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A Data Pump fair Communication*

Myong H. Kang and Ira S. Moskowitz
Information Technology Division -CHACS: Code 5540

NAVAL RESEARCH1i LABORATORY

WashingtorL, D.C. 20375

Abstract

As computer systems become more open and interconnected, the need for reliable and

secure communication also increases. In this paper, we introduce a communication device,

the Pump, that balances the requirements of reliability and security. The Pump provides
acknowledgements (ACKs) to the message source to insure reliability. These ACKs are also

used to regulate the source to prevent the Pump's buffer from becoming/staying full. This is

desirable because once the buffer is filled there exists a huge covert communication channel.

The Pump controls the input rate from the source by attempting to slave the input rate to
the service rate through the randomized ACK back to the source.

An analysis of the covert channel is also presented. The purpose of the covert channel

analysis is to provide guidelines for the designer of the Pump to choose appropriate design

parameters (e.g., size of buffer) dependent upon the analysis presented in this paper and

system requirements.

1 Motivation

Sharing information between users/processes, or, more simply put, entities, is undeniably the

wave of the future. This will be true, regardless of whether this sharing is centralized on one

computer or, at the other extreme, distributed over the information highway. As computer
systems become more open and distributed, the security concerns relating to information

exchange between different entities will grow.

Two security concerns are paramount:

*Parts of this paper have previously appeared in "A Pump for Rapid, Reliable, Secure Communication", 1st

ACM Conference on Computer & Communications Security '93-11/93, pages 119-129, ACM Press.

Manuscript approved August 2, 1995.

1



2

1. There should be no intrusion of unauthorized entities. Research on access control, virus

detection and prevention, etc. focus on this aspect of security.

2. No information should flow to unauthorized entities in the computer systems.

In this paper, we are looking at the second concern-security means no unauthorized

information flows. We assume all entities are authorized to be in/on the system; however
these entities may still act in a malicious manner. We do not want to have certain entities

know what is in certain files, i.e., we do not want these entities to be able to read these files

and we do not want entities that are authorized to read these files to send any data to the

unauthorized entities. What we are discussing is a multilevel secure system where different

entities have different sensitivity levels that form a lattice [1, 2]. The prohibitions against

"reading up" and "writing down" described above are the Bell-LaPadula requirements (BLP)

[3, 2]. In an information theoretic sense this is equivalent to requiring that information only
flow from a lower level entity (Low) to a higher level entity (High).

At first glance, there seems to be no problem meeting the BLP requirements. Simply design

a system so that information only flows up, not down. Let us examine a conventional (non-

secure) approach to sending information from one entity to another and see what problems

occur. Throughout this paper, we assume that there is only one source entity and only one
destination entity. An application of the Pump in secure networks, using the foundations

developed here, is dealt with in a separate paper[4].

2 The Store and Forward Protocol-SAFP
A conventional communication protocol used in (non-secure) systems should include the fol-

lowing characteristics:

1. Reliability: The communication is reliable if there is no loss of messages and no duplica-

tion of messages.

2. Good Performance.

A standard conventional protocol is the SAFP.

Message
Concentrator

Source Entity Store- Destination Entity

{~\ ACKNA X anzd- d ACK/NAKforward - C/N
send buffer receive

[mT

Figure 1: Message passing from source entity to destination entity under the SAFP.
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Figure 1 shows a typical example of the SAFP. If the message-passing occurs in a dis-

tributed environment, then the source and destination entities may reside in two different

computers and the message concentrator itself may be yet another computer; if the message-

passing occurs in a single computer, then the operating system may play the role of the

message concentrator (e.g., pipes in a UNIX system).

A typical message-passing scenario, in the SAFP, between the source entity (message

concentrator) and the message concentrator (destination entity) goes as follows:

1. Establish transmission/connection.

2. Send a message.

* If the source entity (message concentrator) receives an ACK, then discard the mes-
sage from the source entity's memory (message concentrator's buffer).

* If the source entity (message concentrator) either receives a NAK or times out, then
retransmit the message.

3. If there are more messages to send, then go to step (2).

4. Signoff/Disconnection.

Note that step 2 above guarantees reliability because if a NAK is sent or if the message is timed

out, then the source entity retransmits. Also, the ACKs allow the source entity to perform
garbage collection. By this we mean that the source entity can reclaim memory (buffer space)

and reuse it later. If a non-volatile buffer is used, the above communication is recoverable

from system (except media) failure. We assume that message identification numbers are used

so that duplicate messages can be easily handled.

If the source entity sends messages faster than the destination entity can receive them
(either due to slow processing or failure in reception), then the buffer in the message concen-

trator may be filled. The source entity then will be unable to send any more messages until the

destination empties some messages from the message concentrator. In this case, we say that

the source has been blocked. However, if the source has a slower rate than the destination,
determining the size of buffer that keeps the message blocking probability within specified

design limits has been widely studied [5, 6], and closed form, solutions have been obtained

provided we assume a M/M/1 queue.
In a secure environment, if Low is the source entity and sends messages to High (destination

entity), then the same protocol cannot be used.. Since the time at which Low receives the
ACK/NAK may be under the control of High the ACK/NAK arrival times can be used to

send information from High to Low (we discuss this fully in section 3.2.). If we do away with

the ACK/NAK protocol, we can insure security but at the price of unacceptable degradation
of reliability, recoverability, and/or performance - these are the problems with the read-down

and blind write-up protocols (which do not violate BLP) that we will discuss next. Therefore,

we modify the SAFP to allow Low to pass messages to High in a secure manner. For the rest
of this paper Low will be the source entity and High will be the destination entity.
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2.1 Read-Down Protocol
Read-down allows High to read Low's memory. But it does not allow High to send acknowl-

edgements after it reads Low's message; hence, this protocol is secure. Consider the following

implementation of a mechanism that passes information from Low to High using only read-

down. Low inserts its message into a low level message buffer (in figure 2 the dashed line

separates security levels). High reads the message, but Low has no indication that the mes-

sage has been read. The message sits unchanged in the buffer until Low deletes it.

O High

_________________-______________________

read-down

Message Buffer

ACK/NAK message

O Low

Figure 2: Message passing from Low to High. using read-down.

Assuming that no error has occurred in the read-down procedure, two ways to achieve this

communication are:

* High continuously polls the low buffer. However, this method wastes resources (e.g.,

CPU time)-hence, a performance penalty.

* High periodically performs a read-down (e.g., every A time). In this case, Low cannot
send more than one message per A time units. Otherwise, (unless there is an infinite

buffer) Low may delete messages which have not been read by High. If A is too small,

then, like the polling method, this method will waste resources. If A is too large, then

the message rate will be reduced (i.e., the message rate of this communication is less

than or equal to A messages/unit time). Hence, a performance penalty.

Another drawback of this method is that Low cannot detect if High is ready to receive messages

or not. For example, if High crashes, there is no way for Low to detect the situation and stop

sending messages (otherwise Low may delete messages that High has not read yet).



2.2 Blind Write-Up Protocol
Blind write-up allows Low to write on High's memory. But it does not allow High to send an
ACK/NAK to Low. We could implement a blind write-up mechanism as follows in figure 3.

0x ) High

ACK/NAK message

Message Buffer

_________________-___.___________________

blind write-upt ) Low

Figure 3: Message passing from Low to High using blind write-up.

Low writes its message into the high level message buffer and High reads messages from the
buffer. Low does not know whether or not the message buffer has space available (since this
message buffer is at higher level than Low), so it must send a message and hope that High
receives it. Hence, this mechanism is unreliable because even if an error occurred during
transmission, there is no way for Low to discover it and retransmit the message. Also, Low
might write over messages before High has read them.

3 A Quasi-Secure Low-to-High Communication Pro-
tocol
The communication mechanisms presented in the previous section all have undesirable char-
acteristics. The read-down and blind write-up methods are unreliable because there is no way
of knowing if the intended receiver actually received the message. Hence, even though these
mechanisms may be secure, they are not a good substitute for the conventional protocol. We

* believe that there is no way to obtain a realistic system with realistic performance requirements
without sacrificing some security. Therefore, we seek to design a system with quasi-security
that still satisfies the performance and reliability requirements. In other words, we will tol-
erate a system that allows some insecurity below a certain level provided that the rest of the
requirements are satisfied. To quantify that level, we must discuss covert channels. Classically,
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a covert channel has been defined as a communication channel from High to Low that exists

contrary to a secure system design [7]. Since covert channels seem to be a fact of life, we

adopt the more lenient view and just say that in a MLS system any communication channel

from High to Low is a covert channel. We say that the system is quasi-secure if the potential

damage of a covert channel is kept within tolerable bounds. Capacity (in the information

theoretic sense of Shannon [8]) of the covert channel is a good measure of insecurity if we
are concerned with the leakage of a large amount of data in a large amount of time. If our

concern is with a small message being passed covertly, possibly in a very noisy environment,

then we need another metric aside from capacity (this is discussed fully in the section on the

Small Message Criterion in [9]). Hence quasi-security must take the small message criterion
into account also. In this paper, we can think of the small message criterion as a bound for

how many bits can be passed (possibly noiselessly) in a small amount of time.

There are two basic types of covert channels [10]; the storage channel (different responses,
same time) and the timing channel. A covert channel is called a timing channel if the output

alphabet consists of the same response given at different times. Our security concern with the

conventional communication protocol is that of High forcing Low ACKs to arrive at different

times and thus creating a timing channel.

The Pump, introduced in this section, is a variation of the conventional communication

protocol that was introduced in section 2. We already mentioned that the conventional com-

munication protocol has a covert channel. One way to circumvent this timing channel problem

is to limit the ACK/NAK sending rate to meet the NCSC covert channel capacity guidelines

[11] for B3/A1 systems. However, if it is desirable to send more messages (or ACK/NAK) than

what the NCSC guideline specifies, and the communication channel can handle this traffic,

then this limitation severely penalizes the performance of the communication system.

The Pump adds random noise to conventional communication methods to reduce the covert

channel capacity. There have been other attempts to reduce channel capacity by introducing

random noise to the system [12, 13, 14, 9]. Our approach is different in the sense that ours

pays almost no performance penalty in the benign situation (i.e., there is no Trojan horse

in the system). When Trojan horses attempt covert communication our approach reduces

potential timing channel capacity. Before describing the Pump in detail, we first examine the

timing channel that exists in the conventional communication protocol.

3.1 The Full Buffer Channel
We are looking at a secure system where, as stated before, the source entity is Low and

the destination entity is High. Below, as before, is the conventional communication protocol

illustrated for such a secure system.
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Message
Concentrator

Low Store- High
ACK K fand-rd ACK/NAK

send buffer receive

Figure 4: Conventional message passing from Low to High.

High cannot directly communicate with Low. However, Low must receive an ACK before

it sends its next message to the (store and forward) buffer. High, by not sending ACKs to the
buffer, can cause the buffer to become full. As long as the buffer is not full Low receives the

ACK after a wait of overhead communication time 0, (For the sake of simplicity we assume

that the Low and High ACK overheads are the same. If the overheads differ our formulas

in section 3 can be easily modified). Once the buffer becomes full, High can send an ACK

to the buffer, a message is removed from the buffer, a space is open on the buffer, and Low

will receive an ACK. The time at which this ACK arrives at Low is under the direct control

of High. Note that when Low receives its ACK, the buffer becomes full again and High can

repeat the game. Thus we see that there is a covert timing channel between High and Low

which we refer to as the full buffer channel (I'BC).

3.1.1 Trojan horse Exploitation of the FBC

A Trojan horse (malicious software in both Low and High) can exploit the present situation

and create a covert timing channel. The Trojan horse controls when Low sends a message and

controls when High sends an ACK back to the message concentrator.

* The Trojan horse fills the buffer by not removing messages from the SAFB. Now that

the buffer is full, a noiseless covert timing channel exists between Low and High. Fur-

thermore, this noiseless channel exists as long as the buffer is full.

* Now Low sends a message to the SAFB. The SAFB cannot send an ACK back to Low

until a spot opens up on the buffer. If High removes a message as soon as (or before)

Low sends a message than Low only waits the overhead time 0, for an ACK. We assume

that High, by removing messages from a full buffer, can affect the ACK time to Low in

increments of iE, i = 0, 1, 2,.... Since the high Trojan horse knows the size of the buffer

(i.e., n) and how fast the low Trojan horse can send a message, High knows that Low

has filled the buffer and has just sent a new message to the buffer. If Low gets an ACK

at time 0, + is, Low interprets the signal as the (i + 1)st symbol. Since every time Low
receives an ACK, the buffer is full again, and Low can then attempt to insert its new

message - High can noiselessly send symbols again.
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With this example we are looking at a worst case scenario. High will try to send symbols

as quickly as possible, hence the time values of ov + ic. Of course this allows unbounded
response times. Real systems have timeouts and we assume that the timeouts in question are

very large in comparison to 0,, c, so that by examining a channel with i bounded, changes

the capacity very little from assuming that i is unbounded. The time units of our system

are such that e is an integer, i.e., c is an integer number of system clock ticks. The channel

capacity [8] of this channel is given by

C = lim sup log N(k) bits per clock tick
k-+wo k

where the logarithms are base two and N(k) is the number of distinct sequences of symbols

(ACK times) that take a total of time k. It can be shown [15, 16] that C = logew, where w

is the positive root of 1 - (x-ov + x-'). The polynomial arises from the recurrence relation
N(k) = N(k -0,) + N(k -(0, + E)) + N(k -(0, + 2E)) + *

Define q by ° = q. Note that q need not be an integer. By changing variables and letting

y = xz we see that wa is the positive root of 1 - (yew + y-'). Unfortunately, the only closed
form solution for such polynomials [15] involve special functions. We will give the following

figure to illustrate the various capacities. (Note for certain special cases such as q = 1 we can
obtain the trivial closed form solution that C = 1/c bits per clock tick. Similarly for q = 2,
we have C = c-1 log' . )

Below is a plot of cC, as a function of q
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Figure 4.a: cC of the FBC.

No matter how large the buffer may be, the important fact is that eventually the buffer

will fill up. (The Pump does not allow the full buffer channel to exist because the Pump keeps

the buffer from being/remaining full.)

3.1.2 The FBC and relative Low/High speeds

We need to consider the relative speeds or rates of the Low and High processes. The rates are

the inverse of the mean time for arrival or service. The rate that Low can send messages to the

buffer, provided the buffer is not full, will be called the arrival rate and the rate at which High

ACKs messages from the buffer will be called the service rate. The actual arrivals, service

times, ACK times, etc. are often governed by probabilistic distributions. If the arrival rate is

slower than, or equal to, the service rate then the buffer will not stay full and we do not have

the FBC (the buffer can temporarily become full through bursty Low behaviour). However,
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if the arrival rate is faster than the service rate, or if a Trojan horse is present to slow High

down, (thus Low would then be faster) the buffer can stay full. Therefore, to prevent the

FBC we need to slow the arrival rate down. We can accomplish this by slowing the Low ACK

rate (RI) down. Since Low cannot send a new message until it has an ACK from its previous

message, we see that the slowing of RI rate also slows the arrival rate (i.e., back-pressure).

Of course we can slow RI down as much as we like but for security purposes we need only
slow RI down to match the service rate. Any reduction past this point degrades performance.

Note that service rate is the same as the High ACK rate (Rh), whereas the arrival rate is

quite different from RI. These distinctions are quite important when we discuss the queuing

theoretic simulations.

send
as quickly as

arrival rate possible 
Low ~~~SAFB Hg

ACK ACKJ
as soon as possible (Rh

(RI)

Figure 5: Rates associated with the conventional communication protocol.

What the Pump does is to slow the arrival rate down to match Rh if the arrival rate starts
out faster than the service rate. The Pump lowers RI, thus lowering the arrival rate, by basing
RI on a moving average of past High ACK times. If the arrival rate is slower than Rh the
Pump basically leaves the arrival rate unchanged.

3.2 The Pump-A Quasi-Secure Communication Protocol
This process can be used as a communication mediator between any two security levels. Even

though the Pump can reside in either the low or high level, in this paper we assume that the

Pump resides in the security level of the destination entity and hence is of a high level. The

Pump needs to be "trusted" in the sense that the system designer has an assurance that the

Pump will do only what it is supposed to do (i.e., the Pump sends to Low only ACK/NAK

and does not repeat High's message). In a sense, the Pump is blocking any message flow from

High to Low.

In our model of communication between Low and High, the location (i.e., either in the

same computer or in two separate computers) of these two processes is not important.

The Pump has three basic components which work in conjunction with (Pump indepen-

dent) Low and High to allow data to be passed from Low to High. In actuality, there is a

subtle violation of Bell-LaPadula which allows covert channels, of small capacity, to exist.
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This is why we call the Pump quasi-secure. The "trust" insures that there are no further
Bell-LaPadula violations. We will examine this later in the paper.

The components are the the trusted low process (TLP), the trusted high process (THP),
and a communication buffer (CB). The Pump works as follows:

Tmst~d massaes
High }<i~I High )

pres A kNK

~~~~Tmsltcd<> AdK/N

ICom Low NOA ( 9
| buffer prcs messages

The Pump

Figure 6: Message passing from Low to High using the Pump.

Low: (Exterior to the Pump)
Low sends a message to the TLP and waits for an ACK from the TLP. Once an ACK
arrives, then the message is removed from Low (i.e., does the garbage collection from
Low's internal queue) and a new message is sent (i.e., if Low receives NAK or no response
due to a time-out then it will retransmit the same message). Note that Low may prepare
a new message while Low waits for an ACK/NAK'.

Trusted low process:
When a message arrives from Low, the TLP inserts the message in the CB and then
sends an ACK, after a certain probabilistic delay based on a moving average of the past
m High ACK times2, to Low if the insertion is successful (i.e., there is space in the CB)z-
As stated we configure the Pump as a high process to allow communication between
the Pump and High. However, as discussed, the sending of ACKs to Low violates the
Bell-LaPadula constraints. A Trojan horse can exploit this procedure. If the message
arrives while the CB is empty, then the TLP will send the signal, wake-up, to the THP.

High: (Exterior to the Pump)
When High receives a message from the THP, it stores the message and then sends an
ACK/NAK to the THP.

lNote that sliding window based schemes exist that can send w messages without receiving any ACK/NAK. For
* simplicity, we assume w = 1 throughout the discussion in this paper.

2 The choice of the delay is the key to a successful implementation of the Pump, see section 3.4.
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Trusted high process:
Upon receiving the wake-up signal from the TLP, it repeats the following while there is

a message in the CB:

1. Send the first message in the CB to High.

2. Once an ACK arrives from High, remove the message from the CB and compute

the moving average. If the THP receives NAK or no response (i.e., time-out) then

retransmit the same message.

Since the Pump is configured as a high process, this communication between the THP

and the high process does not violate the Bell-LaPadula constraints.

Communication Buffer:
This is a regular FIFO buffer whose length is n, which the TLP and the THP share. The

TLP and the THP may also learn certain statistical information from the CB (e.g., how

many messages are pending in the buffer, etc.).

We will use the notation P(G, m, n) to signify a Pump with a communication buffer of size
n, designed with a delay given by the random variable G based on a moving average of the

last m High ACK times. In section 3.4 we use a modified exponential random variable and

this specific Pump is denoted by P(M, m, n), where we use M to represent the exponential

(memoryless) random variable.

It is easy to see that any process that communicates with the Pump can collect garbage

because this process receives ACKs. Also, any communication with the Pump is reliable due to
ACK/NAK being sent. If the sender receives either NAK or is timed out, then it will retransmit

the same message. This communication method is also recoverable if we implement the CB

in non-volatile storage and each message has an associated message number. We consider the

following four cases:

case 1: The system crashes after Low sends a message to the Pump but before the Pump
receives it. Since Low never receives an ACK, it will resend the message as the system

recovers.

case 2: The system crashes after the Pump receives a message but before Low receives an
ACK. Since Low never receives an ACK, it will resend the message as the system recovers.

However, the Pump will notice that the message has already been received because of

the message number. Hence, it will just send an ACK and ignore the message.

case 3: The system crashes after the Pump sends a message but before High receives it. This
is similar to case 1.

case 4: The system crashes after High receives a message but before the Pump receives an
ACK. This is similar to case 2.

Note that there may be many destination entities and many source entities that use the

same Pump. However, in this paper, we just consider the case of one source entity and one
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destination entity which will have the worst case covert channel capacity (less noise, see [4] for
the application of the Pump in networks where many Lows send messages to many different
Highs). We have been denoting these two processes of interest as simply High and Low.
Further, when we perform channel capacity analysis we assume that there are no NAKs to
Low. This makes the analysis easier but does not affect the capacity bounds.

3.3 Performance/Security goals of the Pump
The random variable that delays the Low AClK is chosen so that R1 is roughly equal to Rh.

Note that if the arrival rate is slower than Rh, slowing RI down to the Rh does not affect
throughput because RI is still faster than the arrival rate. We discussed the security reasons
for this in subsection 3.3.1 and we will discuss an actual realization of the random variable in
section 3.4.

send
as quickly as

arrival rate TLP THP possible

Low Q C III High 

ACK _ ACK
depending on (Rh)
the history of

High responses
(RI)

Figure 7: Rates associated with the Pump.

At first glance it seems that slowing Low down will adversely affect the performance of
our communication throughput. In section 5, we show that for the P(M,rn, n), discussed in
section 3.4, that this is not the case when we compare performance of the Pump to that of
the conventional communication protocol through simulations.

3.3.1 Low ACK rate = High ACK rate

We guarantee that RI is roughly equal to Rh via the moving average construction in the TLP.
Let Li be the random variable that represents the time it takes for Low to receive an ACK
from its ith message sent into the CB. Let Hjm be the average of the last m High ACK times
that have occurred up to and including the time that the CB receives the ith message from
Low.
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Last m High ACKs

. I

It I~~~LL

Low sends ih message time that elapsed from when Low
i-th message stored in sent i-th message to when Low receives

the Pump an ACK

Figure 8: Moving average construction.

A necessary requirement is that the mean of Li, denoted as p(Li) be equal to Hmi. Even
though the Li are not independent (or identical to each other) we take a "strong law of large

numbers" approach toward looking at RI. Note that RI is the inverse of the average of the

actual values of the Li. This numerical average should behave as the average of the y(Li) but

this, by definition, is equal to the average of the High moving averages the Hmi and this is

approximately equal to the average of the High ACK times (provided that the total number

of messages acknowledged by High, denoted by N, satisfies N >> m) which is simply 1/Rh.

Thus,

R-= NZ£ Li zNZ E(Li) =N HEm.i R
Hence RI - Rh. Note it is not our goal to show that the Pump achieves RI ; Rh; rather it

is our goal to show that the Pump has a built-in mechanism that does not allow the CB to

become full too often and, when it is full, that substantial information is not passed to Low.

Therefore, we use the above mathematics to give justification to our choices for the random

variables defining the Low ACK time. Our analysis of covert channel exploitations in section

4 shows that Low cannot glean significant information if and when the CB becomes full.

3.3.2 Throughput

Since the Pump is a one-way communication device rather than a two-way communication
device (that can be used in an interactive mode), the throughput is a good measure of perfor-

mance. The throughput is the number of messages sent from Low to High, that are acknowl-

edged to the buffer by High, per unit time.

When studying performance, we are considering only the benign case. When a Trojan
horse is acting maliciously, performance is no longer our first priority. One of the advantages

of the Pump is that its performance to security ratio is dynamic. By this we mean that in

the benign case the performance takes a very small hit; however, in the Trojan horse case the

capacity of any potential covert channels is greatly diminished and that the Pump responds

automatically to the changing situations.
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To ensure good performance/security we believe that the buffer should not be allowed to

become and/or stay full. We have already discussed the security problems relating to a full

buffer. The performance reasons are that, if Low is sending messages faster than High can

handle them, then High becomes a bottleneck and the throughput is thus limited by the High
rate.

However, the construction of the Pump has the ACK times to Low governed by a random

variable by definition.

1. If High is faster than Low then the random variable should not affect Low's rate because

RI is faster than Low's rate.

2. If Low is faster than High, then the random variable should slow Low's rate down. This

is the reason for the moving average construction in the Low ACK time. In terms of

performance the best that we can hope for is Low's rate to be equal to High's rate. If

Low and High rates are roughly equal then performance and security are good. If Low

is allowed to become slower than High then we are wasting resources since High waits in

an idle mode for Low to send messages.

3. If Low and High rates are equal then we are all right since the probability of the buffer

becoming and staying full are small (burstiness may occur).

4. A fourth case arises if the source of delays is the Pump itself (i.e., the overhead). In this

case the buffer can become full but it is not under the control of High. Even though this

is acceptable for security it is not good for performance and a faster Pump should be

used. We will not consider this case further.

3.4 Choice of a random variable - the P(M, m, 72)
The density function of the random variable for Low ACK times that will be chosen should-

have the following two properties:

1. The mean of this random variable should be controllable. The density function should
be sensitive to system feedback, in order to meet the performance/security requirement.

2. There should be no upper bound. If the support of the density function has an upper
bound, then the upper bound can be exploited by Trojan horses. For example, if the
uniform distribution is chosen with support [Q,, B] the mean must be H1 mi for the per-

formance reasons discussed. This forces B = 2 Hmi - O,. Hence, if the high Trojan horse
decides to send a signal by keeping the CB full for a time greater than B, then the signal
is delivered without any noise. Aside from capacity concerns this allows small messages

to be passed, with high confidence, in a small amount of time.

Even though there are many random variables that satisfy the above properties we have
chosen the exponential distribution because the capacity of the covert channel is relatively

easy to analyze (due to the relatively simple density function).
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We will now describe in detail an implementation of the Pump using a modified exponential

distribution for the delay in the ACKs to Low. This is the P(M, m, n). As before, we let Q,
be the communication overhead for the Pump. By this we mean that O, is the minimum

value for any Li. Si is the value for what Li would be if this were just the SAFP. The smallest

Si can be is 0, (which is always the case if the buffer is not full). The largest Si can be is r,
where r is a time out which is taken to be much larger than 0,. The ith response to Low,
Li, is given by a random variable that has the density function fi(t). There are three cases to

discuss.

Case 1: Si = Ov and Si < HJi
This is always the situation when the CB is not full.

a e-ai(I-SO) if 0O < t < 'r
(t) = 0, otherwise.

This is just an exponential distribution that starts at Si instead of time 0. Unfortunately, this
will allow the response time to be infinite, so we must bound this distribution. We therefore

put a time out in such that if Low has not received an ACK by time r, it interprets that as a
NAK. We should then adjust the density function by a multiplicative constant. However, r is

chosen so much larger than 0, which is the present Si value, that this constant is essentially

unity and we therefore ignore the constant.

The mean of the above density function is Si + 1/ai. Since we wish for this mean to be

equal to the moving average of the last m High ACK times we see that ai = Hm1-s; 

Case 2: Si > 0, and Si < Jmi

As above aci = HmSi . The timeout r is much greater than 0, but there is no guarantee that
it is much larger than a generic Si value. Therefore if Si is much larger than O, we can no

longer assume that the tail of the modified exponential distribution is negligible. Therefore,

we cannot ignore the above mentioned multiplicative constant and we must modify what we

did in case 1. However, the spirit is still the same.

Step 1: Set P3i = r - 1/as. We still use an exponential distribution between Si and i3 ,

however, we "absorb" all of the probability (assuming exponential behavior) from /3i to oo

into time r. To be precise, consider the following pdf:

gi(t) = X[s,,,i](t)aiei(t`Si) + e'i(i- 5')6(t - r)

Note, since /i -Si _ r - HJmi > 0 and 6(t) is the Dirac delta function, the above is a
well-defined density function. The expectation of this density is

| tgi(t) dt = Si + 1 + e-i(,i-Si)(r - pi - I )

Since /i was set equal to T - 1/ai we see that the expected value is simply Si + 1/ai. We

could stop at this step, however there is now a non-zero probability of Li = r. This could

possibly be used for covert communication so we wish to further increase the ambiguity of Li
while still keeping performance in mind.
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Step 2: Now we select a uniform random number between Si and p3i and call it ,/i3 and

set r'j = ,3 'i + 1/ai. Consider yet another pdf

g i(t) = X[S,,,8](t)aie-ai(t-S) + eai(iSi)(t - T')

Since this integrates over the reals to one it is a well-defined density function. Its expected
value is still Si + 1/ai. So we have negated using r as a signal. Since rT'i is in fact randomly
generated, we feel there is a very small chance that r'i may be used as a signal. However, we

go one step further to increase the ambiguity of the time signal.
Step 3: We wish to uniformly spread the probability of Li = r'i out over the interval

between [rT'i, r]. Consider the density function

fM(t) = X S",6(t)aeie( i) ±

Now the mean of this is larger than Si + 1/ai. This is acceptable because this helps keep the
CB from remaining full. This does not affect performance too much because the percentage
of time that the CB is full is in fact quite small. (see section 5).
Case 3: Si > imi

This is identical to case one, except we use a small mean for the exponential distribution. For
the best performance the mean should be infinitesimally small, however for security we bound
it away from zero, otherwise the value of Si can be observed by Low (and possibly be used for
noiseless covert communication).

3.5 Pump algorithm
We give the algorithm for the P(M, m, n) to show how the Pump sets Li.
Note: Si is the time between when Low sends a message and when Low receives an ACK in
the SAFP and e is a small number. We have the following relationships between our terms.

p3i = ± + Si- Imi, ri' = pi' + Hjmi -SS, J3i" =3,'-Si and a random delay Di = Li-S.Si

Message is placed in CB

Read mim;

IF Si 2 Hmi THEN t:= c;
ELSE ,i := mi -Si

END IF;
Draw an exponential random number ( whose mean is 1i;
IF Si = 0v OR SiŽ 2 Ji THEN

Di := (;
IF Di > r - Si THEN Di := r - Si;
END IF;

ELSE
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Draw a uniform random number /3i" between 0 and i - Si;

IF 6 < 3li" THEN Di := (
ELSE

Draw an uniform random number (' between ri' and -r

Di := ('- Si;
END IF;

END IF;

4 Covert Channel Analysis
We will now show that it is impossible for a Trojan horse to exploit the Pump in any meaningful

way. Assume that High wishes to signal Low covertly. Let us try to get some quantitative
bounds on the capacity for a P(M, m, n).

High will attempt to signal Low by affecting the values of Li. Say High tries the strategy

that we discussed earlier of letting the CB get full and then removing messages within time

O, + ic. A few factors make this an unfeasible Trojan horse strategy. High cannot get the
CB full and keep it full without imposing a severe time penalty being enacted upon Li. This

is because for the CB to become full, High must be removing messages at a slower rate than

Low is getting ACKs back from the TLP. But after a certain number of messages the slow rate

of High is manifested by forcing Li to also slow down due to the moving average construction
of p(Li). There are three basic problems with this approach.

* The noise that is involved when High tries to send a symbol to Low.

* The time involved in sending the symbol due to large delays by High necessitated by

High trying to send a symbol with as little noise as possible.

* Synchronization problems between High and Low. By this we mean the ability of Low

to differentiate, via Li values or the number of messages ACK'ed, between when High is

getting ready to send a message (i.e., letting the CB get full) and when Li is the actual

symbol being passed by High.

Let us consider three possible exploitations below where the last strategy exploits High's

ability to influence Hmi and the first two strategies exploit High's ability to make CB full in

addition to influence HJmi

Exploitation strategy 1:

1. High acts quickly (ACK time = 0,) m times. This has the effect of lowering the moving

average and thus speeding up the Li values.

2. Now High does not send an ACK for t = nO, in the hopes of Low filling the CB. When

Low finally does receive this delayed Li value it is interpreted as a synchronization signal
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from High to Low - This means that the next Li value is to be interpreted as a symbol

being sent by High.

3. High sends a symbol through the High ACK time (i.e., via the Si value chosen by High).

Note that due to the probabilistic nature of Li and the fact that the CB may not even be
full, this symbol is quite ambiguous (noisy). Also now Li is large because of the previous

High delay of t = nO,.

High wishes for the CB to become full again so that it can again send a symbol with as little

noise as possible, so High repeats the above process of lowering Li by acting quickly and then

delaying and finally sending a symbol. We see that if a symbol is sent noiselessly it would take

at least t = (m + n + 1)0,. The next shortest symbol would take (m + n + 1)0, + E, the next
(m + n + 1)0, + 2E, etc. We assume (the worst case) that the channel has an infinite alphabet,

so, like before, the capacity of this timing channel (C') is the logarithm of the positive root

of 1 - (x(m+n+1)0v + x-e). Obviously this timing channel has a smaller capacity than the
FBC (we designate the capacity of the FBC by C for this discussion). However, the question
remains as to how much smaller. We define It by

R = -N log(1 - wn/N)

q log w

where w is the positive root of 1 - (wq + w- ). If m + n + 1- > R, it can be shown that
C' < NC. Thus by adjusting m and n we can reduce the capacity by any amount that we
want. Follows a plot of R against the reduction factor k for various q values.
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Figure 8.a: reduction factors.

Exploitation strategy 2:

1. High acts quickly (ACK time = 0,) m times.

2. Now High does not send an ACK for t = nO,.

3. High sends a symbol through High ACK time (i.e., via the Si value chosen by High).

The first three steps are the same as those of the strategy 1. The difference is instead of

High repeating the process of - filling the CB, delaying, sending a symbol, and filling the

CB again - after High sends the first symbol, it continues to send symbols. However, if High

ACKs a message quickly (i.e., small Si values) to try to send more symbols per given time to

Low it will, in fact, end up only emptying out the CB and thus will not be able to send Low

different Si values. High does not know when Low sends a message to the Pump; therefore,

High must be careful (if it wishes to keep the CB full) not to ACK a message too quickly from

the THP, because if it ACKs too quickly the CB will no longer be full and High cannot send

symbols by using different Si values. Unless the High ACK times are essentially the timeout
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r, the probability the CB is full approaches 0 as the number of symbols being sent increase. 3

However, the closer the High ACK times are to r, the less High can manipulate the Si values;
therefore, the number of symbols that High can send decreases as the probability of keeping

the CB full increases. With all of this in mind, we feel that this exploitation strategy cannot

have a capacity of more than 1/7 bits per tick.

Exploitation strategy 3:
High could attempt to send information to Low by simply affecting the moving average and

having Low interpret its response times without High trying to make the CB full. A full

analysis of this scenario is quite complicated and involves channels with continuous outputs.

Also, there are severe practical coding issues when one quantizes the output space into many

symbols. So even though a true capacity upper bound could be obtained, it would be quite

difficult to build the proper code. From a practical standpoint one could study the capacity
just through finite decoding schemes (this is not to say that one should not see how the

capacities differ). We can make some qualitative statements about the channel capacity based

on present techniques. Low's ACK time is a modified exponential distribution with shift

0,,. All that High can do is to alter the mean. Let us look at a simplifying example where

High tries to send a symbol to Low by varying the mean between two values, keeping in

mind that any immediate effect High could have on the mean is moderated by the moving

average construction. Say Low receives a response and wants to decide whether it came from

a modified exponential distribution with mean 1 or mean 2. If the means are close then it is

hard to make this decision and the symbol is very noisy. To make the symbol less noisy would

require High to enlarge the difference between the means; this, however, would also increase

the time that Low receives the symbol and in fact increase the time that Low receives future

symbols due to the moving average construction of the means. Therefore, we decrease the

noise with which symbols are sent only by penalizing the time cost with which they are sent.

Between the fidelity criterion of the symbols forcing a large difference between the values of

the means and the fact that the moving average moderates any change of High by a factor

of 1/m, we feel that the capacity of these exploitation scheme is 1/m that of the FBC. We
realize that we have only given an intuitive argument for this 1/rn reduction. At present, we

are investigating more precise arguments for this reduction [17].

Certainly one could use a combination of the above exploitation strategies. However, we

do not see any order of magnitude improvement by doing this. In our capacity bounds for all

three exploitations we were tacitly assuming that the Low and High overheads are equal. This

only affects exploitation strategy 1. If the overheads differ, the exponents of the polynomials
differ, but by adjusting m and n we can still get the desired capacity reduction.

A modification could be done to the P(M, m, n) so that the mean of the exponential

3 P( CB full after sending k symbols) = IJkU1 P(CB full after sending symbol i), since P(CB full after sending

symbol i) is bounded away from 1, provided that the High ACK times are bounded away from 7 we see that this
product approaches 0, relatively quickly as k increases.
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distribution was a function of HJi. However, if one wishes to reduce the channel capacity

further, A can be chosen not only as a function of HJm, but also as a function of the current
state of the CB. For example, if the CB is 80% full then ai may be a function of 2HJm,, if the

CB is 90% full then as may be a function of 3HJ,,i, and so on. This will have the effect of

slowing down Li when High tries to send covert signals with very little noise.

5 Simulation Analysis
To substantiate our performance claim, we perform a simulation. First, we describe our input

source, server, Pump and SAFP models. We then show the throughput rates and the profile

of the CB.

5.1 Simulation Model
In this section we present a performance comparison of the Pump to the conventional commu-

nication protocol via a simulation model. We make the standard assumptions regarding the

(benign) usage of either protocol-namely, that they are single-server queues with exponential

interarrival times and a service times given by the 2-Erlang distribution. In other words a

M/G/1 queue. Often queues such as these are modeled by the simpler M/M/1 queue. The

M/M/1 queue is more tractable for closed form analysis but the M/G/1 queue is a better

representation of reality [18]. Since our interest lies in simulation, not analytic, results, we

will use the more realistic model of queue behaviour.

Pump / CCP

Figure 9: Simulation model.

The Pump and the SAFP use the same simulation model except moving average. When

the SAFP is simulated, the moving average is always set to zero. One the other hand, when

the Pump is simulated, the moving average is computed depending on the server's ACK time.

We assume that all messages have the same length, the timeout, r, is 250.0 ms, the overheads,
0,, of store and forward buffer and the CB buffer to process a message are both 0.3 ms, and a

small number, c, is 0.001 ms in our experiments. We ignore all factors that are common in both

the SAFP and the Pump, and try to isolate the effect of random ACK time to throughput.
We perform three classes of experiments as follows. The source attempts to generate

messages whose interarrival mean time is 1.0 ms (the action of the Pump and Low's internal
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finite buffer size of course moderate this generation). The server processes messages according
to a 2-Erlang distribution with mean service time 0.5 ins, lms, or 2ms, depending on the
experiment. These experiments correspond to Low being slower, the same, or faster, than
High, respectively. Each class of experiment is broken down into three subclasses of different
buffer and moving average sizes.

5.2 Simulation Results
All simulations have been run ten times with different random numbers. The following results
are the average of those runs and show three aspects: (1) throughput, (2) the average length
of the queue in the Pump and the SAFP, and (3) the probability of the buffer to be full (CB!).

Service Time = 0.5 ms, High faster

Table 1. n = 10, m = 10
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFP 1001 1.8 0.0

Pump 1002 1.6 0.0

Table 2. n = 100, m = 100
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFPP 1001 1.8 0.0

Pump 1001 1.6 0.0

Table 3. n = 1100, m = 1000
Throughput Queue

(messages/sec) Mean Length CBf(%
SAFP 1001 1.8 0.0

Pump 1003 1.6 0.0
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Service Time = 1.0 ms, High same as Low

Table 4. n = 10, m = 10
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFPP992 9.7 81.6

Pump 960 7.6 20.6

Table 5. n = 100, m = 100
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFPP992 75.5 49.3

Pump 989 32.1 0.0

Table 6. n = 1000, m = 1000
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFPP993 149.1 0.0

Pump 990 46.0 0.0

Service Time = 2.0 ms, High slower

Table 7. n = 10, m = 10
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFP 500 10.0 96.2

Pump 475 7.6 24.5

Table 8. n = 100, m = 100
Throughput Queue

(messages/sec) Mean Length CBf (%)
SAFPP500 99.9 95.8

Pump 496 48.9 0.0

Table 9. n = 1000, m = 1000
Throughput Queue

(messages/sec) Mean Length GB! (%)
SAFPP500 987.0 91.2

Pump 494 82.1 0.0

The simulation results show that (1) there is little performance penalty due to randomized

ACKs from the Pump and (2) the Pump substantially lower the CB! (%) (that in turn lowers
the covert channel capacity). Therefore we see that the Pump does not hurt performance, but
does prevent the CB from becoming/staying full.
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6 Summary
A Pump that balances the communication requirements of reliability and security is intro-
duced. The Pump provides ACKs to a source for reliability. These ACKs are also used to
regulate the input rate from a source by attempting to slave the input rate to the inverse of
the moving average of the service time through the randomized ACK rate to the source.

Despite the Pump's randomized ACKs, there still exists a covert channel. We analyzed
the capacity of this covert channel as a function of buffer size and moving average size. The
purpose of the covert channel analysis is to provide guidelines for the designer of the Pump
to choose appropriate design parameters (e.g., size of buffer and moving average) depending
on the analysis presented in this paper and system requirements.

To back up our performance claim in this paper, we presented simulation results.
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