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SOFTWARE REQUIREMENTS: A TUTORIAL

“The hardest single part of building a software system is deciding precisely what to build. No
other part of the conceptual work is as difficult as establishing the detailed technical require-
ments...No other part of the work so cripples the resulting system if done wrong. No other part
is as difficult to rectify later.” [Brooks 87]

1. Introduction
Deciding precisely what to build and documenting the results is the goal of the requirements
phase of software development. Experience suggests that requirements are the biggest software
engineering problem for developers of large, complex systems. While there is considerable dis-
agreement on how to solve the problem, few would disagree with Dr. Brooks‘ assessment that
no other part of a development is as difficult to do well or as disastrous in result when done poor-
ly. The purpose of this tutorial is to help the reader understand why the conceptually simple no-
tion of “deciding what to build” is so difficult in practice, where the state of the art does and does
not address these difficulties, and what hope we have for doing better in the future.

This paper does not survey the literature but seeks to provide the reader with an understanding
of the underlying issues. There are currently many more approaches to requirements than one
can cover in a short paper. This diversity is the product of different views about which of the
many problems in requirements is pivotal and different assumptions about the desirable charac-
teristics of a solution. This paper attempts to impart a basic understanding of the many facets
of the requirements problem and the tradeoffs involved in attempting a solution. Thus fore-
armed, the reader may make his own assessment of the claims of different requirements methods
and their likely effectiveness in addressing his particular needs.

We begin with basic terminology and some historical data on the requirements problem. We ex-
amine the goals of the requirements phase and the problems that can arise in attempting those
goals. As in Brooks’ article, much of the discussion is motivated by the distinction between the
difficulties inherent in what one is trying to accomplish (“essential” difficulties) and those one
creates through inadequate practice (“accidental” difficulties). We discuss how a disciplined
software engineering process helps address the accidental difficulties and why the focus of a dis-
ciplined process is on producing a written specification of the detailed technical requirements.
We examine current approaches to requirements in terms of the specific problems each approach
seeks to address. Finally, we examine technical trends, including recent work at the Naval Re-
search Laboratory, and discuss where significant advances are likely to occur in the future.

2. Requirements and the Software Life Cycle
A variety of software life-cycle models have been proposed with an equal variety of terminolo-
gy. Davis [Davis 88] provides a good summary. While differing in the detailed decomposition
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of the steps (e.g., prototyping models) or in the surrounding management and control structure
(e.g., to manage risk), there is general agreement on the core elements of the model. Figure 1
from [Davis 93] gives a version of the common model that illustrates the relationship between
the software development stages and the related testing and acceptance phases. 
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Figure 1. Software Life Cycle

When software is created in the context of a larger hardware and software system, system re-
quirements are defined first followed by system design. System design includes decisions about
which parts of the system requirements will be allocated to hardware and which to software. For
software-only systems, the life cycle model begins with analysis of the software requirements.
From this point on, the software development model is the same whether or not the software is
part of a larger system, as shown in Figure 2 [Davis 93]. For this reason, the remainder of our
discussion does not distinguish whether or not software is developed as part of a larger system.
For an overview of system versus software issues, the reader is referred to Dorfman and Thayer’s
survey [Thayer 90].

 In a large system development, the software requirements specification may play a variety of
roles. For example, the requirements typically document what the customer expects to be deliv-
ered and may provide the contractual basis for the development. For managers it may provide
the basis for scheduling a yardstick for progress. To the system engineers, it defines the role of
software within the overall system and its relation to the hardware components.. For the software
designers, it specifies the constraints on behavior and performance. For coders it defines the
range of acceptable system behavior and is the final authority on the outputs produced. For test-
ers, it is the basis for test planning and verification. For some systems the requirements are also
used by such diverse groups as marketing and governmental regulators.
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Figure 2. Development paths (a) software. (b) systems

It is common practice to classify software requirements as “functional” or “non–functional.”
While definitions vary, “functional” typically refers to requirements constraining the visible be-
havior of the system, specifically the required values of the outputs for given inputs. “Non–func-
tional” typically refers to all other constraints including, but not limited to, performance, de-
pendability, maintainability, reusability, and safety requirements.

Neither the terminology nor the classification into functional and non-functional is effective.
The word “function” is one of the most overloaded in computer science and its only rigorous
meaning, that of a mathematical function, is not what is meant here. The classification is not ter-
ribly useful because it partitions classes of requirements with markedly similar qualities (e.g.,
timing of outputs from output values) while grouping others that have nothing in common except
what they are not (e.g., political issues and fault tolerance constraints).

A more useful distinction is between what can be described as “behavioral requirements” and
“developmental quality attributes” with the following definitions:

� Behavioral requirements – Behavioral requirements define the allowed, observable
behavior of the system in terms of the outputs required for given inputs and system state.
The concept of state includes time, the software state, and the hardware state so security,
correctness, performance, and fault-tolerance are behavioral requirements.

� Developmental quality attributes – Developmental quality attributes constrain the
qualities of the system’s static construction. These include properties like testability,
maintainability, changeability, maintainability, and reusability.

Behavioral requirements have in common that they are properties of the run-time behavior of
the system. Behavioral requirements can be defined in terms of inputs, outputs, and state, and
objectively validated by changing those quantities and observing the system behavior. Develop-
mental quality attributes have in common that they are properties of how the system is created
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and its static representation. Assessments of quality attributes are relativistic in the sense that
there is no common or absolute scale against which their achievement can be measured (e.g.,
one can talk about one design being more maintainable than another but not about its being maxi-
mally maintainable).

While there is a large body of literature in both the academic and development communities on
the modeling, specification, and analysis of behavioral requirements, there is relatively little sig-
nificant work on the rigorous specification of developmental attributes. Since the rigorous speci-
fication of developmental quality attributes remains a relatively unexplored area of require-
ments, the following discussion necessarily focuses on behavioral requirements and on
techniques for developing specifications with the desired quality attributes rather than on tech-
niques for specifying those attributes.

3. A Big Problem

Requirements problems are persistent, pervasive, and costly. Evidence is most readily available
for the large software systems developed for the U.S. Government since the results are a matter
of public record. As soon as software became a significant part of such systems, developers iden-
tified requirements as a major source of problems. For example, developers of the early Ballistic
Missile Defense System noted that:

In nearly every software project that fails to meet performance and cost goals, require-
ments inadequacies play a major and expensive role in project failure [Alford 79].

Nor has the problem mitigated over the intervening years. A recent study of problems in mission
critical defense systems identified requirements as a major problem source in two thirds of the
systems examined [GAO 92]. Likewise, studies by Lutz [Lutz 92] identified functional and in-
terface requirements as the major source of safety related software errors in NASA’s Voyager
and Galileo spacecraft.

Results of industry studies in the 1970’s described by Boehm [Boehm 81], and since replicated
a number of times, showed that requirements errors are the most costly. These studies all pro-
duced the same basic result: the earlier in the development process an error occurs and the later
the error is detected, the more expensive it is to correct. Moreover, the relative cost rises quickly.
As shown in Figure 3, an error that costs a dollar to fix in the requirements phase may cost 100
to 200 times as much to fix if it is not corrected until the system is fielded or in the maintenance
phase.

The costs of such failures can be enormous. For example, the 1992 GAO report notes that one
system, the Cheyenne Mountain Upgrade, will be delivered eight years late, exceed budget by
$600 million, and have less capability than originally planned. Prior GAO reports [GAO 79]
suggest that such problems are the norm rather than the exception. While data from private in-
dustry is less readily available, there is little reason to believe that the situation is significantly
different.
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Stage Relative Repair Cost
Requirements 1 – 2

Design 5

Coding 10

Unit test 20

System test 50

Maintenance 200

Figure 3. Relative cost to repair a software error in different stages

In spite of presumed advances in software engineering methodology and tool support, the re-
quirements problem has not diminished. This does not mean that the apparent progress in soft-
ware engineering is illusory. While the features of the problem have not changed, the applica-
tions have grown significantly in capability, scale, and complexity. A reasonable conclusion is
that the growing ambitiousness of our software systems has outpaced the gains in requirements
technology, at least as such technology is applied in practice.

4. Why are Requirements Hard?
It is generally agreed that the goal of the requirements phase is to establish and specify precisely
what the software must do without describing how to do it. So simple seems this basic intent that
it is not at all evident why it is so difficult to accomplish in practice. If what we want to accom-
plish is so clear, why is it so hard? To understand this, we must examine more closely the goals
of the requirements phase, where errors originate, and why the nature of the task leads to some
inherent difficulties.

Most authors agree in principle that requirements should specify “what” rather than “how.” In
other words, the goal of requirements is to understand and specify the problem to be solved rather
than the solution. For example, the requirements for an automated teller system should talk about
customer accounts, deposits, and withdrawals rather than the software algorithms and data struc-
tures. The most basic reason for this is that a specification in terms of the problem captures the
actual requirements and does not over constrain the subsequent design or implementation. Fur-
ther, solutions are typically more complex, more difficult to change, and harder to understand
(particularly for the customer) than a specification of the problem.

Unfortunately, distinguishing “what” from “how” itself represents a dilemma. As Davis [Davis
88], among others, points out, the distinction between what and how is necessarily a function
of perspective. A specification at any level of abstraction in a system can be viewed as describing
the “what” for the next level. Thus customer needs may define the “what” and the system decom-
position into hardware and software the corresponding “how”. The system decomposition de-
fines the “what” the behavior of a software component, the “how,” and so on. The upshot is that
requirements cannot be effectively discussed at all without prior agreement on the which system
one is talking about and at what level of abstraction. One must agree on what constitutes the prob-
lem space and what constitutes the solution space – the analysis and specification of require-
ments then properly belongs in the problem space.
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In discussing requirements problems one must also distinguish the development of large, com-
plex systems from smaller efforts (e.g., developments by a single or small team of program-
mers). Large system developments are multi-person efforts. They are developed by teams of tens
to hundreds of programmers. The programmers work in the context of an organization typically
including management, systems engineering, marketing, accounting, and quality assurance. The
organization itself must operate in the context of outside concerns also interested in the software
product, including the customer, regulatory agencies, and suppliers.

Even where only one system is intended, large systems are inevitably multi-version as well. As
the software is being developed, tested, and even fielded, it evolves. Customers understand bet-
ter what they want, developers understand better what they can and cannot do within the
constraints of cost and schedule, and circumstances surrounding development change. The re-
sults are changes in the software requirements and, ultimately, the software itself. In effect, sev-
eral versions of a given program are produced if only incrementally. Such unplanned changes
occur in addition to the expected variations of planned improvements.

The multi-person, multi-version nature of large system development introduces problems that
are both quantitatively and qualitatively different from those found in smaller developments. For
example, scale introduces the need for administration and control functions with the attendant
management issues that do not exist on small projects. The quantitative effects of increased com-
plexity in communication when the number of workers rises are well documented by Brooks
[Brooks 75]. In the following discussion, it is this large system development context we will as-
sume since that is the one in which the worst problems occur and where the most help is needed.

Given the context of multi-person, multi-version development, our basic goal of specifying what
the software must do can be decomposed into the following subgoals:

1. Understand precisely what is required of the software.

2. Communicate the understanding of what is required to all of the parties involved in the
development.

3. Provide a means for controlling the production to ensure that the final system satisfies the
requirements (including managing the effects of changes).

It follows that the source of most requirements errors is in the failure to adequately accomplish
one of these goals, i.e.:

1. The developers failed to understand what was required of the software by the customer,
end user, or other parties with a stake in the final product.

2. The developers did not completely and precisely capture the requirements or subsequent-
ly communicate the requirements effectively to other parties involved in the develop-
ment.

3. The developers did not effectively manage the effects of changing requirements or ensure
the conformance of down-stream development steps including design, code, integration,
test, or maintenance to the system requirements.
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The end result of such failures is a software system that does not perform as desired or expected,
a development that exceeds budget and schedule or, all too frequently, failure to deliver any
working software at all.

4.1 Essential Difficulties

Even our more detailed goals appear reasonably straight forward, why then do so many develop-
ment efforts fail to achieve them? The short answer is that the mutual satisfaction of these goals,
in practice, is inherently difficult. To understand why, it is useful to reflect on some points raised
by Dr. Brooks [Brooks 87] on why software engineering is hard and on the distinction he makes
between essential difficulties – those inherent in the problem, and the accidental difficulties –
those introduced through imperfect practice. For though requirements are inherently difficult,
there is no doubt that these difficulties are many times multiplied by the inadequacies of current
practice. The following essential difficulties attend each of the requirements goals:

� Comprehension. People do not know what they want. This does not mean that people do
not have a general idea of what the software is for. Rather, they do not begin with a precise
and detailed understanding of what functions belong in the software, what the output must
be for every possible input, how long each operation should take, how one decision will
affect another, and so on. Indeed, unless the new system is simply a reconstruction of an
old one, such a detailed understanding at the outset is unachievable. Many decisions about
the system behavior will depend on other decisions yet unmade and expectations will
change as the problem (and attendant costs of alternative solutions) is better understood.
Nonetheless, it is this precise and richly detailed understanding of expected behavior that
is needed to create effective designs and develop correct code.

� Communication. Software requirements are difficult to communicate effectively. As Dr.
Brooks points out, the conceptual structures of software systems are complex, arbitrary,
and difficult to visualize. The large software systems we are now building are among the
most complex man-made artifacts ever attempted. That complexity is arbitrary in the
sense that it is an artifact of people’s decisions and prior construction rather than a
reflection of fundamental properties (as, for example, in the case of physical laws). To
make matters worse, most of the conceptual structures in software have no readily
comprehensible physical analogue so they are difficult to visualize.

In practice, comprehension suffers under all of these constraints. We work best with
regular, predictable structures, can comprehend only a limited amount of information at
one time, and understand large amounts of information best when we can visualize it.
Thus the task of capturing and conveying software requirements is inherently difficult.

The inherent difficulty of communication is compounded by the diversity of purposes and
audiences for a requirements specification. Ideally a technical specification is written for
a particular audience. The brevity and comprehensibility of the document depend on
assumptions about common technical background and use of language. Such commonal-
ity typically does not hold for the many diverse groups (e.g., customers, systems
engineers, managers) that must use a software requirements specification.
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� Control. Inherent difficulties attend control of software development as well. The
arbitrary and invisible nature of software makes it difficult to anticipate which
requirements will be met easily and which will decimate the project’s budget and schedule
if they can be fulfilled at all. The low fidelity of software planning has become a cliche
yet the requirements are the only available basis for planning or for tracking to a plan.

This situation is made incalculably worse by by software’s inherent malleability. Of all
the problems bedeviling software mangers, few evoke such passion as the difficulties of
dealing with frequent and arbitrary changes to requirements. For most systems, such
changes remain a fact of life even after delivery. The continuous changes make it difficult
to develop stable specifications, plan effectively, or control cost and schedule. For many
industrial developers, change management is the most critical problem in requirements.

� Inseparable concerns. In seeking solutions to the forgoing problems, we are faced with
the additional difficulty that the issues cannot easily be separated and dealt with
piecemeal. For example, developers have attempted to address the problem of changing
requirements by baselining and freezing requirements before design begins. This proves
impractical because of the comprehension problem – the customer will not fully know
what he wants until he sees it. Similarly, the diversity of purposes and audiences is often
addressed by writing a different specification for each. Thus there may be a system
specification, a set of requirements delivered to customer, a distinct set of technical
requirements written for the internal consumption of the software developers, and so on.
However this solution vastly increases the complexity, provides an open avenue for
inconsistencies, and multiplies the difficulties of managing changes.

These issues represent only a sample of the inherent relationships between different facets
of the requirements problem. The many distinct parties with an interest in a system’s
requirements, the many different roles the requirements play, and the interlocking nature
of software’s conceptual structures all introduce dependencies between concerns and
impose conflicting constraints on any potential solution.

The implications are twofold. First we are constrained in the application of our most
effective strategy for dealing with complex problems – divide and conquer. If a problem
is considered in isolation, the solution is likely to aggravate other difficulties. Effective
solutions to most requirements difficulties must simultaneously address more than one
problem. Second, developing practical solutions requires making difficult tradeoffs.
Where different problems have conflicting constraints, compromises must be made.
Because the tradeoffs result in different gains or losses to the different parties involved,
effective compromises require negotiation. These issues are considered in more detail
when we discuss the properties of a good requirements specification.

4.2 Accidental Difficulties

While there is no doubt that software requirements are inherently difficult to do well, there is
equally no doubt that common practice unnecessarily exacerbates the difficulty. We use the term
“accidental” in contrast to “essential,”  not to imply that the difficulties arise by chance but that
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they are the product of common failings in management, elicitation, specification, or use of re-
quirements. It is these failings that are most easily addressed by improved practice.

� Written as an afterthought. It remains common practice that requirements documentation
is developed only after the software has been written. For many projects, the temptation
to rush into implementation before the requirements are adequately understood proves
irresistible. This is understandable. Developers often feel like they are not really doing
anything when they are not writing code; managers are concerned about schedule when
there is no visible progress on the implementation. Then too, the intangible nature of the
product mitigates toward early implementation. Developing the system is an obvious way
to understand better what is needed and make visible the actual behavior of the product.
The result is that requirements are written as an afterthought (if at all). They are not
created to guide the developers and testers but treated as a necessary evil to satisfy
contractual demands.

Such after-the-fact documentation inevitably violates the basic goal of defining what the
system must do rather than the how since it is a specification of the code as written. It is
produced after the fact so it is not planned or managed as an essential part of the
development but is thrown together.  In fact, it is not even available in time to guide
implementation or manage development.

� Confused in purpose. Because there are so many potential audiences for a requirements
specification, with different points of view, the exact purpose of the document becomes
confused. It is used to sell the product to the customer so it includes marketing hype
extoling the product’s virtues. It is the only documentation of what the system does so it
provides introductory, explanatory, and overview material. It is a contractual document
so it is intentionally imprecise to allow the developer latitude in the delivered product or
the customer latitude in making no-cost changes. It is the vehicle for communicating
decisions about software details to designers and coders so it incorporates design and
implementation. The result is a document in which it is unclear which statements
represent real requirements and which are more properly allocated to marketing, design,
or other documentation. It is a document that attempts to be everything to everyone and
ultimately serves no one well.

� Not designed to be useful. Often in the rush to implementation little effort is expended
on requirements. The requirements specification is not expected to be useful and, indeed,
this turns out to be a self-fulfilling prophecy. Because the document is not expected to be
useful little effort is expended on designing it, writing it, checking it, or managing its
creation and evolution. The most obvious result is poor organization. The specification
is written in English prose and follows the author’s stream of consciousness or the order
of execution.

The resulting document is ineffective as a technical reference. It is unclear which
statements represent actual requirements. It is unclear where to put or find particular
requirements. There is no effective procedure for ensuring that the specification is
consistent or complete. The is no systematic way to manage requirements changes. The
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specification is difficult to use and difficult to maintain. It quickly becomes out of date
and loses whatever usefulness it might originally have had.

� Lacks essential properties. Lack of forethought, confusion of purpose, or lack of careful
design and execution all lead to requirements that lack properties critical to good
technical specifications. The requirements, if documented at all, are redundant,
inconsistent, incomplete, imprecise, and inaccurate.

Where the essential difficulties are inherent in the problem, the accidental difficulties result from
a failure to gain or maintain intellectual control over what is to be built. While the presence of
the essential difficulties means that there can be no “silver bullet” that will suddenly render re-
quirements easy, we can remove at least the accidental difficulties through a well thought out,
systematic, and disciplined development process. Such a disciplined process provides a stable
foundation for attacking the essential difficulties.

5. Role of a Disciplined Approach
The application of discipline in analyzing and specifying software requirements can address the
accidental difficulties. While there is now general agreement on the desirable qualities of a soft-
ware development approach, the field is insufficiently mature to have standardized the develop-
ment process. Nonetheless, it is useful to examine the characteristics of an idealized process and
its products to understand where current approaches weak and which current trends are promis-
ing. In general, a complete requirements approach will define:

� Process: The (partially ordered) sequence of activities, entrance and exit criteria for each
activity, which work product is produced in each activity, and what kind of people should
do the work.

� Products: The work products to be produced and, for each product, the information
needed to produce it, the information it contains, the expected audience, and the
acceptance criteria the product must satisfy.

Currently, there is little uniformity in different authors’ decomposition of the requirements
phase or in the terminology for the activities. Davis [Davis 88] provides a good summary of the
variations. Following Davis’ integrated model and terminology [Davis 93], the requirements
phase consists of two conceptually distinct but overlapping activities corresponding to the first
two goals for requirements enumerated above:

1. Problem analysis: The goal of problem analysis is to understand precisely what problem
is to be solved. It includes identifying the exact purpose of the system, who will use it,
the constraints on acceptable solutions, and the possible tradeoffs between conflicting
constraints.

2. Requirements specification: The goal of requirements specification is to create a docu-
ment, the Software Requirements Specification (SRS), describing exactly what is to be
built. The SRS captures the results of problem analysis and characterizes the set of accept-
able solutions to the problem.
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In practice, the distinction between these activities is conceptual rather than temporal. Where
both are needed, the developer typically switches back and forth between analysis of the problem
and documentation of the results. When problems are well understood, the analysis phase may
be virtually non-existent. When the system model and documentation are standardized or based
on existing specifications, the documentation paradigm may guide the analysis [Hester 81].

5.1 Problem Analysis

Problem analysis is necessarily informal in the sense that there is no effective, closed end proce-
dure that will guarantee success. It is an information acquisition, collating, and structuring pro-
cess through which one attempts to understand all the various parts of a problem and their rela-
tionships. The difficulty in developing effective understanding of large, complex software
problems has motivated considerable effort to structure and codify problem analysis.

The basic issues in problem analysis are:

� How to elicit a complete set of requirements from the customer or other sources?

� How to decompose the problem into intellectually manageable pieces?

� How to organize the information so it can be understood?

� How to communicate about the problem with all the parties involved?

� How to resolve conflicting needs?

� How to know when to stop?

5.2 Requirements Specification

For substantial developments, the effectiveness of the requirements effort depends on how well
the SRS captures the results of analysis and how useable the specification is. There is little bene-
fit to developing a thorough understanding of the problem if that understanding is not effectively
communicated to customers, designers, implementors, testers, and maintainers. The larger and
more complex the system, the more important a good specification becomes. This is a direct re-
sult of the many roles the SRS plays in a multi-person, multi-version development [Parnas 86]:

1. The SRS is the primary vehicle for agreement between the developer and customer on
exactly what is to be built. It is the document reviewed by the customer or his representa-
tive and often is the basis for judging fulfillment of contractual obligations.

2. The SRS records the results of problem analysis. It is the basis for determining where the
requirements are complete and where additional analysis is necessary. Documenting the
results of analysis allows questions about the problem to be asked only once during devel-
opment.

3. The SRS defines what properties the system must have and the constraints on its design
and implementation. It defines where there is, and is not, design freedom. It helps ensure
that requirements decisions are made explicitly during the requirements phase, not im-
plicitly during programming.
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4. The SRS is the basis for estimating cost and schedule. It is management’s primary tool
for tracking development progress and ascertaining what remains to be done.

5. The SRS is the basis for test plan development. It is the tester’s chief tool for determining
the acceptable behavior of the software.

6. The SRS provides the standard definition of expected behavior for the system’s maintain-
ers and is used to record engineering changes.

For a disciplined software development, the SRS is the primary technical specification of the
software and the primary control document. This is an inevitable result of the complexity of large
systems and the need to coordinate multi-person development teams. To ensure that the right
system is built one must first understand the problem. To ensure agreement on what is to be built
and the criteria for success, the results of that understanding must be written down.  The goal
of a systematic requirements process is thus the development of a set of requirements that effec-
tively communicate the results of analysis.

Requirements’ accidental difficulties are addressed through the careful analysis and specifica-
tion of a disciplined process. Rather than developing the specification as an afterthought, re-
quirements are understood and specified before development begins. One knows what one is
building before attempting to build it. The SRS is the primary vehicle for communicating re-
quirements between the developers, managers, and customers so the document is designed to
be useful to that purpose. A useful document is maintained.

6. Requirements for the Software Requirements Specification
The goals of the requirements process, the attendant difficulties, and the role of the requirements
specification in a disciplined process determine the properties of a “good” requirements specifi-
cation. These properties do not mandate any particular method but do describe the characteristics
an effective method must address.

In discussing the properties of a good SRS, it useful to distinguish semantic properties from
packaging properties [Faulk 92]. Semantic properties result from what the specification says
(i.e., its meaning or semantics). Packaging properties result from how the requirements are writ-
ten down – the format, organization, and presentation of the information. The semantic proper-
ties determine how precisely an SRS captures the software requirements. The packaging proper-
ties determine how useable the resulting specification is. Figure 4 illustrates the classification
of properties of a good SRS:

SRS Semantic Properties SRS Packaging Properties
Complete Modifiable

Implementation independent Readable

Unambiguous and consistent Organized for reference and review

Precise

Verifiable

Figure 4. Classification of SRS properties
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An SRS that satisfies the semantic properties of a good specification is:

� Complete. The SRS defines the set of acceptable implementations. It should contain all
the information needed to write software that is acceptable to the customer and no more.
Any implementation that satisfies every statement in the requirements is an acceptable
product. Where information is not available before development begins, areas of
incompleteness must be explicitly indicated [Parnas 86].

� Implementation independent. The SRS should be free of design and implementation
decisions unless those decisions reflect actual requirements.

� Unambiguous and Consistent. If the SRS is subject to conflicting interpretation, the
different parties will not agree on what is to be built or whether the right software has been
built. Every requirement should have only one possible interpretation. Similarly, no two
statements of required behavior should conflict.

� Precise. The SRS should define exactly the required behavior. For each output, it should
define the range of acceptable values for every input. The SRS should define any
applicable timing constraints such as minimum and maximum acceptable delay.

� Verifiable. A requirement is verifiable if it is possible to determine unambiguously
whether a given implementation satisfies the requirement or not. For example, a
functional requirement is verifiable if it is possible to determine, for any given test case
(i.e., an input and an output), whether the output represents an acceptable behavior of the
software given the input and the system state.

An SRS that satisfies the packaging properties of a good specification is:

� Modifiable. The SRS must be organized for ease of change. Since no organization can
be equally easy to change for all possible changes, the requirements analysis process must
identify expected changes and the relative likelihood of their occurrence. The
specification is then organized to limit the effect of likely changes.

� Readable. The SRS must be understandable by the parties that use it. It should clearly
relate the elements of the problem space as understood by the customer to the observable
behavior (as related by the behavioral requirements) of the software.

� Organized for reference and review.  The SRS is the primary technical specification of
the software requirements. It is the repository for all the decisions made during analysis
about what should be built. It is the document reviewed by the customer or his
representatives. It is the primary arbitrator of disputes. As such the document must be
organized for quick and easy reference. It must be clear where each decision about the
requirements belongs. It must be possible to answer specific questions about the
requirements quickly and easily.

To address the difficulties associated with writing and using an SRS, a requirements approach
must provide techniques addressing both semantic and packaging properties. It is also desirable
that the conceptual structures of the approach treat the semantic and packaging properties as dis-
tinct concerns (i.e., as independently as possible). This allows one to change the presentation of
the SRS without changing its meaning.
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In aggregate, these properties of a good SRS represent an ideal. Some of the properties may be
unachievable, particularly over the short term. For example, a common complaint is that one
cannot develop complete requirements before design begins because the customer does not yet
fully understand what he wants or is still making changes. Further, different SRS “requirements”
encourage conflicting solutions. A commonly cited example is the use of English prose to ex-
press requirements. English is readily understood but notoriously ambiguous and imprecise.
Conversely, formal languages are precise and unambiguous but often difficult to read.

Although the ideal SRS may be unachievable, it remains important to have an ideal [Parnas 86].
Such an ideal:

� Provides a basis for standardizing an organization’s processes and products,

� Provides a standard against which progress can be measured, and,

� Provides guidance – it helps developers understand what needs to be done next and when
they are finished.

Because it is so often true that (1) requirements cannot be fully understood before at least starting
to build the system and (2) a perfect SRS cannot be produced even when the requirements are
understood, some approaches advocated in the literature do not even attempt to produce a defini-
tive SRS. For example, some authors advocate going directly from a problem model to design
or from a prototype implementation to the code. While such approaches may be effective on
some developments, they are inconsistent with the notion of software development as an engi-
neering discipline. The development of technical specifications is an essential part of a con-
trolled engineering process. This does not mean that the SRS must be entire or perfect before
anything else is done but that its development is a fundamental goal of the process as a whole.
That we may currently lack the ability to write good specifications in some cases does not change
the fact that it is useful and necessary to try.

7. State of the Practice
Over the years, a large number of analysis and specification techniques have evolved. The gener-
al trend has been for software engineering techniques to be applied first to coding problems (e.g.,
complexity, ease of change), then to similar problems occurring earlier and earlier in the life
cycle. Thus the concepts of structured programming led eventually to structured design and anal-
ysis; more recently, the concepts of object oriented programming have led to object oriented de-
sign and analysis. The following discussion characterizes the major schools of thought and pro-
vides pointers to instances of methods in each school. The general strengths and weaknesses of
the various techniques are discussed relative to the requirements difficulties and the desirable
qualities of analysis and specification methods.

It is characteristic of the immature state of requirements as a discipline that the more specific
one gets, the less agreement there is. There is not only disagreement in terminology, approach,
and the details of different methods, there is not even a commonly accepted classification
scheme. The following general groupings are based on the evolution of the underlying concepts
and the key distinctions that reflect paradigmatic shifts in requirements philosophy.
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7.1 Functional Decomposition

Functional decomposition was originally applied to software requirements to abstract from cod-
ing details. Function decomposition focuses on understanding and specifying what processing
the software is required to do. The general strategy is to define the required behavior as a map-
ping from inputs to outputs. Ideally, the analysis proceeds top down, first identifying the function
associated with the system as a whole. Each subsequent step decomposes the set of functions into
steps or sub-functions. The result is a hierarchy of functions and the definitions of the functional
interfaces. Each level of the hierarchy adds detail about the processing steps necessary to accom-
plish the more abstract function above. The function above controls the processing of its sub-
functions. In a complete decomposition, the functional hierarchy specifies the “calls” structure
of the implementation. One example of a methodology based on functional decomposition is
Hamilton and Zeldin’s Higher Order Software [Hamilton 76].

The advantage of functional decomposition is that the specification is written using the language
and concepts of the implementors. It communicates well to the designers and coders. It is written
in terms of the solution space so the transition to design and code is straight forward.

Common complaints are that functional specifications are difficult to communicate, introduce
design decisions prematurely, and difficult to use or change. Because functional specifications
are written in the language of implementation, people who are not software or systems experts
find them difficult to understand. Since there are inevitably many possible ways of decomposing
functions into subfunctions, the analyst must make decisions that are not requirements. Finally,
since the processing needed in one step depends strongly on what has been done on the previous
step, functional decomposition results in components that are closely coupled. Understanding
or changing one function requires understanding or changing all the related functions.

As software has increased in complexity and become more visible to non-technical people, the
need for methods addressing the weaknesses of functional decomposition has likewise in-
creased.  However, in spite of its drawbacks, functional specification remains in wide use.

7.2 Structured Analysis

Structured analysis was developed primarily as a means to address the accidental difficulties at-
tending problem analysis and, to a lesser extent, requirements specification, using functional de-
composition. Following the introduction of structured programming as a means to gain intellec-
tual control over increasingly complex programs, structured analysis evolved from functional
decomposition as a means to gain intellectual control over system problems.
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The most basic assumption behind structured analysis is that the accidental difficulties can be
addressed by a systematic approach to problem analysis using [Svoboda 90]:

� a common conceptual model for describing all problems,

� a set of procedures suggesting the general direction of analysis and an ordering on the
steps,

� a set of guidelines or heuristics supporting decisions about the problem and its
specification, and

� a set of criteria for evaluating the quality of the product.

While structured analysis still contains the decomposition of functions into subfunctions, the fo-
cus of the analysis shifts from the processing steps to the data being processed. The analyst views
the problem as constructing a system to transform data. He analyzes the sources and destinations
of the data, determines what data must be held in storage, what transformations are done on the
data, and the form of the output.

Common to the structured analysis approaches is the use of data flow diagrams and data dictio-
naries. Data flow diagrams provide a graphic representation of the movement of data through
the system (typically represented as arcs) and the transformations on the data (typically repre-
sented as nodes). The data dictionary supports the data flow diagram by providing a repository
for the definitions and descriptions of each data item on the diagrams. Required processing is
captured in the definitions of the transformations. Associated with each transformation node is
a specification of the processing the node does to transform the incoming data items to the outgo-
ing data items. The form of the specification is either another data flow diagram or a textual de-
scription called a “MiniSpec”. A MiniSpec may be expressed in a number of different ways in-
cluding English prose, decision tables, or a procedure definition language (PDL).

Structured analysis approaches originally evolved for management information systems (MIS).
Examples of widely used strategies include those described by DeMarco [DeMarco 78] and
Gane and Sarson [Gane 79]. “Modern” structured analysis was introduced to provide more guid-
ance in modeling systems as data flows as exemplified by Yourdon [Yourdon 89]. Extensions
have been made to structured analysis to adapt the methods to the needs of embedded control
systems by adding notations to capture control behavior. These techniques are collectively
known as structured analysis/real time (SA/RT). Major variations of SA/RT have been described
by Ward and Mellor [Ward 86] and Hatley and Pirbhai [Hatley 87]. A good summary of struc-
tured analysis concepts with extensive references is given by  Svoboda [Svoboda 90].

Contributions of structured analysis include the notion that there should be a systematic (and
hopefully predictable) approach to analyzing a problem, decomposing it into parts, and describ-
ing the relationships between the parts. It includes the notion that there should be a common set
of conceptual structures for analyzing problems and communicating the results. Structured anal-
ysis techniques also introduced graphical specifications to support communication to a wide au-
dience.

While structured analysis techniques have continued to evolve and have been widely used, there
remain a number of common criticisms. When used in problem analysis, a common complaint
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is that structured analysis provides insufficient guidance. Analysts have difficulty deciding
which parts of the problem to model as data, what to model as transformations, and what should
be aggregated. While the gross steps of the process are reasonably well defined, there is only very
general guidance (in the form of heuristics) on what specific questions the analyst needs to an-
swer next. Similarly, practitioners find it difficult to know when to stop decomposition and addi-
tion of detail. Particularly in the hands of less experienced practitioners, data flow models con-
tinue to incorporate a variety of detail that more properly belongs to design or implementation
and the diagrams themselves become unmanageably complex.

These difficulties result from the weak constraints imposed by the conceptual model. A goal of
the developers of structured analysis was to create a very general approach to modeling systems;
in fact, one that could be applied equally to model human enterprises, hardware applications,
software applications of different kinds, and so on. Unfortunately, such generality can be
achieved only by abstracting away any semantics that are not common to all of the types of sys-
tems one models. The model itself can provide little guidance relevant to a particular system.
Since the conceptual model applies equally to requirements analysis and design analysis, its se-
mantics provide no basis for distinguishing the two. Similarly, such models can support only
very weak syntactic criteria for assessing the quality structured analysis specifications. For ex-
ample, the test for completeness and consistency in data flow diagrams is limited to determining
that the transformations at each level are consistent in name and number with the data flows of
the level above.

This does not mean one cannot develop data flow specifications that are easy to understand, rep-
resent requirements without introducing design decisions, communicate effectively with the
user, and so on. Clearly, at least for systems of modest complexity, it is possible to do so. The
problem is that the weakness of the conceptual model means that a specification’s quality de-
pends too much on the experience, insight, and expertise of the analyst. The developer must pro-
vide the necessary discipline because the model itself is relatively unconstrained.

Finally, there is also the problem that the creation of an SRS meeting our quality criteria is diffi-
cult. While data flow diagrams have proven useful for visualizing gross relationships in the sys-
tem, such a graphical approach is unsuitable for capturing mathematical relations and unwieldy
for capturing detailed specifications of value, timing, or accuracy. In general, the data flow dia-
grams and attendant dictionaries do not, themselves, provide any support for organizing an SRS
to satisfy the packaging goals of readability, ease of reference and review, or reusability. In fact,
for many of the published methods, there is no explicit process step, structure, or guidance for
producing an SRS as a distinct document.

7.3 Operational Specification

The operational1 approach focuses on addressing two of the essential requirements dilemmas.
The first is that we often do not know exactly what should be built until we build it. The second
is the problem inherent in moving from a particular specification of requirements (what to build)
to a design that satisfies those requirements (how to build it). The closer the requirements specifi-
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cation is to the design, the easier the transition but the more likely it is that design decisions are
made prematurely.

The operational approach seeks to address these problems, among others, by supporting devel-
opment of executable requirements specifications. Key elements of an operational approach are
a formal specification language and an engine for executing well-formed specifications written
in the language. Operational approaches may also include automated support for analyzing prop-
erties of the formal specification and for transforming the specification into an equivalent imple-
mentation. A good description of the operational approach, its rationale, and goals is given by
Zave [Zave 84].

The underlying reasoning about the benefits of the operational approach is as follows:

� Making the requirements specification itself executable obviates the dilemma that one
must build the system to know how to build it. The developer writes the requirements
specification in the formal language. The specification may then be executed to validate
that the customer’s needs have been captured and the right system specified (e.g., one can
apply scenarios and test cases). The approach is easier and more cost effective than
conventional prototyping since the specification and the “prototype” are the same thing.

� Operational specifications allow the developer to abstract from design decisions while
simplifying the transition from requirements to design and implementation. Transition
to design and implementation is both simple and automatable because the behavioral
requirements are already expressed in terms of computational mechanisms. Design
decisions concerning efficiency, resource management, and target language realization
are abstracted from in the computational model.

For general applications, operational approaches have achieved only limited success. This is at
least in part due to the failure to achieve the necessary semantic distinction between the opera-
tional computational model and conventional programming. The benefits of the approach are
predicated on the assumption that the operational model can be written in terms of the problem
domain without the need to introduce conceptual structures belonging to the solution domain.
In practice, this goal has proven elusive. To achieve generality, operational languages have typi-
cally had to introduce implementation constructs. The result is not a requirements specification
language but a higher-level programming language. As noted by Parnas [Parnas 85b] and
Brooks [Brooks 87], the specification ends up giving the solution method rather than the prob-
lem statement.

Where operational approaches have enjoyed some success is in highly-constrained and well un-
derstood problem domains. These are areas where it has been possible to essentially enumerate
the set of alternatives or provide a theory completely characterizing the domain. Examples in
computer science include compilers and lexical analyzers; applications of both types can now
be generated from formal specifications of the respective languages and grammars.

1. We use the term “operational” here specifically to denote approaches based on executable specifica-
tions in the sense of Zave [Zave 84]. The term is sometimes used to contrast with axiomatic specification –
that is not the meaning here.
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7.4 Object Oriented Analysis (OOA)

There is currently considerable discussion in the literature, and little agreement, on exactly what
should and should not be considered “object oriented.” OOA has evolved from at least two sig-
nificant sources, information modeling and object oriented design. Each has contributed to cur-
rent views of OOA, and the proponents of each emphasize somewhat different sets of concepts.
For the purposes of this tutorial, we are not interested in which method is by some measure “more
object oriented” but in the distinct contributions of the object oriented paradigm to analysis and
specification. For an overview of OOA concepts and methods see Balin’s article [Balin 94]; Da-
vis’ book [Davis 93] includes both discussion and examples. Examples of recent approaches
self-described as object oriented include work by Rumbaugh [Rumbaugh 91], Coad and Your-
don [Coad 91], and Shlaer and Mellor [Shlaer 88].

Most OOA techniques differ from structured analysis in the approach to decomposing the prob-
lem into parts and in the methods for describing the relationships between the parts. In OOA,
the analyst decomposes the problem into a set of interacting objects based on the entities and
relationships extant in the problem domain.  An object encapsulates a related set of data, process-
ing, and state (thus, a significant distinction between object oriented approaches and structured
analysis is the encapsulation of both data and related processing together). Objects provide exter-
nally accessible functions, typically called services or methods. Objects may hide information
about their internal structure, data, or state from other objects. Conversely, they may provide
processing, data, or state information through the services defined on the object interface. Dy-
namic relationships between objects are captured in terms of message passing (i.e., one object
sends a message to invoke a service or respond to an invocation). The analyst captures static rela-
tionships in the problem domain using the concepts of aggregation and classification. Aggrega-
tion is used to capture whole/part relationships. Classification is used to capture class/instance
relationships (also called “is-a” or inheritance relationships).

The structural components of OOA (e.g., objects, classes, services, aggregation) support a set
of analytic principles. Of these, two directly address requirements problems:

1. From information modeling comes the assumption that a problem is easiest to understand
and communicate if the conceptual structures created during analysis map directly to enti-
ties and relationships in the problem domain. This principle is realized in OOA through
the heuristic of mapping objects to real-world entities and relationships between objects
to existing or required relationships in the problem domain. The object paradigm is used
to model both the problem and the relevant problem context.

2. From early work on modularization by Parnas [Parnas 72] and abstract data types, by way
of object oriented programming and design, come the principles of information hiding
and abstraction. The principle of information hiding guides one to limit access to informa-
tion on which other parts of the system should not depend. For example, requirements that
are likely to change, should be hidden from other parts of the system. Information hiding
is implemented in object oriented approaches by encapsulating the information in an ob-
ject and limiting the access through the object interface. The principle of abstraction says
that only the relevant or essential information should be presented. Abstraction is imple-
mented in OOA by defining object interfaces that provide access only to the essence of



20

the data or state information encapsulated by an object (conversely hiding the acciden-
tals).

The principles and mechanisms of OOA provide a basis for attacking the essential difficulties
of comprehension, communication, and control. The principle of problem domain modeling
helps guide the analyst in distinguishing requirements (what) from design (how). Where the ob-
jects and their relationships faithfully model entities and relationships in the problem, they are
understandable by the customer and other domain experts; this supports early comprehension
of the requirements.

The principles of information hiding and abstraction, with the attendant object mechanisms, pro-
vide a basis for addressing the essential problems of control and communication. Objects are
used to divide the requirements into distinct parts, abstract from details, and control dependen-
cies between the parts. For change management, objects can hide requirements likely to change.
To improve communication, objects hide irrelevant detail and define abstractions providing only
the essential information. This provides a basis for managing complexity and improving read-
ability. Likewise objects provide a basis for constructing reusable requirements units of related
functions and data.

The potential benefits of OOA are often diluted by the way the key principles are manifest in
particular methods. While the conceptual structures of OOA are intended to model essential as-
pects of the application domain, this goal is typically not supported by an corresponding concep-
tual model of the domain behavior. Like structured analysis, object modeling mechanisms and
techniques are intended to be generic rather than application specific. One result is insufficient
guidance in developing appropriate object decompositions. Just as structured analysis practi-
tioners have difficulty choosing appropriate data flows and transformations, OOA practitioners
have difficulty choosing appropriate objects and relationships.

In practice, one finds the notion that one can develop the structure of a system or a requirements
specification based on physical structure is often oversold. It is true that the elements of the
physical world are often quite stable (especially relative to software details) and that real-world
based models have intuitive appeal. It is not, however, the case that everything that must be cap-
tured in requirements has a physical analog. An obvious example is shared state information.
Further, many real world structures are themselves arbitrary and likely to change (e.g., where
two hardware functions are put on one platform to save weight). While the notion of basing re-
quirements structure on physical structure is a useful heuristic, more is needed to develop a good
SRS.

The lack of a strong conceptual model rooted in the problem domain also has the result that OOA
specification languages often default to mechanisms more appropriate to the solution domain
(this is no doubt also due to OOA’s origins in object oriented design and programming). Symp-
tomatic of this problem is that analysts find themselves debating about object language features
and their properties rather than about the properties of the problem. A common example is the
use of message passing complete with message passing protocols where one object uses informa-
tion defined in another. In the problem domain it is often irrelevant whether information is ac-
tively solicited or passively received. In fact there may be no notion of messages or transmission
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at all. Nonetheless one finds analysts debating about which object should initiate a request and
the resulting anomaly of passive entities modeled as active. For example, to get information from
a book one might request that the book “read itself” and “send” the requested information in a
message. Such decisions are about OOA mechanisms or design, not about requirements.

A more serious complaint is that most current OOA methods inadequately address developing
a good SRS. The focus of all of the OOA techniques cited above is on problem analysis. If the
SRS is addressed at all, the assumption is that the principles applied to problem understanding
and modeling are sufficient, when results are written down, to produce a good specification. Ex-
perience suggests otherwise. As we have discussed, there are inherently tradeoffs that must be
made in developing a specification that meets the need of any particular project. Making effecti-
ve tradeoffs  requires forethought about the characteristics of the problem and the desired charac-
teristics of the specification. Achieving good results requires a disciplined and thoughtful ap-
proach to the SRS itself, not just the problem.

7.5 The SCR A-7E OFP

Where most of the techniques thus far discussed have focused on problem analysis, the require-
ments work at the United States Naval Research Laboratory (NRL) focused on issues in develop-
ing a good SRS. The NRL team led by David Parnas, initiated the Software Cost Reduction
(SCR) project in 1978 to demonstrate the feasibility and effectiveness of advanced software en-
gineering techniques by applying them to a real program, the Operational Flight Program (OFP)
for the A-7E aircraft. To demonstrate that (then academic) techniques like information hiding,
formal specification, abstract interfaces, and cooperating sequential processes could help make
software easier to understand, maintain, and change, the A-7E OFP was re-engineered.

Since no existing documentation adequately captured the software requirements, the first step
was to develop an effective SRS. In this process, the SCR project identified a number of proper-
ties a good SRS should have and a set of principles for developing requirements documentation
[Heninger 80]. These included the principle of separation of concerns to aid readability and
make the document easy to change, and the use of formal, mathematically based specifications
in place of prose to make the document precise, concise, consistent, and complete.

While other requirements approaches have stated similar objectives, the SCR project is unique
in having applied software engineering principles to develop a standard SRS organization, a
specification method, review method [Parnas 85a], and notations consistent with those prin-
ciples. The SCR project is also unique in making publicly available a complete, model SRS of
a significant system [Alspaugh 92].

A number of issues were left unresolved by the original SCR work. While the product of the
requirements analysis was well documented, the underlying process and method were never ful-
ly described. Since the original effort was to re-engineer an existing system, it was not clear how
effective the techniques would be on a new development. Since the developers of the A-7E re-
quirements document were researchers, it was unclear whether industrial developers would find
the rather formal method and notation useable, readable, or effective. Finally, while the A-7E
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SRS organization is reasonably general, many of the specification techniques are targeted to
real-time, embedded applications. As discussed in the following section, more recent work by
Parnas, NRL, and others has addressed many of the open questions about the SCR approach.

8. Trends and Emerging Technology
While improved discipline will address requirement’s accidental difficulties, addressing the es-
sential difficulties requires technical advances. Significant trends, in some cases backed by in-
dustrial experience, have emerged over the past few years that offer some hope for improvement:

� Domain specificity: Requirements methods will provide improved analytic and
specification support by being tailored to particular classes of problems. Historically
requirements approaches have been advanced as being equally useful to a wide variety
of types of applications. For example, structured analysis methods were deemed to be
based on conceptual models that were “universally applicable” (e.g., [Ross 77]); similar
claims have been made for object oriented approaches.

Such generality comes at the expense of ease of use and amount of work the analyst must
do for any particular application. Where the underlying models have been tailored to a
particular class of applications, the properties common to the class are embedded in the
model. The amount of work necessary to adapt the model to a specific instance of the class
is relatively small. The more general the model, the more decisions that must be made,
the more information that must be provided, and the more tailoring that must be done.
This provides increased room for error and, since each analyst will approach the problem
differently, makes solutions difficult to standardize. In particular, such generality
precludes standardization of sufficiently rigorous models to support algorithmic analysis
of properties like completeness and consistency.

Similar points have been expressed in a recent paper by  Jackson [Jackson 94]. He points
out that some of the characteristics separating real engineering disciplines from what is
euphemistically described as “software engineering” are well understood procedures,
mathematical models, and standard designs specific to narrow classes of applications.
Jackson points out the need for software methods based on the conceptual structures and
mathematical models of behavior inherent in a given problem domain (e.g., publication,
command and control, accounting, and so on). Such common underlying constructs can
provide the engineer guidance in developing the specification for a particular system.

� Practical formalisms: Like so many of the promising technologies in requirements, the
application of formal methods is characterized by an essential dilemma. On one hand,
formal specification techniques hold out the only real hope for producing specifications
that are precise, unambiguous, and demonstrably complete or consistent. On the other,
industrial practitioners widely view formal methods as impractical. Difficulty of use,
inability to scale, readability, and cost are among the reasons cited. Thus, in spite of
significant technical progress and a growing body of literature, the pace of adoption by
industry has been extremely slow.

In spite of the technical and technical transfer difficulties, increased formality is
necessary. Only by placing development on a mathematical basis will we be able to
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acquire the intellectual control over the medium needed to develop complex systems with
any assurance of success. The solution is better formal methods – methods that are
practical given the time, cost, and personnel constraints of industrial development.

Engineering models and the training to use them are de rigueur in every other discipline
that builds large, complex, or safety-critical systems. Builders of a bridge or skyscraper
who did not employ mathematical models to predict reliability and safety would be held
criminally negligent in the event of failure. It is only the relative youth of the software
discipline that permits us to get away with less. But, we cannot expect great progress
overnight. As Jackson [Jackson 94] notes, the field is sufficiently immature that “the
prerequisites for a more mathematical approach are not in place.” Further, many of those
practicing our craft lack the background required of licensed engineers in other
disciplines [Parnas 89]. Nonetheless, sufficient work has been done to show that more
formal approaches are practical and effective in industry. For an overview of formal
methods and their role in practical developments, the reader is referred to Rushby’s
summary work [Rushby 93].

� Improved tool support: It remains common to walk into the office of a software
development manager and find the shelves lined with the manuals for CASE tools that
are not in use. In spite of years of development and the claims of manufacturers, many
industrial developers have found the available requirements CASE tools of marginal
benefit.

Typically, the fault lies not so much with the tool vendor but with the underlying method
or methods the tool seeks to support. The same generality and lack of strong underlying
conceptual model that makes the methods weak limits the benefits of automation. Since
the methods do not adequately constrain the problem space and offer little specific
guidance, the corresponding tool cannot actively support the developer in making
difficult decisions. Since the model and SRS are not standardized, its production eludes
automated support. Since the underlying model is not formal, only trivial syntactic
properties of the specification can be evaluated. Most such tools provide little more than
a graphic interface and requirements data base.

Far more is now possible. Where the model, conceptual structures, notations, and process
are standardized, significant automated support becomes possible. The tool can use
information about the state of the specification and the process to guide the developer in
making the next step. It can use standardized templates to automate rote portions of the
SRS. It can use the underlying mathematical model to determine to what extent the
specification is complete and consistent. While only the potential of such tools has yet
been demonstrated, there are sufficient results to project the benefits.

� Integrated paradigms: One of the Holy Grails of software engineering has been the
integrated software development environment. Much of the frustration in applying
currently available methods and tools is the lack of integration, not just in the tool
interfaces, but in the underlying models and conceptual structures. Even where an
approach works well for one phase of development, the same techniques are either
difficult to use in the next phase or there is no clear transition path. Similarly tools are
either focused on a small subset of the many tasks (e.g., analysis but not documentation)
or attempt to address the entire life cycle but support none of it well. The typical
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development employs a hodgepodge of software engineering methodologies and ad hoc
techniques. Developers often build their own software to bridge the gap between CASE
platforms.

In spite of a number of attempts, the production of a useful integrated set of methods and
supporting environment has proven elusive. However, it now appears that there is
sufficient technology available to provide, if not a complete solution, at least the skeleton
for one.

The most significant methodological trend can be described as convergent evolution. In biology,
convergent evolution denotes a situation where common evolutionary pressures lead to similar
characteristics (morphology) in distinct species. An analogous convergence is ongoing in re-
quirements. As different schools of thought have come to understand and attempt to address the
weaknesses and omissions in their own approaches, the solutions have become more similar. In
particular, the field is moving toward a common understanding of the difficulties and common
assumptions about the desired qualities of solutions. This should not be confused with the band-
wagon effect that often attends real or imaginary paradigm shifts (e.g., the current rush to object
oriented everything). Rather it is the slow process of evolving common understanding and
changing conventional practices.

Such trends and some preliminary results are currently observable in requirements approaches
for embedded software. In the 1970’s the exigencies of national defense and aerospace applica-
tions resulted in demand for complex, mission critical software. It became apparent early on that
available requirements techniques addressed neither the complexity of the systems being built
nor the stringent control, timing and accuracy constraints of the applications. Developers re-
sponded by creating a variety of domain specific approaches. Early work by TRW for the U.S.
Army on the Ballistic Missile Defense system produced the Software Requirements Engineering
Method (SREM) [Alford 77] and supporting tools.  Such software problems in the Navy led to
the SCR project. Ward, Mellor, Hatley, and Pirbhai ([Ward 86], [Hatley 87]) developed exten-
sions to structured analysis techniques targeted to real time applications. Work on the Israeli de-
fense applications led Harel to develop statecharts [Harel 87] and the supporting tool Statemate.

The need for high-assurance software in mission and safety critical systems also led to the
introduction of practical formalisms and integrated tools support. TRW developed REVS [Davis
77] and other tools as part of a complete environment supporting SREM and other phases of the
life cycle. The SCR project developed specification techniques based on mathematical functions
and tabular representations [Heninger 80]. These allowed a variety of consistency and complete-
ness checks to be performed by inspection. Harel introduced a compact graphic representation
of finite state machines with a well-defined formal semantics. These features were subsequently
integrated in the Statemate tool that supported symbolic execution of statecharts for early cus-
tomer validation and limited code generation. All of these techniques began to converge on an
underlying model based of finite state automata.

More recent work has seen continuing convergence toward a common set of assumptions and
similar solutions. Recently, Ward and colleagues have developed the Real-Time Object Oriented
Modeling (ROOM) method [Selic 94]. ROOM integrates concepts from operational specifica-
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tion, object oriented analysis, and statecharts. It employs an object oriented modeling approach
with tool support. The tool is based on a simplified statechart semantics and supports symbolic
execution and some code generation. The focus of ROOM currently remains on problem model-
ing, transition to design, and execution rather than formal analysis.

Nancy Leveson and her colleagues have adapted statecharts to provide a formally based method
for embedded system specification [Jaffe 91]. The approach has been specifically developed to
be useable and readable by practicing engineers. It employs both the graphical syntax of state-
charts and a tabular representation of functions similar to those used in the SCR approach. Its
underlying formal model is intended to support formal analysis of system properties, with an
emphasis on safety. The formal model also supports symbolic execution. These techniques have
been applied to develop a requirements specification for parts of the Federal Aviation Adminis-
tration’s safety critical Traffic Alert and Collision Avoidance System (TCAS) [Leveson 94].

8.1 Naval Research Laboratory SCR-Related Work

Many of the issues discussed in this paper are being addressed in follow-on work to the Naval
Research Laboratory’s SCR project. This includes work by Parnas and colleagues on domain-
specific requirements models, work by Faulk and colleagues on techniques for industrial-
strength requirements specification, and work by Heitmeyer and colleagues at NRL on formal
requirements methods and tools.

Work by Parnas and colleagues has extended the SCR requirements method to define a standard
mathematical model for embedded system requirements. This model has been described by
Parnas and Madey [Parnas 91] and applied to a small embedded system by van Schouwen  [Van
Schouwen 90]. Parnas has also applied some of the SCR techniques to the validation of the safety
shutdown software for the Darlington Nuclear Reactor [Parnas 90].

Work at the Software Productivity Consortium by Faulk and colleagues [Faulk 92] has inte-
grated the SCR approach with object oriented and graphic techniques and defined a complete
requirements analysis process including a detailed process for developing an SRS that satisfies
the “goodness” criteria discussed above. The method and an example are described in The Con-
sortium Requirements Engineering Method guidebook [Faulk 93]. These techniques have been
applied effectively in development of requirements for Lockheed’s avionics upgrade on the
C–130J aircraft [Faulk 94]. The C–130J avionics software is a safety–critical system of approxi-
mately 100K lines of Ada code.

Work at NRL has extended the early SCR work in a number of areas including formal modeling
and analysis of requirements, automated support, and technical transfer. Initial work examined
the effectiveness of tool support for specifying and analyzing real-time systems using the Mod-
chart language. Modecharts were developed by Jahanian, Mok and colleagues at the University
of Texas to provide a formal, graphical specification language based on the SCR requirements
model [Jahanian 88]. This work was extended at NRL to develop a tool set [Rose 94] for specify-
ing requirements using Modecharts. The tool set supported symbolic execution of the Mode-
charts for validation of specified behavior and support for model checking to determine whether
the specifications imply certain classes of safety assertions [Clements 93].
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Subsequent work by Heitmeyer and colleagues has extended Parnas and Madey’s work by defin-
ing a formal model for SCR-style requirements [Heitmeyer 95a]. The formal model provides
notation and semantics for representing requirements as well as analytic techniques for demon-
strating that a specification written in terms of the model is complete and consistent. This formal
model has been used to develop a suite of prototype tools supporting analysis of requirements
properties like completeness and consistency. Scale-up of the techniques is being addressed by
the development of prototype tools.

Experiments conducted by NRL showed that automated checking would find consistency and
completeness errors missed in manual inspections [Heitmeyer 93]. Thus, the current NRL tools
provide for the creation and editing of SCR-style specifications and the automated analysis of
a specification’s consistency and completeness [Heitmeyer 95b]. To support requirements val-
idation (e.g., for the customer), the NRL tool set also supports simulation. This capability per-
mits symbolic execution of the underlying state-machine model and allows one to observe exam-
ples of the system behavior based directly on the requirements specification. The simulation
achieves low cost and high-fidelity by using the same underlying formal model and data base
of requirements used by the rest of the NRL tools [Heitmeyer 95c].

Goals of current NRL work include demonstration that the SCR technologies are practical and
effective in industry, and the transfer of SCR methods and tools to industrial developers of high-
assurance systems. NRL is working with industrial partners to apply the SCR technology to real-
istic problems and measure their effectiveness. Results and lessons learned will be used to sup-
port transfer of the technology to industry and eventual acquisition of the tool technology by
commercial tool developers.

Planned work will extend the NRL technologies to provide the basis for an integrated develop-
ment paradigm. Where current analysis capabilities address application-independent properties
(i.e., model properties like internal completeness and consistency), planned tools will support
demonstration of application-dependent properties like safety. These include facilities for tool-
supported theorem proving and model checking. Planned work also encompasses automated test
vector (inputs and expected outputs) generation, for black box testing, from the same underlying
SCR specification and formal model.

While none of the work mentioned can be considered a complete solution it is clear that (1) the
work is converging toward common assumptions and solutions, (2) the approaches all provide
significantly improved capability to address requirements difficulties, and (3) the solutions can
be effectively applied in industry.

9. Conclusions

Requirements are intrinsically hard to do well. Beyond the need for discipline, there are a host
of essential difficulties that attend both the understanding of requirements and their specifica-
tion. Further, many of the difficulties in requirements will not yield to technical solution alone.
Addressing all of the essential difficulties requires the application of technical solutions in the
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context of human factors such as the ability to manage complexity or communicate to diverse
audiences. A requirements approach that does not account for both technical and human con-
cerns can have only limited success. For developers seeking new methods, the lesson is caveat
emptor. If a vendor tells you his method makes requirements easy, keep a hand on your wallet.

Nevertheless, difficulty is not impossibility and the inability to achieve perfection is not a man-
date for surrender. While all of the approaches discussed have significant weaknesses, they all
contribute to the attempt to make requirements analysis and specification a controlled, systemat-
ic, and effective process. Though there is no easy path, experience confirms that the use of any
careful and systematic approach is preferable to an ad hoc and chaotic one. Further good news
is that if the requirements are done well, chances are much improved that the rest of the develop-
ment will also go well. Unfortunately, ad hoc approaches remain the norm in much of the soft-
ware industry.

A final observation is that the benefits of good requirements come at a cost. Such a difficult and
exacting task cannot be done properly by personnel with inadequate experience, training, or re-
sources. Providing the time and the means to do the job right is the task of responsible manage-
ment. The time to commit the best and brightest is before, not after, disaster occurs. The monu-
mental failures of a host of ambitious developments bear witness to the folly of doing otherwise.

10. Further Reading

Those seeking more depth than this tutorial can provide should read Alan Davis’ book Software
Requirements: Objects, Functions, and States [Davis 93]. In addition to a general discussion of
issues in software requirements, Davis illustrates a number of problem analysis and specification
techniques with a set of common examples. Davis also provides a comprehensive annotated bib-
liography. For a better understanding of software requirements in the context of systems devel-
opment, the reader is referred to the book of collected papers edited by Thayer and Dorfman,
System and Software Requirements Engineering [Thayer 90]. This tutorial work contains in one
volume both original papers and reprints from many of the authors discussed above. The com-
panion volume, Standards, Guidelines, and Examples on System and Software Requirements En-
gineering [Dorfman 90b] is a compendium of international and U.S. government standards relat-
ing to system and software requirements and provides some illustrating examples.
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