short period of time (e.g., sending large updates). During some

other periods of time, Low DBMS has very little data to send (i.e., Low has bursty and

normal periods). The same situation may apply to high DBMS (e.g., during some period

of time many users are active, thus High may be in a busy state). Hence, High may

have normal and busy periods4. To model this situation, as we will show, an M/M/1

queueing model is not adequate.

1.3 Blind write-up (no ACK transmission)

Low Buffer

No ACK

messages
inputs to buffer outputs from buffer

Highmessages

Figure 3: Blind Write-Up

Other approaches, e.g., [2, 13] or [1, section 5.3], also use an intermediary bu�er between

Low and High, but keep current High activity from being reected down to Low

([2], [1, section 5.3] does allow a ow down in case of bu�er saturation). Obviously,

these approaches have no covert channels (unless the bu�er is saturated often). We

refer to these approaches as the \blind write-up" approaches since they do not let Low

have ACKs. However, these models o�er no assurance that a message was successfully

transmitted and they do not o�er ow control. McDermott's [13] (big) bu�er sends

ACKs down to Low when a message has been successfully placed in a bu�er between

Low and High. If the bu�er is full, the new message will overwrite an old message.

His model rests on the assumption that a large enough bu�er can be chosen so that

the probability of a message being overwritten before it has been serviced by High is

negligible. Note that we still consider McDermott's method in the no-ACK (blind write-

up) class because his bu�er ACKs, unlike the Pump's, do not mimic true ACKs from

High to Low. Goldschlag [2, section 3], [1, section 5.3] places a (big) bu�er between

4An analogy is how an o�ce building elevator services waiting people at 2:00 pm and at 5:30 pm.
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Low and High, but a new message will overwrite an old message if the bu�er saturates.

However, downgraders can be added [2, section 4], to send a warning to Low if the bu�er

becomes full. Without this warning, Low does not moderate the message arrival rate at

the bu�er. The Pump, however, reduces the rate of arrivals from Low to the bu�er so

that Low's input rate roughly matches that of High's output (service) rate.5 In contrast,

these blind write-up models assume that (1) Low can successfully transmit a message

to the bu�er, and (2) a su�ciently large bu�er can queue up enough messages going to

High, so that no messages are lost; thus, blind write-up assumes messages successfully

travel from Low to High. We strongly take exception to this. We feel that Low must

know that its message got to High for reliability and ow control (which is itself a part

of reliability).

McDermott [13] was the �rst, in the security community, to perform a serious queue-

ing theoretic analysis of bu�er management. He used an M/M/1 based model for his

analysis. This model is not su�ciently rich to incorporate burstiness [5, 4, 12, 14, 16]

and, aside from reliability issues, M/M/1 gives too optimistic estimates of su�cient

bu�er size. Note that Goldschlag also assumes that a properly sized bu�er can be used.

The communications community has done bursty analysis (on the transmitter end) by

using a Markov Modulated Poisson Process (MMPP) [5], or Lo-Hi/On-O� type models

[12, 16]. They have obtained closed form solutions for various terms of interest (such

as mean queue size [16] ). To a communications engineer, lost messages are not a prob-

lem because there is always some high layer (with respect to the ISO layering scheme)

ACK to let the sender know that a message was lost or garbled and that it should be

retransmitted. Since knowing if messages are lost (and therefore unrecoverable) rather

than closed form solutions is our concern, the MMPP does not convey enough detail for

our needs because it does not take High's behaviour into account. Therefore, we have

extended the model.

The main contribution of this paper is our discrete extension of MMPP/G/1 type

queues, to the Modulated-Input Modulated-Output (MIMO) model. Our studies of the

MIMO model have only reinforced our belief that unacknowledged transmission from

Low to High is unacceptable because the MIMO model shows that no matter what

size bu�er is used it is always possible to �nd an example where the Low rate is less

than the High rate but the bu�er will still �ll. We assume that each message sent

from Low to High is important. This need not be the case if we are sending video or

voice, for example, but it is certainly the case for many types of data transfers, e.g.

5Input and output are relative to the bu�er.
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database updates, �le transfers, etc.6 Further, if our input rate is quite slow, there is no

appreciable covert channel threat so the timing of acknowledgements is a non-issue (e.g.,

use the Pump or just send the raw ACK stream down to Low). Therefore, the Pump is

a good answer for sending data messages from Low to High in a general situation.

2 Queuing theoretic models

For the rest of this paper, we will concentrate on only one of our objections to blind

write-up; that of bu�er management|what is the probability that a bu�er of size N will

overow under realistic input/arrival and output/service assumptions. As before, this

is not to say that the general reliability issues are not of interest to us. Rather, the goal

of this paper is to introduce a new formal model so that questions of burstiness can be

quantitatively studied.

The queueing models will describe how our message tra�c behaves. We show that

under our MIMO model, messages will be lost because there is nowhere to put them if

they are sent too fast. Therefore, something must be done to moderate tra�c ow.

TRANSMITTER ! BUFFER! RECEIVER

Above is our transmission model. The transmitter (input) sends messages to the

bu�er. The bu�er size is the number of messages that the bu�er can hold. Every

message is of the same size and all transmission times are zero. Messages arrive at the

bu�er from the transmitter. The receiver (output) services messages from the bu�er.

When we use the term rate, we mean the total number of messages divided by the total

time for the arrival or servicing of the messages. Rates have units of messages per time

unit. Messages arrive at the bu�er from the transmitter at an input rate denoted by �

and the receiver services them at the output rate �. The dimensionless quantity �

�
is

extremely important to queue size.

6This is not the case for data transfers that are constantly updated, such as sensor reports that are

sent every few seconds.
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2.1 M/M/1 model

As mentioned earlier, the �rst work on the write-up problem to apply queueing theory

seriously is in [13], where an M/M/1/N queue is used for the model. This is a queue with

a Poisson arrival process and exponential service times. The N signi�es that the bu�er

is of �nite size N, unlike the standard M/M/1 queue which has an in�nite bu�er. The

average (exponentially distributed) interarrival time is 1=� which uniquely determines

the Poisson process. The average (exponentially distributed) service time is 1=�. The

term pk is the steady state probability that there are k messages in the bu�er. For an

M/M/1 queue pk exists if and only if �

�
< 1; this is the ergodic condition. The analysis

in [13] is done only for �
�
< 1. However, for an M/M/1/N queue the condition on �

�
can

be relaxed to be any positive value. This is because pk = 0 for k > N , and thus the

ergodic condition is trivially met (e.g., �nite birth-death process).

In [13], if a message arrived at a full bu�er, the new message overwrote a message

that was already in the bu�er. Which message is overwritten is not speci�ed and is

left as a design parameter. Communications engineers study the probability of blocked

or turned-away messages | mathematically, this is identical to overwritten messages,

therefore we will just use the term \lost" messages. In [13], it is noted that for �

�
< 1

and bounded away from 1 that the probability of the bu�er being full can be made

as small as desired by choosing a very moderately sized bu�er. We take no exception

to the M/M/1/N analysis for �

�
<< 1. However, we also �nd it instructive to look at

unrestricted �
�
, �rst in terms of the mathematical analysis, second to consider bu�er size,

third to look at the assumptions in terms of physical reality, and fourth as motivation

for our bursty analysis.

As noted, the (steady state) probability that the bu�er is full is the same as the

(steady state) probability of a message being lost. The derivation for this can be found

in [15, 3] and is:

pN =
1� �

�

1 � (�
�
)N+1

(
�

�
)N ; for

�

�
> 0 :
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Provided that �
�
< 1 we see that7

N =
log

�
pN

1�
�
�
+pN

�
�

�
log �

�

:

Thus, as in [13], for �

�
< :95 a bu�er of size less than 1000 will su�ce to keep pN

extremely small. As long as �

�
< 1 two facts are true: (1) For �xed �

�
, pN decreases as

N !1, and (2) pN can be made as small as desired by letting N grow.

However, as �
�
! 1� the necessary bu�er size also grows for �xed pN . Obviously, if

we always input at a rate that is greater than or equal8 to the output rate our system will

either lose many messages (or grind to a halt). However, what if there are periods when

this is true? Is our system robust enough to tolerate these bursts of input activity?

If there is no feedback from High to Low, what is to prevent Low from temporarily

sending messages faster than High can handle them? If our system is designed along

an M/M/1/N type model we argue that we may be in serious trouble with respect to

dropped/lost messages. So let us study the cases where �

�
� 1 might hold for some

period of time. We analyze the situation where �=� � 1, in the M/M/1/N model. This

might not reect the steady state behaviour of our Low-to-High system but it might

represent either (1)|a large transient (bursty) period, large enough so that steady

state probabilities are locally achieved, or (2)|the results from the accumulation of

many bursty periods causing bu�er congestion.

If the rates are equivalent then the bu�er required to ensure no overwritten messages

is in fact quite large. When � = �, by using L'Hôpital's rule, we see that N = 1

pN
� 1.

So for � = � the bu�er size, less one, is the inverse of the desired pN . Therefore, a bu�er

of size 1000 will su�ce if one is willing to accept a probability of a lost message of .001.

Let us analyze the situation where �=� > 1. Note that for � > �:

pN =
1 � �

�

1� (�
�
)N+1

(
�

�
)N =

�

�
� 1
�

�

1

1� (�
�
)N+1

� 1� (�=�)�1 > 0 :

Similar to the situations when �

�
� 1, we see that for �

�
> 1, pN decreases as N !1,

but when �

�
> 1, pN does not approach zero, the smallest pN can ever be is 1� (�=�)�1.

7For �
�
> 1, we will show later that N cannot be solved for arbitrary pN .

8Since arrivals are probabilistic, not deterministic, equal rates can still cause problems.
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For example, if �
�
= 1:1, then we will lose at least 9.1% of the transmitted messages on

average. It is certainly not surprising that if we send more into the bu�er than what

can be serviced, messages will be lost.

We must make an e�ort to model burstiness. In those periods when Low is faster

than High, how do we know that messages are not overwritten? Even if we accept the

M/M/1 queue as being an accurate model of reality (which we do not), if the ratio �=�

hovers around 1�, the probability of a message being lost can be quite large. All of this

aside, we are still faced with the fact that the M/M/1 queue does not take burstiness

into account. The Poisson process of rate � has as one of its main assumptions that the

probability of exactly one arrival in the interval [t; t+dt] is �dt [15]. This certainly does

not imply deterministic arrival. It is not proper to call this burstiness; rather, this is a

�xed probabilistic behaviour. Bursty behaviour does not obey this Poisson assumption

in that a �xed � cannot be assigned to the probability of exactly one arrival in the

interval [t; t+ dt]. Therefore, we propose an alternative to the M/M/1/ based models

that incorporates burstiness.

2.2 The MIMO Model

We have discussed why the M/M/1 model does not model burstiness. We have shown

the impact of the input rate being faster than the output rate|something that could

happen for certain periods of the system. Therefore, we present a new model, which has

the M/M/1 model as a special case. Our model is based upon current research in the

computer communications community. The basic premise is that the system oscillates

between certain bursty and non-bursty periods.

Our model is based on the MMPP [5]; this is a fundamental paper for dealing with

burstiness. The MMPP only applies to the transmitter (Low in our case). Instead of

message arrivals being a Poisson process (as in the M/M/1 model), the transmitter

oscillates between two states, each state sends messages in a Poisson process, and the

state changes are determined by a continuous-time Markov process with �xed mean

sojourn times for each state. The two states represent the normal and the bursty

behaviour of the transmission process.

For our purpose, we �nd the MMPP lacking because it does not take receiver (High)

behaviour into account. Thus, we wish to also model High as oscillating between two

states: a normal state and a busy state. The MMPP considers continuous state changes,
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our model assumes that state changes only take place at certain constant time incre-

ments, called \frames".

Therefore, our state changes are given by a (discrete) Markov chain. We base our

conclusions concerning bu�er congestion on a computer simulation of the MIMO model.

2.2.1 Low: Modulate Input

λ n λ b

nS bS

qp

1 - p

1 - q

Figure 4: Low as a Markov chain

Ml =

 
p 1 � p

1� q q

!

Low's transmission is given by a 2-state Markov chain. In every frame (a �xed

number of time units) we determine which state we are in according to the transition

matrix Ml. In the �rst or normal state Sn, Low transmits messages that arrive, via

a Poisson process of rate �n. In the second or bursty state Sb, arrivals are a Poisson

process of rate �b.

The steady state probability for the normal state is �n = 1�q

2�p�q
. The steady state

probability for the bursty state is �b =
1�p

2�p�q
. We see then that the (global) arrival

rate, denoted by �, is � = �n�n + �b�b. Once the Markov chain has entered, in the

steady state, Sn the number of frames that it stays in that state is given by a geometric

random variable with parameter 1 � p. The mean of this geometric random variable is
1

1�p
, corresponding to the mean sojourn time in the continuous MMPP (similarly for Sb).

Thus we see that the Low end is just a \discretized" MMPP with large mean sojourn

times.
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2.2.2 High: Modulated Output

n
__µ b

__µp
__

q
__

n
__S b

__S

p
__

q
__

1 - 

1 - 

Figure 5: High as a Markov chain

Mh =

 
p 1� p

1 � q q

!

High's service times are similarly given by a 2-state Markov chain. In every frame

(Low and High frames are synchronized), we determine which state we are in according

to the transition matrix Mh. In the �rst or normal state Sn, High services messages by

an exponential distribution with parameter (inverse of the mean) �n. In the second or

busy state Sb, messages are exponentially serviced at a slower rate �b
9.

The steady state probability for the normal state is �n = 1�q

2�p�q
. The steady state

probability for the bursty state is �
b
= 1�p

2�p�q
. Note that the (global) service rate is

� = �n�n +�b�b .

2.3 Low & High together

In the MIMO model we assume that Low is transmitting to High and messages are

queued in a bu�er until High can service them, and that Low and High behave as the

2-state Markov chains described above10. Low and High are independent11 in our model

because Low's bursty and High's busy periods cannot be controlled. Therefore, the

9There is a slight idealization for mathematical simplicity because service times cannot change once

they have been chosen. However, as long as the frame size is large in comparison to the mean service

times, the di�erence is negligible.
10There is no requirement that p + q = 1 or p + q = 1. The relationship between the probabilities

determines correlations between the states. In our simulations we used correlated states.
11Thus we have described the MIMO model as a queueing model, which we denote as Mi/Mo/1/N,

for modulated input, modulated output/service, single server, and �nite bu�er of size N.
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MIMO model consists of a four state Markov chain:

Sn;n Low normal, High normal

Sn;b Low normal, High busy

Sb;n Low bursty, High normal

Sb;b Low bursty, High busy

Where Sn;n is the state where Low is in its normal state, and High is in its normal state,

etc.

n
__S n

n
__S b b

__S b

b
__S n ,

,,

,

Figure 6: MIMO model

M =

0
BBBB@

pp p(1 � p) (1� p)p (1� p)(1 � p)

p(1 � q) pq (1� p)(1 � q) (1� p)q

(1� q)p (1� q)(1� p) qp q(1� p)

(1� q)(1� q) (1� q)q q(1� q) qq

1
CCCCA

The four states transit, every frame, via the matrix M .

We have the four steady state probabilities that are obtained by multiplying the Low
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end and High end steady state probabilities together. This is valid because the Low and

High ends are independent.

�n;n =
�

1�q

2�p�q

� �
1�q

2�p�q

�
�n;b =

�
1�q

2�p�q

� �
1�p

2�p�q

�
�b;n =

�
1�p

2�p�q

� �
1�q

2�p�q

�
�b;b =

�
1�p

2�p�q

� �
1�p

2�p�q

�

The term � from the Low end and � from the High end let us form, as in the M/M/1

queue, the ratio �=�. We will simulate the MIMO model under certain bu�er sizes and

see how many messages get lost in transmission when �

�
< 1.

2.4 Simulation results of the MIMO model

Below we present a table summarizing some of our simulation results of the MIMO

model versus the M/M/1/N model. Our simulation was done on a Sparc20 using the

MODSIM package. The theoretical steady state probabilities and mean arrival and

service rates matched our simulation results for the same statistics. Thus, even though

we do not have MIMO theoretical results for lost message percentages we feel that our

simulations are accurate.

We present only a small subset of our runs. We use a frame size of 10. The runs that

we discuss were chosen to show the danger of assuming results about lost messages by

just studying the ratio of � to �. We do not claim that the MIMO model is an accurate

representation of reality. What we do claim is that the M/M/1/N model is not a good

model of reality if the system behaves in a bursty manner and that assumptions of lost

messages can be misleading and dangerous. For a bursty system we feel that the MIMO

model is a better model of reality than the M/M/1/N model.

The �rst table compares the M/M/1/N model against the MIMO model for a bu�er

of size N = 1000. We chose 1000 for the bu�er size because that was an appropriate

size proposed in [13]. In the following table p = :70, q = :30, and �n = 1:0. We let �b
take on the values 31,51,61 to result in �=� taking the values of .50,.80,.95 , respectively.

High was �xed at p = :50 = q, �n = 30, �b = 10.

13



�

�
% lost in M/M/1 % lost in MIMO

.50 0+% .04%

.80 0+% 7.5%

.95 0+% 15.6%

Simulation: Bu�er size 1000 High: p = :50 = q, �n = 30, �b = 10

The simulation gave us no messages lost for the M/M/1/N queue. However, all of

the theoretical M/M/1/N lost percentages are in�nitesimally small, but still non-zero.

This is why we used the notation 0+. We see, in the MIMO model, unsurprisingly, that

as �
�
! 1� the percent of lost messages increases. What is surprising is that for Low

sending at half the rate that High is servicing, a non-trivial amount of messages can still

be lost.

We increased the bu�er size by an order of magnitude and still had lost messages

for the MIMO model as shown below. We did have to increase �=� to .995 to get a

signi�cant amount of lost messages.

p �n q �b
�

�
% lost in M/M/1 % lost in MIMO

.70 2 .30 128 .995 0+% 6.2%

Simulation: Bu�er size 10,000 High: p = :50 = q, �n = 60, �b = 20 .

In fact, no matter what size bu�er is used we could always come up with a MIMO

example with �

�
< 1, such that messages were still lost. Further, our simulations also

showed that messages were lost for M/Mo/1/N and Mi/M/1/N queues when �

�
< 1.

Of course one could insure, up to a high probability, that messages were not lost by

basically using a bu�er on the order of magnitude of the number of messages sent. But

this is not a practical engineering solution. The point of this is: the potential for bursty

periods on the Low end and busy periods on the High end must be well understood before

any claims of bu�er management can be made if one does not have ow control.

The MIMO model, because of its discrete nature, does not capture as much of the

bursty behaviour as the continuous time MMPP. Further, there are some who argue

that all of these models are far from reality because message tra�c patterns have a

fractal (self-similar) nature to them [11, 14]; thus the simple burstiness modelled in the

MIMO model may be far from reality (but it is still better than M/M/1 which has no

burstiness). Therefore, we feel ow control is necessary unless one can be sure that Low

14



is always slower than High. We feel the Pump, via its ACK stream ow control, will

let Low send messages as fast as High can handle them, and because the Pump insures

reliability (none of the blind write-up methods do), it is a good solution to the write-up

problem.

3 Pump scales up, does blind write-up?

We have just been dealing with one source and one destination. What happens when

there are multiple sources and multiple destinations in a network environment where the

number and/or rates of inputs change dynamically? The bandwidth of communication

links, transmission speed, and processing speed are all limited. In a network, if the load

of data tra�c o�ered to the network exceeds its capability, some of the load must be

cut fairly.

source 1

source 2

source 3

destination

Number of inputs may vary dynamically

Total input rates vary dynamically 
Figure 7: Simpli�ed view of fairness problem

In a network, resources are often shared among several sessions. Services for other

sessions can potentially be disrupted if too much resource is allocated to one particular

session. Therefore, we must consider denial of service attacks.

The basic idea of the network Pump [10] is to dynamically control input rates by

attempting to \slave" the input rates to a moving average of the output rates (service

rates) by moderating the ACK rate to a source. In this way the network Pump can

achieve fairness and prevent denial of service attacks without sacri�cing performance.

The simulation results in [10] support our claims.
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The blind write-up method does not send any control information back to the sources.

Hence, sources neither know the status of the destination (busy/alive?) nor can they

intelligently control their input rates. We would be interested in seeing how non-ow

controlled methods deal with fairness and denial of service in the network environment.

4 Conclusion

This paper focused on the consequences of sending messages from Low to High without

ow control. We showed that the paradigm of \if input rate is less than output service

rate, an intermediary bu�er can be used to insure message delivery" is too optimistic.

Historically, (in the non-secure world) the M/M/1 queue has been used when we

have unlimited bu�er resources. In reality, bu�er size is limited, so if there is burstiness

from the input, ACKs can be used to prevent message loss. However, in the secure

world we do not want to send ACKs from High to Low, but the consequences will be

lost messages. Hence, determining the queue size is extremely important if there are no

ACKs. The M/M/1/N model has been used to �nd the adequate bu�er size under the

no-ACK condition. However, the M/M/1/N model is far from reality. In this paper we

introduced the MIMO model which takes burstiness into account. We showed that the

queue size based on the M/M/1/N model is too optimistic through simulation results.

The MIMO model, which has 4 states (2 Low and 2 High), might itself not accurately

reect real system behavior. But it is a su�cient model to show that the bu�er size

analysis based on the M/M/1/N model is too optimistic for the secure world. Even if

there exist bu�ers of su�cient size to store all bursty messages, we still have the other

very important reliability issues that ACKless based schemes do not su�ciently address.

Therefore, the ACKs must be sent to Low.
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