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THE NRL PROTOCOL ANALYZER: AN
OVERVIEW

CATHERINE MEADOWS

.

The NRL Protocol Analyzer is a prototype special-purpose veri�cation tool,
written in Prolog, that has been developed for the analysis of cryptographic
protocols that are used to authenticate principals and services and dis-
tribute keys in a network. In this paper we give an overview of how the
Analyzer works and describe its achievements so far. We also show how our
use of the Prolog language bene�ted us in the design and implementation
of the Analyzer. /

1. INTRODUCTION

A cryptographic protocol is a communication protocol that uses encryption in order
to achieve goals such as distribution of cryptographic keys or authentication of prin-
cipals and services, over a network that may contain a number of hostile intruders
who may be actively trying to subvert the goals of the protocol. For example, if
the protocol is intended for key distribution, the intruder may attempt to discover
the session key, or more subtly, attempt to convince principals that some other
word chosen by the intruder is itself the session key. If the protocol is intended
for authentication of principals, the intruder may attempt to pass itself o� as some
other principal.

Most cryptographic protocols are designed to function under very adverse con-
ditions. In general, it is assumed that the intruder has complete control of all
communication channels, and thus can read all tra�c, destroy or alter tra�c, and
generate tra�c of its own. It is also usually assumed that some principals are
cooperating with the intruder, and thus that the intruder will be able to perform
operations such as encryption that are available to honest users of the network.

Given such requirements, it is not surprising that it is di�cult to design cryp-
tographic protocols that are free of aws. Even quite simple protocols have been
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discovered to have aws that in many cases were not discovered until some time
after they were published or even implemented. These aws were independent of
the strengths or weakness of the particular cryptoalgorithm used.

As an example of the kinds of aws that can occur, consider the following au-
thentication protocol, originally proposed as part of an ISO standard, that makes
use of a public-key cryptosystem [5], which is a cryptosystem in which the keys
used for encryption and decryption are separate. This allows the encryption key to
be distributed widely, and thus anyone can send a message to a party and be sure
that it can only be read by its intended recipient by encrypting the message with
that party's public key. The private keys can be used not only to decrypt messages,
but to verify the origin of a message. A party can \sign" a message by decrypting
it with its private key. A recipient veri�es the signature by encrypting it with the
public key and comparing it with the original message. If they match the recipient
knows that only the owner of the public key could have sent the message, since only
he could have produced the signature.

In the protocol we are about to examine, two parties A and B wish to be sure
that they are communicating with each other. Each party P has a public key Kp

and a private key K�1p (X). The application of public or private key operations
to a message M is denoted by K(M), where K is a public or private key. A and
B also possess the ability to generate nonces, which are unique random numbers
that are to be used only once and then thrown away. The purpose of a nonce is
to guarantee that a message is recent. A can guarantee that a message from B is
recent by sending B a nonce. B then sends back the message, together with the
nonce, signed with his private key. A can now be sure that the message was sent
after he sent the nonce.

In the protocol that follows, A and B are using the mechanisms described above
to verify that they are communicating with each other. We use the common nota-
tion A ,! B: M to stand for \A sends message M to B."

1. A ,! B: A, Na

where Na is a nonce, that is, a number chosen by A that has never been used
before.

2. B ,! A: Nb, A, K
�1
b (Nb;Na;A)

where K�1b (X) denotes the signing of X with B's private key, and where Nb

is a nonce chosen by B.
A then veri�es B's signature. A now believes that it has heard from B
in response to A's original message, since the message is signed by B and
contains A's nonce.

3. A ,! B: Na0 , B, K�1a (Na0 ;Nb;B)
where Na0 is a new nonce generated by A.
B checks the signature on A's message. B now believes that it has heard
from A.

In [6], the following attack is presented:
Let I be the intruder. IM denotes the intruder impersonating M.

1. IA ,! B: A;Nx

where Nx is a nonce generated by I.
2. B ,! A: Nb, A, K

�1
b (Nb;Nx;A)

The intruder I intercepts this message and prevents it from reaching A.
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3. IB ,! A: B, Nb.
4. A ,! B: Na, B, K

�1
a (Na;Nb;B)

B checks the signature and concludes that A has successfully initiated contact
with it and that Nx was a nonce originating from A. A however, does not
have a corresponding belief that it is communicating with B.

As we see, in general it is not easy to see whether a cryptographic protocol is
secure simply by looking at it; even in a simple protocol such as the one just given,
aws can be very subtle. This has been shown also in a number examples in the
literature of protocols that were published, believed to be sound, and later shown to
have security aws [3, 4, 10, 11, 14]. Thus it is necessary to develop some rigorous
means of reasoning about cryptographic protocols.

In the last �ve years there has been a great deal of work done in developing formal
models of cryptographic protocols. As in the analysis of conventional communica-
tion protocols, there have been two kinds of techniques applied to this problem.
One is to use logics of knowledge and belief to model the beliefs that evolve in
the course of a protocol. The best known of these is the Burroughs, Abadi, and
Needham logic [3]. Another is to model the protocol as an interaction between a set
of state machines and to attempt to prove a protocol secure by specifying insecure
states and attempting to prove them unreachable, by use either of exhaustive search
backwards from the state, or by the use proof techniques for reasoning about state
machine models. This is the approach taken by the NRL Protocol Analyzer.

A number of challenges exist that must be met when applying this type of
approach to cryptographic protocol analysis. One arises from the fact that the
words used in a cryptographic protocol obey certain reduction rules; for example,
encryption and decryption with the same key in a single-key cryptosystem cancel
each other out. Another arises from the fact that, for all practical purposes, the
search space is unbounded. For example, although the set of possible keys is �nite,
it is large enough so that a key cannot be found by exhaustive search. Thus, for
the purpose of the model, we assume that it is in�nite. Likewise, if we encrypt a
word over and over with a key, we assume that we produce an unbounded set of
words. Thus, if we attempt to use search alone, we will not succeed. Some other
kinds of proof techniques are necessary.

The NRL Protocol Analyzer was designed speci�cally to meet these challenges.
It uses narrowing to handle the fact that words obey reduction rules, and it in-
cludes techniques and automatic support for using induction to prove that in�nite
sets of states are unreachable. Thus the NRL Protocol Analyzer can be used to
prove security properties of cryptographic protocols as well as locate security aws.
The NRL Protocol Analyzer has been successful in doing both. In particular, it
has been used to �nd previously unknown aws in the Simmons Selective Broad-
cast Protocol [14] and the Burns-Mitchell Resource Sharing Protocol [2], and some
hidden assumptions in the Neuman-Stubblebine reauthentication protocol [13] and
the Aziz-Di�e wireless communication protocol [1]. The results of these analyses
are contained in [10, 11, 16, 12]. The NRL Protocol Analyzer has also been able to
reproduce previously known attacks, including the one described in this paper. In
particular, the Analyzer's success in reproducing known attacks is documented in
[9], in which several di�erent protocol analysis tools are applied to the same awed
protocol.

The Analyzer is also of interest as a Prolog application. It has been developed
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in Prolog from the beginning, and makes extensive use of many of the special
properties of Prolog. In this paper, we will describe, not only how the Analyzer
operates, but how it makes use of the Prolog language.

The remainder of the paper is organized as follows. Section 2 describes the
model and speci�cation language used by the Analzyer. Section 3 describes how
the Analyzer works and how the user interacts with the Analyzer. We also give
some details about how the Analyzer is implemented in Prolog. In Section 4 we
give a brief history of the Analyzer's development. In Section 5 we describe some
of the advantages and disadvantages of using Prolog to solve this problem.

2. THE MODEL AND SPECIFICATION LANGUAGE USED BY THE AN-

ALYZER

2.1. Description of the Model and Speci�cation Language

The Analyzer is based upon a version of the term-rewriting model of Dolev and
Yao [8]. In the Dolev-Yao model, it is assumed that there is an intruder who is able
to read all message tra�c, modify and destroy any message tra�c, and perform
any operation (such as encryption or decryption) that is available to legitimate
user of the protocol. However, it is assumed that there is some set of words (for
example encryption keys possessed by honest principals, or messages that have
been encrypted) that the intruder does not already know. His goal is to �nd out
these words. Since any message received by an honest principal can be thought of
as having been sent by the intruder, we can think of the protocol as an algebraic
system being manipulated by the intruder. His goal is to manipulate it in such a
way that a \secret" word is produced.

The words produced by the algebraic system will obey a set of reduction rules.
For example, encryption and decryption with the same key using a private-key
algorithm is self-cancelling. Thus, we can think of the intruder as attempting to
solve a word problem in a term-rewriting system. Using this insight, Dolev and
Yao, and later Dolev, Even and Karp [7], developed a set of algorithms for proving
the security of certain limited classes of protocols.

Although our model is based on that of Dolev and Yao, the general approach
we take to proving security properties of protocols is somewhat di�erent. For one
thing, we extend the goals of the intruder to include more than just �nding out
secret words. Many protocols (such as the example given in the introduction to
this paper) are broken, not by the intruder discovering a secret word, but by the
intruder convincing a principal that a word has certain properties that it does not
have. For example, a protocol can be broken if the intruder can convince a principal
that a word already known by the intruder is a session key. Thus we extended our
model to include local state variables possessed by the principals.

The other di�erence was that we wanted to be able to examine a more general
and open-ended class of protocols than those of Dolev and Yao. Thus, instead of
developing a set of algorithms, we developed a general procedure for proving security
properties of protocols by proving user-speci�ed protocol states unreachable, and
an interactive Prolog program that facilitates this procedure.

In the NRL Protocol Analyzer, protocols are speci�ed as a set of transitions of
state machines. Each transition rule is speci�ed in terms of the following:
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1. words that must be input by the intruder before a rule can �re;
2. values that must be held by local state variables before the rule can �re;
3. words output by the principal (and hence learned by the intruder) after the

rule �res, and;
4. new values taken on by local state variables after the rule �res;
5. event statements that describe the transition in terms of words used and

principals involved.

Transition rules can describe, not only the actions of an honest user, but the
actions of an intruder who produces new messages out of old by performing some
operation such as encryption or decryption.

Participants in a protocol communicate by exchanging words. We make the
assumption that an intruder, upon seeing a word, is able to determine its history and
signi�cance, although he may not know the words that were used to construct the
word he sees. Thus, if the intruder sees the word X = e(key(user(A)),message(A,N))
we assume that he is aware that X is a message from A generated by a key belonging
to A, although he will not know key(user(A)) or message(A,N) unless he has seen
them previously. Although in actual fact an intruder may not always have access
to this sort of information, most of the protocols we have examined are designed to
be secure under such strong assumptions about the level of knowledge available to
the intruder. Thus we make these assumptions in order to have the best possible
assurance of security.

The assumptions about the knowledge of words available to the honest users are
much more restrictive. An honest user will recognize the signi�cance of a word if
he has explicitly stored it as the value of a learned fact (see below). We may also
specify a list of words that we assume the user is able to recognize, and what it is
about them that he is able to recognize. For example, we may assume that a user is
able to recognize all usernames as usernames, but may not be able to tell whether
or not they belong to honest or dishonest users. Finally, an honest user is always
able to recognize one attribute of a word: its length. Thus if a user is expecting a
two block long message, and receives one that is one block long, he has the ability
to reject it.

The words involved in these rules obey a set of reduction rules. A few of these are
built-in rules supplied by the system, but most are described by the speci�cation
writer. We make the requirement that the set of reduction rules be congruent and
terminating, in order that narrowing algorithms can be applied.

Words are built by applying function symbols recursively to atoms or variables.
Both function symbols and atoms must be speci�ed by the speci�cation writer.
Some function symbols, such as the ones specifying encryption and decryption,
stand for operations on words that can be performed by any principal who has the
capability and who knows the arguments the symbol is being applied to. These
function symbols are denoted operations in a protocol speci�cation. If the intruder
is assumed to be able to perform an operation, this must be indicated in its speci-
�cation.

Each protocol participant possesses a counter that is incremented every time
a protocol rule is �red that either changes its set of learned facts or causes it to
produce a word or words. The intruder also possesses a counter. This counter is in-
cremented every time the intruder performs an action that involves communication
with itself, such as occurs for example when the intruder performs encryption.
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If A is an honest participant in a protocol, we de�ne the set of runs of the

protocol local to A to be a set of sequences of state changes de�ned by the protocol
designer. Each such state change de�nes a set of words produced by A and a set
of changes to A's internal state variables. A run local to A is identi�ed by the
value of A's counter at the time the run begins. Any state variable that is changed
during that run is identi�ed by the run's identi�er. Any possible application of
a protocol rule must result in a state change that belongs to some run. For each
possible local run, there is a protocol rule describing its beginning and a protocol
rule describing its ending. We note that a participant may participate in two or
more runs concurrently.

Each honest protocol participant possesses a set of local state variables, that we
call learned facts, or lfacts. Each lfact is relevant to a given run of the protocol.
An lfact is described using an lfact function, which has four arguments. The �rst
identi�es the participant A who knows the fact. The second identi�es the run of
the protocol. (If A is the intruder, then this argument will always be set equal to
the value of the intruder's counter at that time.) The third indicates the nature of
the fact, and the fourth gives the present value of A's counter. The value of the
lfact is either a list of words that make up the content of the fact, or if the fact
does not have any content, it is \[]", the empty list. Thus, for example, suppose
that user(A) attempts to initiate a conversation with user(B) during local round N
at time T. This can be expressed by the learned fact

lfact(user(A),N,init conv,T) = [user(B)]

At any time S prior to T, the value of the lfact would be "[]". If user(B) receives
a message X during local round S at time P which is apparently from user(A)
attempting to initiate a conversation, this can be expressed by the learned fact

lfact(user(B),S,rcvd init con,P) = [user(A),X]

The value of a learned fact is calculated in the following way. First, if we have
lfact(A,B,C,X) = Y, that is, the value of the lfact is Y when A's local counter is
set to X. Suppose now that a rule �res that causes A to either generate a message
or to change one of its lfacts, or both. Then A's local counter is set to s(X). If the
rule causes lfact(A,B,C,X) to be set to Z, we have lfact(A,B,C,s(X)) = Z. If the
rule causes no change to the lfact, then we have lfact(A,B,C,s(X)) = Y. All lfacts
are initially empty, that is, set equal to the empty list [].

Besides producing words and learned facts, each protocol rule also produces an
event function. The event function gives a description of the event that occurred
when that rule �red. Since these are used only to identify a transition, not to
specify how it behaves, we do not go into any more detail about them here.

Transition rules engaged in by the intruder, unlike those engaged in by honest
participants, are not speci�ed explicitly. Instead, they are constructed from speci�-
cations of operations that the intruder is indicated as being able to perform. From
each such speci�cation a transition is constructed in which the arguments of the
operation are input as words the intruder must know, and the output is the result
of performing the operation. These transitions can be displayed by querying the
Analyzer.

All transition rules are stored as Prolog facts whose arguments are words input,
lfacts input, words output, and lfacts output, as well as some other relevant infor-
mation about the rule, such as the corresponding event function. When a variable
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is used in the speci�cation of a rule, it is stored as such in its Prolog representation.
When a rule is applied, the variables in the rule are instantiated to the appropriate
values. How this is done is described in more detail in Section 3.

2.2. An Example Speci�cation

In this section, we give an example of how the ISO protocol we described above
would be speci�ed using the techniques described above.

We begin our speci�cation by listing the words and operations. The words
involved are user names, random numbers, and private and public keys. The op-
erations are the built-in list manipulation and id check operations, and public and
private key encryption. (We note that only private key encryption is used in the
messages, but public key encryption is used to verify the signatures.)

We begin with keys �rst. There are two types of keys, public keys and private
keys, one each for each user. Thus we denote keys by pubkey(A) and privkey(A),
where A is a user name.

We now look at names. We note that there are two types of users, honest ones,
and dishonest ones. The honest ones follow the rules of the protocol, while, accord-
ing to our model, the dishonest ones are in league with the intruder, and thus are
willing to share any information that they know with the intruder. Thus the tran-
sition rules describing the protocol will describe only the behavior of honest users.
The actions of dishonest users (e.g., sending messages or performing operatings)
are subsumed by the actions of the intruder; that is, if a dishonest user performs
an actions, we can represent it by an intruder action. Moreover, any word (such as
a key) known by a dishonest user is assumed to be known by the intruder. Because
of this, we need to distinguish between honest and dishonest users. We do this
by denoting them as user(A,dishonest) and user(A,honest), where A is a variable
standing for some symbol distinguishing two honest users from each other or two
dishonest users from each other.

Finally, we look at random numbers. We want random numbers generated by
di�erent individuals at di�erent times to be unique, so we give each number the
name of the originator and the time at which it was originated as argument. Thus
each random number is designated as rand(user(A,X),N) where user(A,X) is a user
name and N is an integer.

We next look at operations. Instead of using two di�erent symbols for public key
encryption and decryption, we use the same symbol for encryption and decryption
and distinguish between the two by specifying whether a public or private key is to
be used. We assume that the intruder is able to perform public key encryption if
he has access to the keys.

We have the option of assigning lengths to words. Since we do not have any
information on the lengths of the words used in the protocol, we do not take ad-
vantage of it, except to assign length zero to words that do not stand for bit strings
sent over the network. We now have four function symbol descriptions, one for user
names, one for public keys, one for private keys, one for random numbers, and one
operation description for public key encryption. We also have two atoms, \hon-
est", and \dishonest." Note that we have not speci�ed any atoms that instantiate
numbers or user ids, since we do not need to instantiate these in our analysis.

Our speci�cation of function symbols, operations, and atoms is as follows.
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op(1):pke(X,Y) --> Z::length(Z) = length(Y):pen.

fs(1):user(A,H) --> U::.

fs(2):rand(user(A,H),N) --> R::.

fs(3):privkey(user(A,H)) --> K::.

fs(4):pubkey(user(A,H)) --> K::.

atom(1):honest --> H:0.

atom(2):dishonest --> H:0.

We next include two rewrite rules. They say that public key encryption �rst
with a public key, and then with a corresponding private key, and vice versa is
self-cancelling.

rr1: pke(privkey(X),pke(pubkey(X),Y)) => Y.

rr2: pke(pubkey(X),pke(privkey(X),Y)) => Y.

Next we include a list of the words known by the intruder. We assume that the
intruder knows all user names and all public keys. We also assume that he knows
everything known by a dishonest user, including all random numbers generated by
dishonest users, and all private keys belonging to dishonest users. We thus have:

known: user(A,X), rand(user(A,dishonest),N),

privkey(user(A,dishonest)), pubkey(user(A,X)).

We are now ready to write the speci�cation of the protocol itself. For reasons
of space, we limit ourselves to describing the behavior of the principal initiating
the protocol. The speci�cation of the behavior of the other party is similar. The
initiator �rst sends o� a message containing the name of who he wants to talk to
and a nonce, and stores both values in a state variable called init nonce1.

rule(1)

If:

count(user(A,honest)) = [N],

then:

count(user(A,honest)) = [s(N)],

intruderlearns([user(A,honest),rand(user(A,honest),N)]),

lfact(user(A,honest),N,init_nonce1,s(N)) =

[user(B,W),rand(user(A,honest),N)],

EVENT:

event(user(A,honest),N,init_request,s(N)) =

[user(B,W),rand(user(A,honest),N)].

The next two transitions describe the behavior of an initiator user(A,honest)
upon receiving what purports to be a response to his initiation message. We need
two transitions, one describing user(A,honest) receiving the message and checking
it, and the other describing what user(A,honest) does if the check succeeds. The
check is described by the use of the built in id check function on the result of
applying user(B,W)'s public key to the signature and on the result of concatenating
Y, user(A,honest))'s stored nonce Z and (user(A,honest))'s name. Id check(X,X)
reduces to \ok", and so can be used to describe the check for identity.
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rule(2)

If:

count(user(A,honest)) = [M],

intruderknows([Y,user(A,honest),Z]),

lfact(user(A,honest),N,init_nonce1,M) = [user(B,W),X],

lfact(user(A,honest),N,init_gotnonce,M) = [],

then:

count(user(A,honest)) = [s(M)],

lfact(user(A,honest),N,init_gotnonce,s(M)) = [user(B,W),Y,

id_check(pke(pubkey(user(B,W)),Z),(Y,X,user(A,honest)))],

EVENT:

event(user(A,honest),N,init_testnonce,s(M)) = [user(B,W),X,Y,Z].

rule(3)

If:

count(user(A,honest)) = [M],

lfact(user(A,honest),N,init_gotnonce,M) = [user(B,W),Y,ok],

lfact(user(A,honest),N,init_nonce1,M) = [user(B,W),X],

lfact(user(A,honest),N,init_nonce2,M) = [],

then:

count(user(A,honest)) = [s(M)],

intruderlearns([rand(user(A,honest),M),user(B,W),

pke(privkey(user(A,honest)),(rand(user(A,honest),M),Y,user(B,W)))]),

lfact(user(A,honest),N,init_nonce2,s(M)) = [rand(user(A,honest),M)],

EVENT:

event(user(A,honest),N,init_accnonce,s(M)) =

[user(B,W),rand(user(A,honest),M),X,Y].

We note that it was necessary to have two transitions here instead of one, because
if we collapsed them into one, we would have to have as one of the conditions that
id check on pke(pubkey(user(B,W)),Z) and (Y,X,user(A,honest)) succeed. This
would require the use of operations appearing in a rewrite rule (namely \id check"
and \pke") appearing in the \if" part of a rule, which is not allowed.

3. HOW THE PROTOCOL ANALYZER WORKS

3.1. How the Analyzer Finds and Stores States

The user of the Protocol Analyzer queries it by presenting it with a description of
a state in terms of words known by the intruder and values of local state variables.
All words used in that state speci�cation are assumed already to be in their reduced
form. The Analyzer takes each subset of the words and local state variables speci�ed
by the user and, for each transition rule, uses a narrowing algorithm to �nd a
complete set of substitutions (if any exist) that make the output of the rule reducible
to that subset. In each case when that is done, the input of the rule, together with
any portions of the state that were not matched, are displayed as a description of
a state that may immediately precede the speci�ed state. Thus the Analyzer gives
a complete description of all states that may precede the speci�ed state.
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The Protocol Analyzer does not display all the states that it �nds. Instead, it
uses a \generate and test" strategy. First, a complete description of all possible
states that can precede the speci�ed state are generated using the narrowing al-
gorithm. Then, various rules are used to discard states that have been shown to
be unreachable, as well as paths that are redundant in the sense that that path
is reachable only if some other existing path is reachable. Some of these rules are
built into the Analyzer, while others are generated by the user as a result of proving
results about the unreachability of classes of states.

Built-in rules include rules for discarding states in which a word is used before it
has been generated, rules for discarding paths that are interleaving of other paths,
rules for discarding paths that require the intruder to look for the same word twice,
and so forth. The user-generated rules are of more interest, and they are what gives
the Analyzer much of its power. We describe these in the next section.

Once a state has passed all the tests, it is stored in a database in the following
way. Suppose that after querying a state S, we �nd that a state T precedes �S,
where � is some substitution. Then we store this fact as the clause

success([Numlist,T],[Numlist1,�S]),

where Numlist and Numlist1 give a Dewey decimal-style numbering of the states.
Thus if Numlist1 is N1.N2. ... .Nk and T is the M'th state found preceding S, then
Numlist is N1.N2. ... .Nk.T. If state Q is later found to precede �T for some � , we
represent this by a clause of the form

success([Numlist2,Q],[Numlist,�T]).

If the user wishes to see a path from Q to S, this is done by unifying the second
term of

success([Numlist2,Q],[Numlist,�T])

with the �rst term of

success([Numlist,T],[Numlist1,�S])

to obtain a path Q, �T, ��S. On the other hand, if the user wishes to see a path
from T to S, the Analyzer will simply display T, �S.

This approach to storing state descriptions has several advantages. For one

thing, a user, by looking at di�erent subpaths, can see the uni�cations being built
up before his or her eyes. Secondly, it is easy to \undo" a line of query just by
deleting a set of tuples, since all information about previous uni�cations is still
stored in the database.

3.2. Database of Requirements on Reachable States

In many cases the user of the Analyzer may be able to prove that some speci�ed
state is unreachable, or that it is reachable only under the condition that the state
variables take on certain values. For example, suppose that all session keys gener-
ated by a key server are of the form seskey(server,N), and all nonces used to verify
freshness of messages are designated by rand(A,M), where in both cases the �rst
argument is the name of the originator, while the second argument is the time (by
the originator's local clock) when it was generated. Suppose furthermore that we
have a state variable W that designates a word that a principal has accepted as
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a session key. Then we may be able to prove, for example, that W can never be
of the form rand(A,M), (nonces can't be accepted as session keys), or that W can
only be of the form seskey(server,N) (only session keys can be accepted as session
keys), or that W can only be of the form rand(A,M) or seskey(server,N).

The user can enter such facts into a database so that, whenever the Analyzer
encounters a solution state that has been speci�ed as unreachable, it discards it. If
the Analyzer encounters a solution state containing a state variable that has been
speci�ed only to take on a certain value or values, it attempts to unify the value
given in the solution with the value or values given in the database. If it cannot
perform any of the uni�cations, then the solution state is discarded. Thus, if a
solution state says that W is an accepted session key, and the database says that
only words of the form seskey(server,N) can be accepted session keys, the Analyzer
will attempt to unify W with seskey(server,N). If one of the uni�cations can be
made, the state variable will now take on that value. If the database gives two or
more choices for conditions on a word, several di�erent solutions will be created,
each with the state variable set to the appropriate value. If none of the uni�cations
can be made, the solution state will be discarded.

It is possible to generate rules for the database automatically after having proved
that a state is reachable only under certain conditions. One types the command
\displaycons" while the search tree is still present in the Analyzer, and the appro-
priate rule is displayed. The rule is calculated in the following way. First each
path to the goal that does not begin in an unreachable state is examined and the
substitutions made to the variables in the goal that are produced by that path is col-
lected. The entire collection is then examined for substitutions that are subsumed
by others in the collection, and the subsumed substitutions are culled. Finally, the
remaining substitutions are displayed in a form readable by the Analyzer. These
can now be entered by the user into a �le that can be input to the Analyzer.

3.3. Database of Formal Languages

One of the most powerful tools for limiting the search space in the Analyzer is the
use of formal languages. Since the set of words generated in our model is in�nite,
one of the most common sources of in�nite loops in the Protocol Analyzer is the
case in which a search produces an unbounded set of words to be found. To give

a simple example, suppose that we are trying to �nd out if the intruder can �nd
a word of the form e(k,X), where k is a speci�c word, X is a variable standing for
any word, and e(Y,Z) denotes encryption of Z with Y. Upon asking the system
whether or not an intruder can �nd a word of the form e(k,X), we are told that this
is possible only if the intruder can �nd a pair of words Y and e(Y,e(k,X)). Upon
asking the system whether or not an intruder can �nd an irreducible word of the
form e(Y,e(k,X)), we are told that this is possible if and only if he can �nd Z and
e(Z,e(Y,e(k,X))), and so forth. At this point it should become apparent that we
are in danger of entering an in�nite loop, and that it would be helpful to be able
to prove that we are doing so. To this end, for each possible e(k,X), we de�ne a
language F as follows:

F ! e(k,A)
F ! e(A,F)

where A is the language consisting of all irreducible words.
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We want to show that it is impossible to �nd any irreducible word of F unless
some other irreducible words of F have already been found. 1We can then conclude
that all irreducible words of F (including e(k,X)), are unobtainable.

We do this as follows. We begin by creating a list of expressions so that each
word of F is a case of some such expression. We may also put conditions on
the expressions to the e�ect that certain words in the expression are members of
some language. In this case, we have two such expressions with the corresponding
conditions:

1. e(k,X)
2. e(A,B) where B is a member of F

We now check each expression by running the system on it to determine what
words must be known. We already know that, in order to learn e(k,X), the intruder
must know a word of F, so it remains to check the second expression. In that
case, we simply ask the Analyzer how to �nd the word e(A,B). Suppose that the
Analyzer tells us that the only case in which e(A,B) is found is one which requires
prior knowledge of e(Z,e(A,B)) for some Z. Since e(A,B) is a word of F, so is
e(Z,e(A,B)), and we are done.

It is up to the user to specify languages, but membership in a language and
the unreachability of a language are proved by the Analyzer. The user must obey
certain restrictions in specifying languages; in particular we make the restriction
that the language be context-free, in the sense that every production in a language
is of the form
F ! X, Conditions
where X is some expression and Conditions is a set of conditions on X, such as
its length, or the fact that it is not equal to some other word. This allows us
to represent each production in the language as a Horn clause and to use Prolog
to check for language membership in a natural way. The translation is done as
follows. Each terminal symbol is assigned a constant name. Each nonterminal in
X is replaced by a variable. If the nonterminal does not stand for the language of
all words, then the condition langmember(V,Symbolname) is added to Conditions,
where V is the variable substituting for the symbol and Symbolname is the name of
the symbol. Likewise, a variable W is substituted F and a name Fname is assigned
to it. The clause

languagerule(W,Fname,Conditions)

is stored in the database.

3.3.1. Procedure for Proving a Language Unreachable Our goal is to
show that, if the intruder knows a word A, and A is a member of a language L,
and W is the set of words that the intruder knows before �nding A, then W must
contain a member of L. We do this by showing that, whenever langmember(�A,L)
can be shown for some substitution �, then langmember(X,L) holds for some X in
�W.

In order to make this possible, we introduce a procedure

1We restrict ourselves to irreducible words because all words learned by the intruder are

assumed to be in irreducible form.
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expandconditions(+�C,-D,+Type)

where expandconditions(C,D,allsubs), given a condition C as input, �nds a substi-
tution � and a condition D implying�C, and expandconditions(C,D,always) �nds D
the disjunction of all conditions implying C. This �rst is calculated by substituting
for conditions of the form langmember(X,L) executions of proofs using uni�cation,
while the second is calculated by substituting executions of proofs using subsump-
tion. This is done as follows:

For each occurrence of langmember(X,L) in a condition C, where X is not a
variable and L is not \all", expandconditions(C,D,allsubs) �rst �nds a rule lan-
guagerule(test,N,languagerule(A,L,V),C1) and a most general uni�er � of X and
A. It then replaces langmember(�X,L,�V) by �C1 in �C. It continues making
these substitutions and replacements until no further such occurrences of lang-
member(X,L,V) can be found. The result is D. Thus expandconditions(C,D,allsubs)
provides a complete set of uni�ers � and conditions D such that D implies �C.

Expandconditions(C,D,always) also replaces all occurrences of the term lang-
member(X,L,V) where X is not a variable and L is not \all", but instead of using
uni�cation, it uses subsumption. It looks for rules of the form

languagerule(test,N,langmember(A,L,V),C1)

where there exists a substitution � such that �A = X, and replaces X in C by �C1.
It continues in this way until no further such occurrences of langmember(X,L,V)
can be found. It then produces the disjunction D of all conditions E produced in
this way.

Suppose now that we are attempting to prove that X implies Y. Computing
all instances of expandconditions(X,Z,allsubs) will give a collection of pairs (�X,Z)
which give a complete description of the conditions under which X is true. In other
words, �X is true if and only if there is a (�X,Z) produced by expandconditions
such that � = �� for some � and �Z is true. Our next job is to determine that,
for each such pair, that Z implies �Y. We thus need to compute the conditions
under which �Y is true. This is done using expandconditions(�Y,U,always). Since
U is the disjunction of a set of conditions under which �Y is true, we have that U
implies �Y. We have thus reduced our problem to proving that Z implies U in each
case. But this can be often be done using Boolean algebra, since many of the same
conditions will appear in Z and U. Thus our last step is to use Boolean algebra to
show that Z implies U.

As an example, consider the language de�ned by the following rules:

languagerule(test,1,langmember(rand(A,N),foo,V),ok).

languagerule(test,2,langmember(pke(pubkey(A),Y),foo,V),

langmember(Y,foo,V)).

languagerule(test,3,langmember(pke(privkey(A),Y),foo,V),

langmember(Y,foo,V)).

languagerule(test,4,langmember((X,Y),foo,V),langmember(Y,foo,V)).

Suppose that we want to show that membership of pke(X,Y) in foo implies that
(X,Y), the concatenation of X and Y, is in foo. We �rst invoke

expandconditions(langmember(pke(X,Y),foo,V),Z,allsubs)

to obtain two solutions:
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1. X = pubkey(A), Z = langmember(Y,foo,V), and;
2. X = privkey(A), Z = langmember(Y,foo,V).

Invoking

expandconditions(langmember((pubkey(A),Y),foo,V),U,always)

on the �rst solution yields U = langmember(Y,foo,V); the same value of U is given
for the second solution. Thus, in each case it remains to be shown that langmem-
ber(Y,foo,V) implies langmember(Y,foo,V). This is trivially true.

The observation that Boolean algebra can help us allows us to de�ne the following
procedure in Prolog (somewhat simpli�ed from the way it is implemented in the
Protocol Analyzer):

impliesconditions(Langname,W1,W2) :-

ifthen( expandconditions(langmember(W1,L,V),Expcond1,allsubs),

(( lookforconflicts(Expcond1)

;

expandconditions(langmember(W2,L,V),Expcond2,always),

implies(Expcond1,Expcond2)

))

).

where the procedure ifthen(+A,+B) succeeds only if, whenever A succeeds, then so
does B. For each expression Expcond1 and substitution � produced by expandcon-
ditions, the procedure lookforconicts(Expcond1) looks at Expcond1 and attempts
to determine if E is never true (for example, if E is\A = B", where A and B cannot
be uni�ed). If that is the case, Expcond1 implies that �W2 is in L trivially. If
lookforconicts fails, the procedure

expandconditions(langmember(W2,L,V),Expcond2,always)

is used to produce an expression Expcond2 implying that �W2 is in L.
The procedure implies(+Expcond1,+Expcond2) is then used to prove that Ex-

pcond1 implies Expcond2. This is done by �rst putting each of Expcond1 and
Expcond2 in normal form (A1; ... ;An) where Ai = (B1, ..., Bn) such that Bj is an
atomic formula or of the form not(C) for some formula C, where C is also in normal
form. We then attempt to show that, if Expcond1 = (X1; ... ; Xn) and Expcond2
= (Y1; ... ;Ym), then there exists a Yj that is implied by each Xi. Thus we are
reduced to proving that (Z1,...,Zk) implies (W1,...,Wt). This is done for the most
part by showing that each condition Wi either appears in (Z1,...,Zk) or is always
true. There are a few cases, however, where it was worthwhile to institute special
procedures. For example, one condition that comes up often is not(A = B), which
is translated as not(caseof(A,B,V)), that is A is not subsumed by B. It is clear that
not(caseof(A,B,V)) implies not(caseof(C,D,V)) if A is a subterm of C and B occurs
in D the same place that A appears in C. This situation occurs often enough in our
proofs that we have implemented it as a special case of the implies procedure.

We now de�ne another recursive procedure, verifystates. The command

verifystates(+L,+Conds,+S)

succeeds if every path to the state S contains at least one word that can be proved
to be a member of L using Conds. It begins by �nding each state T preceding S,
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and then uses impliesconditions to show that, there exists a word W known by the
intruder in T such that Conds implies that W is a member of L. If that fails, it
invokes verifystates(L,Conds,T). Verifystates fails if S is an initial state, that is, if
S consists of words known by the intruder initially and lfacts that hold initially.

We are now ready prove that a language L is unreachable. We do this by invoking
the procedure verifystates(L,langmember(W,L,V),[W]). In other words, we attempt
to show that, if W is a member of L, then in any state preceding a state in which
W is known by the intruder, some other member of Langname is known by the
intruder. If verifystates succeeds, we will know that we succeeded in proving this.

We note that neither verifystates nor expandconditions is guaranteed to termi-
nate. We guarantee termination by including limits on the number of times each
procedure calls itself. These can be increased by the user. We also improve e�-
ciency of verifystates by having �ndstate look for how to reach a subset of a state
instead of the entire state; except in the �rst invocation, where it queries a single
word, it only queries the substate of a state consisting of state variables, and ig-
nores words known by the intruder. This makes for a much smaller search space,
although it may mean that verifystates may fail in cases in which language unreach-
ability is actually provable. In practice, though, this has happened seldom enough,
and the improvement in e�ciency has been great enough, that we feel justi�ed in
implementing �ndstate in this way.

3.4. How the User Interacts with the Analyzer

The user interacts with the Analyzer by �rst entering the description of a state. The
Analyzer then responds with a description of all states that that can immediately
precede that state, minus the states that are eliminated by the checks described
above. Once this is done, there are two options that can be followed, depending
upon whether the Analyzer is being operated in manual or automatic mode. If the
Analyzer is being operated in manual mode, the user queries each state produced
individually. The user has the option of only querying part of each state, that is,
asking how some subset of the words and state variables that make up the state de-
scription is reachable, rather than the whole description. This option gives the user
the ability to reduce the size of the search space without jeopardizing the sound-
ness of the unreachability proof, since the unreachability of the substate implies
the unreachability of the complete state, while the substate generally will have a
smaller set of descriptions of preceding states than the complete set. However, if
a subset is queried and is then shown to be reachable, it may be necessary to look
at the entire state again to determine if it is reachable. The user has the option of
\undoing" a portion of the search tree, as described in Section 3.1, and requerying
it if this turns out to be the case.

It is also possible to use the Analyzer in automatic mode. In this mode the
Analyzer queries each state itself after the �rst one, instead of leaving the job to
the user. The Analyzer uses some simple heuristics for querying substates when
used in automatic mode (for example, it will not ask how to �nd a word that the
intruder is assumed to know initially), but in general it queries the whole state
or close to it. Thus, although it is possible to generate states much faster when
the Analyzer is used in automatic mode, in general the amount of states generated
will be larger. It is possible, however, to switch back and forth between automatic
and manual mode. Thus, if the search tree is becoming too bushy, the user can
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switch back to manual mode, undo that part of the tree, query it manually, and
then switch back to automatic mode. This may be done several times in a search.

The Analyzer is generally used in two phases. In the �rst phase, the user builds
up the state conditions database and the language database. In the second phase,
the user speci�es insecure states and attempts to prove them unreachable. It is
possible, and usually, necessary, to switch back and forth between the two stages.
For example, the user may enter the second stage and then �nd that the state space
generated is too large to be searched in a reasonable amount of time, or that an
in�nite loop that suggests a formal language is being generated. In that case he or
she may go back to the �rst stage and attempt to build up the state conditions and
language databases further.

An example of this search strategy in use is supplied in [9].

4. DEVELOPMENTAL HISTORY OF THE ANALYZER

The Protocol Analyzer has been developed in several phases. Each phase supplied
a greater amount of automated assistance to the user. When a phase was complete,
it was used to verify a number of protocols, and procedures that were repetitive and
susceptible to automation were identi�ed. These procedures were then automated
and included as Analyzer functions, and the Analyzer was tested further.

To date, there have been three main phases. In the �rst, the Analyzer did little
more than give a complete description of all states that could immediately precede a
given state. This version of the Analyzer was used to verify several simple protocols.
While the Analyzer was in this state, several general procedures for proving classes
of states unreachable were developed. These included the use of formal languages
described in the previous section.

In the next phase, the user was given the option of directing the Analyzer to
avoid states that had been proved unreachable. Thus, if the Analyzer came up with
an answer in which the state immediately preceding the speci�ed state was one that
had previously been proved to be unreachable, that answer would be rejected. At
this point, we used the Analyzer to examine a number of open literature protocols.
Although the Analyzer was still somewhat cumbersome to use, we were able to �nd
previously undiscovered aws in two such protocols: the Simmons selective broad-
cast protocol and the Burns-Mitchell resource sharing protocol discussed earlier in
this paper. This convinced us that we were on the right track, and we proceeded
to automate the Analyzer further.

In the present version of the Analyzer, it is possible, not only to record the
results of hand proofs, but in many cases to perform the proof automatically. For
example, as we described earlier, the Analyzer can be used to prove inductively that
the intruder cannot learn any word of a speci�ed formal language. At this point we
also introduced the automatic search feature. This makes the search much easier to
conduct when the search space has become small enough to search exhaustively. We
have continued to apply the Analyzer to open literature protocols, both those that
were known and those that were not known to be awed. The Neuman-Stubblebine
Aziz-Di�e protocols was analyzed when the Analyzer was in this state.

Our goal for the next phase is, not only to have the Analyzer be able to prove
lemmas automatically, but to also have it give some assistance in generating lemmas
to be proved. Thus, it may be possible, for example, to have the Analyzer generate
candidates for formal languages that can be proved unreachable.
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Finally, we note that the ability to prove unreachability of insecure states solves
only half the problem. For cryptographic protocols, as in other areas, one must
be able to determine what the desirable and undesirable properties are. To this
end we have been developing a requirements language to be used with the Protocol
Analyzer. In this language one speci�es security requirements as requirements
on sequences of events. The negation of the requirement can then be taken as an
insecure state to be proven unreachable by the Protocol Analyzer. We have already
applied this language to specify requirements for message authentication protocols
[15], for key distribution protocols in which a session key is distributed by a trusted
server [16], and for key agreement protocols, in which session keys are constructed
out of secret information supplied by both parties [17], and we have found it to be
useful both in providing goals for the Protocol Analyzer to verify, and bettering our
understanding of the requirements of a protocol and the system it is to be used in.

5. THE USE OF PROLOG IN THE ANALYZER

The NRL Protocol Analyzer has been implemented in both Quintus Prolog and
SWIProlog and at this point consists of about 4,000 lines of code. We chose Prolog
as the implementation language for two reasons. The �rst was that, at the time
this project started, very little was known about what techniques would be helpful
in the analysis of cryptographic protocols, and what would not. Thus, when we
tried an approach, we had no way of knowing beforehand whether or not it would
be useful. Thus we needed a language that would support rapid prototyping and
would allow us to try a number of di�erent approaches in a short amount of time.

Another reason for our choice of Prolog was that the Protocol Analyzer is based
on equational uni�cation. Since Prolog is based on uni�cation, this made it a
natural choice for an analysis tool that uses narrowing as the basis of its state
space search technique. This was especially helpful in languages like Quintus that
o�er uni�cation with occur check.

Prolog has served us well in these respects. In particular, although we were
initially interested in uni�cation mainly as a means to support the implementation
of narrowing algorithms, we found out as we progressed in the development of the
Analyzer that we often had need to make use of a subtle interplay between some
subset of identity checking, subsumption, uni�cation, and narrowing. For example,
use of the database of requirements on reachable states requires �rst subsumption,
to determine whether or not a state contains an element of the database, and then
uni�cation, to guarantee that that element can be made to satisfy the necessary
requirements. The interplay is even more subtle in the veri�cation of language
unreachability. In order to prove a language unreachable, we �rst run the Analyzer
on each production W of the language to determine what sets of words X must be
known before that word could be produced, thus making use of narrowing. We then
determine under what conditions W can be proved to be a member of the language,
using uni�cation, and, for each such uni�cation and set of conditions, we determine
the conditions that guarantee that a member of X will belong to the language,
using subsumption. Boolean algebra and checking for identity is then used to
verify that the �rst set of conditions implies the second. Such delicate reasoning
about the various variations on uni�cation was not only relatively straightforward to
implement in Prolog, but the Prolog paradigm, being based on uni�cation, helped
us to understand it more clearly.
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We also found Prolog very useful as a rapid prototyping tool. We were able to
produce a number of di�erent versions of the Protocol Analyzer very rapidly, each
one including new techniques and functions that we could test on examples and
decide whether or not to keep. One case for which this was particularly helpful was
in incorporation of procedures for veri�cation of language unreachability. This is
one of the more time-consuming operations in the Protocol Analyzer, and one of the
ways we cut down on its expense is by reducing the sorts of situations in which the
procedure will successfully verify a language to be unreachable. On the other hand,
we do not want to reduce the scope of the cases handled so much that the procedure
is not adequate to the types of situations that are likely to occur. The use of rapid
prototyping made it easy to try out several di�erent versions of the unreachability
veri�cation procedure and rate them according to speed and usefulness.

Rapid prototyping also made it possible to defer automation of procedures until
we had used the Analyzer enough to identify procedures that were used often enough
and were repetitive enough so that automation was both possible and useful. This
allowed us to maximize the bene�t we got from increasing the automation of the
Analyzer. For example, the language unreachability veri�cation procedure was
derived from examining the way in which such veri�cation was done manually on
output produced by the Analyzer.

We also found a few drawbacks, although in many cases it was hard to determine
whether these were to blame on Prolog itself or the way in which we used it. Most
notable of these is the way in which the Protocol Analyzer relies on a \generate and
test" strategy. A set of candidate states preceding a goal state is generated, and
then a number of tests are run to eliminate unreachable states from the set. This
had two advantages for us: one, since Prolog operates by producing all solutions to
a query when it is questioned repeatedly, it is straightforward to implement such a
generate and test strategy. It is also an easy strategy to adapt to rapid prototyping.
Whenever we found a new way to prove that a class of states was unreachable, we
simply implemented it as a new kind of test. However, the generate and test
strategy can also be highly ine�cient. In particular, towards the end of an analysis
we usually �nd that the the Protocol Analyzer will be unking considerably more
candidate states than it passes, and thus as we progress in an analysis we �nd a
marked reduction in the apparent rate at which the Protocol Analyzer produces
new states. It is possible that a language that supported a more e�cient search
strategy would result in a more e�cient implementation of the Protocol Analyzer.

Other problems we had were more mundane. Although we found the degree to
which Prolog supported the extensive interplay of subsumption, uni�cation, and
narrowing very useful in the implementation of the Analyzer, it made it harder to
explain the Analyzer to those who were not familiar with Prolog and uni�cation.
We also found the lack of standardization of Prolog a problem when we tried to
port the Analyzer from one version to another; this was in particular a problem
when we used built-in functions.

6. CONCLUSION

In this paper we gave an overview of the NRL Protocol Analyzer, an interactive
software tool for the analysis of cryptographic protocols. We showed how the An-
alyzer works and how it is used, and we described its achievements so far. We
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also described the ways in which our choice of the Prolog language inuenced the
development of the Analyzer. Although the Analyzer is still under development, it
has had a number of signi�cant successes. As we continue to develop and re�ne it,
we can hope for many more.
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