
Security Models�

John McLean

1 Introduction

The term security model has been used to describe any formal statement of a system's

con�dentiality, availability, or integrity requirements. In this article we focus on the primary
use of security models, which has been to describe general con�dentiality requirements. We
then give pointers to security model work in other areas.

2 Models of Con�dentiality

Even if we limit ourselves to models of con�dentiality, there are two related, but distinct,
senses of the term security model in the computer security literature [McL90b]. In the more
limited use of the term, a security model speci�es a particular mechanism for enforcing

con�dentiality, called access control, which was brought over into computer security from
the world of documents and safes. In the more general usage of the term, security models
are speci�cations of a system's con�dentiality requirements and are not \models" at all in
that they specify security requirements without describing any particular mechanism for
implementing these requirements. These models specify restrictions on a system's interface

(usually its input/output relation) that are su�cient to ensure that any implementation
that satis�es these restrictions will enforce con�dentiality. In this section, we consider access
control models and interface models in turn.

2.1 Access Control Models for Con�dentiality

The access control model for con�dentiality was �rst formulated by Lampson (see, e.g.,
[Lam71]) and later re�ned by Graham and Denning [GD72]. The structure of the model is

that of a state machine where each state is a triple (S;O;M), where S is a set of subjects, O

is a set of objects (which has S has a subset), and M is an access matrix which has one row

for each subject, one column for each object, and is such that cellM [s; o] contains the access

rights subject s has for object o. These access rights are taken from a �nite set of access
rights, A. States are changed by requests for altering the access matrix, M . An individual

machine in the model is called a system. Despite its simplicity, the model has had a long,

useful life in computer security, based primarily on the work of Harrison, Ruzzo, and Ullman

and the work of Bell and LaPadula.

�From Encyclopedia of Software Engineering (ed. John Marciniak), Wiley Press, 1994.

1



2.1.1 The HRU Model and Its Derivatives

Harrison, Ruzzo, and Ullman [HRU76] used Lampson's concept of an access control model

to analyze the complexity of determining the e�ects of a particular access control policy. To

make the problem precise they considered a particular access control model, called the HRU

Model, which is similar to Lampson's but contains requests only of the following form:

if

a1 in M [s1; o1] and

a2 in M [s2; o2] and

...

am in M [sm; om] and

then

op1
...
opn

where each ai is in A, and each opi is one of the following primitive operations:

enter a into (s,o),
delete a from (s,o),
create subject s,

create object o,
destroy subject s,
destroy object o.
The semantics of the primitive operations are exactly what one would expect.

Given a system, an initial con�guration Q0, and a right a, we say that Q0 is safe for
a if there is no sequence of system requests that, when executed starting in state Q0, will

write a into a cell of the access matrix that did not already contain it. Harrison, Ruzzo,
and Ullman proved two fundamental theorems about the complexity of the safety problem.
The �rst is that the safety problem is decidable for mono-operational systems, i.e., systems
in which every request has only one operation, and the second is that the safety problem is

undecidable in general.

Theorem: There is an algorithm for determiningwhether or not a given mono-operational
system and initial con�guration of that system is safe for a given right a [HRU76].

Proof: The proof depends on the fact that for every sequence of requests r1; r2; :::; rn
that leaks a from an initial con�guration (S0; O0;M0), there is a sequence of requests from

that con�guration that also leaks a, but which contains only enter requests except for an

initial create subject request. To form this new sequence we �rst insert an initial create
subject request to the beginning of r1; r2; :::; rn that creates a new subject, call it sinit, and
then drop all delete and destroy requests from r1; r2; :::; rn. This new sequence will still

leak a since the conditional part of a request can test only for the presence of rights, and

not for the absence of either rights or objects. Next, consider the rightmost create subject

request. We can remove this request from the sequence and simply replace all references to

the new subject in future requests by references to sinit. We continue with this procedure

2



until we reach our initial create subject request, which we leave intact. Finally, we can

remove the create object requests, rightmost �rst, again replacing all references to the new

object in future requests by references to sinit. Finally, we can drop any enter requests that

enter a right ai into a cell that already contains it.

The resulting sequence will still leak a, but can be at most l = (jAj�(jS0j+1)�(jO0j+1))+1

requests long since each request, except the initial create subject request, must enter a

new symbol from A into an access matrix cell and the number of cells in the matrix cannot

be greater than (jS0j+1) �(jO0j+1). Hence, we can decide whether or not a system is safe by

looking at all possible sequences of enter requests (preceded by an initial create subject

request) of length less than or equal to l, and we are done. 2

Theorem: The general problem of determining whether or not a given con�guration of

a given system is safe for a given right a is undecidable [HRU76].

Proof: The proof depends on the fact that the access control model is expressive enough

to model any given Turing Machine. As an example, consider a Turing Machine that is in

state q and reading position 3 of its tape. Further, assume that so far, the machine has
written the symbols c1, c2, c3, and c4 on tape positions 1, 2, 3, and 4, respectively and that
the machine has proceeded no further than the fourth position of the tape. Such a machine

can be represented by a state machine whose access rights are the machine's states and tape
symbols, plus the two additional rights own and end. The particular state of the machine
would correspond to a state that had four subjects s1, s2, s3, and s4 corresponding to tape
positions 1, 2, 3, and 4, respectively. M [s1; s2], M [s2; s3], and M [s3; s4] would each contain
the symbol own representing the fact that for 1 � i � 3, position i is to the immediate left

of position i + 1 on the tape. For 1 � i � 4, M [si; si] would contain ci, representing the
fact that position i contains the symbol ci. Finally, M [s3; s3] would also contain the symbol
q and M [s4; s4] would also contain the symbol end, representing the facts that the machine
is currently in state q reading tape position 3 and that it has not proceeded beyond tape
position 4. Moves of the machine correspond to the requests that keep the system's state in
correspondence with the machine's. The problem of determining whether a right is leaked

now corresponds to the problem of determining whether a machine enters a certain state. If
we equate that right with the machine's �nal state, we have reduced the safety problem to
the halting problem, and we are done. 2

The two theorems force upon modelers the following dilemma: on one hand, the general

HRU model can express a wide variety of policies, but there is no general, computation-

ally feasible way to determine the e�ects of these policies; on the other hand, there is a
general, computationally feasible way to determine the e�ects of policies modeled via mono-

operational HRU, but the model is too weak to express many policies of interest. For
example, mono-operational systems cannot express policies that give subjects special rights

to objects they create since there is no single operation that both creates an object and 
ags

it as belonging to the creating subject.
Harrison, Ruzzo, and Ullman proved that the safety problem is decidable (although

PSPACE complete) for systems that have no create requests [HRU76] and that it is decidable

for systems that are both monotonic, i.e., contain no destroy or delete requests, and

monoconditional, i. e., have only requests whose condition parts have, at most, one clause

[HR78]. However, such systems are still very limited as far as expressing useful properties,
and safety for evenmonotonic systems becomes undecidable if we allow biconditional requests

3



(requests whose condition parts have two clauses) [HR78]. Lipton and Snyder have shown

that the safety problem for systems with a �nite set of subjects is decidable, but it is

computationally intractable [LS78].

Taking another tack, the take-grant model, introduced by Jones, Lipton, and Snyder

[JLS76] and extended by Snyder [Sny81] and others [BS79, Bis84], has a linear time algorithm

for safety, yet falls outside the known decidable cases of HRU. Closer to the HRU model is

the Schematic Protection Model (SPM) developed by Sandhu [San88]. SPM, which contains

security types, has a decidable subset that is more expressive than the take-grant model.

An extension by Ammann and Sandhu [AS90] yields a model that is formally equivalent

to monotonic HRU, but maintains positive safety results. More recently, Sandhu has had

success with the Typed Access Matrix model(TAM), which introduces strong typing into

HRU [San91]. Like HRU, monotonic TAM is undecidable. However, if we limit all commands

to three parameters and avoid cyclic creates, the resulting model is decidable in polynomial

time yet expressive enough to capture a wide variety of policies. This model is the current

state of the art with respect to models for generalized access control policies.

2.1.2 The Bell and LaPadula Model and Its Derivatives

The HRU results show that it is often very hard to predict how access rights can propagate
in a given access control model, even if we have complete knowledge of the programs that

propagate those rights. A related, but distinct, problem arises from the fact that users are
often unaware of everything a program operating on their behalf is doing. As an example,
consider a user who accepts the right to execute another user's program. The �rst user may
be unaware that executing the program will pass to the second user some entirely unrelated
set of rights possessed by the �rst user. Programs such as these, which on the surface perform

one function, e.g. provide editing capability for a �le, but clandestinely perform another,
e.g., distribute read rights for the same �le, are known as Trojan Horses.

The Trojan Horse problem has led to a distinction between two types of access control
policies: Discretionary Access Control, or DAC, and Mandatory Access Control, or MAC.
Whereas DAC allows users to pass rights they possess to other users without constraint,

MAC restricts how users can pass rights to other users. The existence of Trojan Horses that
pass a user's rights without the user's knowledge is generally viewed as making DAC an

insu�cient method of access control in high-assurance environments.

The best known example of MAC policies are in the military with its well-known lattice of
security levels that range from top secret, perhaps with various compartments, down through

secret and con�dential to unclassi�ed. Rights to read a top secret �le, for example, cannot be
passed by any mechanism to an unclassi�ed user. However, other examples of MAC policies

pervade our everyday lives. For example, although an employee may grant an employer
rights to view his or her salary, the employee would not want the employer to be able to

pass these rights on to another employee. More generally, people are often willing to grant
to a second party (perhaps a doctor or loan o�cer) the right to gather information about

themselves, but only on the condition that the right to gather this information is not passed

on to arbitrary third parties.
The best known security model for MAC is that of Bell and LaPadula [BL75]. Like the

HRU model, the Bell and LaPadula Model, or BLP, employs subject, objects, rights, and

4



an access control matrix. However, BLP di�ers from HRU in that the sets S and O do not

change from state to state and the set A contains only two rights read and write.1 BLP also

introduces an unchanging lattice of security levels L and a function F : S [O ! L which

when applied to a subject or object in a state, yields the security level of its argument in that

state. The set of states, V , in the model is a set of ordered pairs (F;M), where, as in HRU,

M is the access matrix. A system consists of an intial state v0, a particular set of requests

R, and a transition function T : (V �R) ! V that transforms the system from one state

to another when a request is executed. However, the most important di�erence between

BLP and HRU is the introduction of a series of de�nitions which culminate in necessary and

su�cient criteria for a system to be secure.

De�nition: A state (F;M) is read secure (called simple security in [BL75]) if and only if

for every s 2 S and every o 2 O, read 2M [s; o] ! F (s) � F (o).

De�nition: A state (F;M) is write secure (called the *-property in [BL75]) if and only if

for every s 2 S, o 2 O, write 2M [s; o] ! F (o) � F (s).

De�nition: A state is state secure if and only if it is read secure and write secure.
De�nition: A system (v0; R; T ) is secure if and only if v0 is state secure and every state
reachable from v0 by executing a �nite sequence of one or more requests from R is state

secure.
Read security prohibits low-level users from gaining read access to high-level �les. Write

security prevents high-level Trojan Horses from copying the contents of high-level �les to
�les to which low-level users can gain read access. Bell and LaPadula go on to prove the
following theorem about secure systems, known as the Basic Security Theorem, or BST:

Theorem: A system (v0; R; T ) is secure if and only if (1) v0 is a secure state and (2) T is
such that for every state v reachable from v0 by executing a �nite sequence of one or more
requests from R, if T (v; c) = v�, where v = (F;M) and v� = (F �;M�), then for each s 2 S

and o 2 O:

� if read 2M�[s; o] and read 62M [s; o] then F �(s) � F �(o);

� if read 2M [s; o] and F �(s) 6� F �(o), then read 62M�[s; o];

� if write 2M�[s; o] and write 62M [s; o] then F �(o) � F �(s); and

� if write 2M [s; o] and F �(o) 6� F �(s), then write 62M�[s; o].

Proof: Going from left to right, if the system is secure, then v0 must be a secure state
by de�nition. If there were some state v reachable from v0 by executing a �nite sequence of

one or more requests from R such that T (v; c) = v� yet v� does not satisfy one of the �rst

two restrictions on T , then v� would be a reachable state that failed to be read secure. If v�

failed to satisfy one of the second two restrictions on T , then v� would be a reachable state
that failed to be write secure. In either case, the system would not be secure.

Going the other direction, assume that the system is not secure. In that case, either v0
must be a nonsecure state or there must be a nonsecure state reachable from v0 by executing

1In Bell and LaPadula's formulation A also contains the rights append and execute, but their existence
makes no di�erence in what follows. We have taken other similar liberties in simplifying the model where
the simpli�cations do not a�ect the discussion. Readers interested in the original formulation are referred
to [BL75].

5



a �nite sequence of one or more requests from R. If v0 is not a secure state, we are done.

If v0 is a secure state, let v� be the �rst state in the request sequence that is not secure.

This means there is a reachable, secure state v such that T (v; c) = v� where v� is not secure.

However, this is ruled out by the four restrictions on T , and we are done. 2

Many have taken the BST as a justi�cation for the de�nition of security o�ered by BLP.

Although the argument is seldom made explicit, the belief is probably based on the fact

that the BST seems to show that there is a natural notion of a secure transition (i.e., a

transition that satis�es the four restrictions placed on T by the BST) that yields the same

class of systems as the state restrictions of BLP yield. The fact that there are two natural

de�nitions of security that yield the same class of systems gives credence to the belief that

they are correct.

The trouble with this interpretation of the BST is that it is transparent with respect

to the de�nition of secure state. An analogous theorem would hold no matter how we

de�ned a secure state [McL85]. A truly secure transition must assure not only that every

state reachable from a secure state is secure, but that the new state must be reachable
in an intuitively secure manner. To see that BST fails to do this, consider the system Z

whose initial state is state secure and which has only one type of transition: when a subject

s requests any type of access to an object o, every subject and object in the system are
downgraded to the lowest security level and access is granted. System Z satis�es BLP's
notion of security, but it is obviously not secure in any meaningful sense [McL90b].

To address the problem raised by System Z, McLean de�nes a framework of security mod-
els that contain transition restrictions [McL90b]. A framework is a quadruple (S;O;L;A),

where each element of the quadruple keeps the same meaning it has in BLP. As in BLP,
a model within the framework is a set of state machines whose states are of the form
(F;M) where F and M are as before. However, the framework contains a new function,
C : S [O ! P (S), which returns the set of subjects that are allowed to change the secu-
rity level of its argument. As before, a system consists of an intial state v0, a particular set
of requests R, and a transition function T , but T is now the function T : (S�V �R) ! V

which gives the new state that results from a subject executing a request in a current state.
Given this framework, we can de�ne a secure system as follows;
De�nition: A transition function T is transition secure if and only if T (s; v; r) = v�, where
v = (f;m) and v� = (f�;m�), implies that for all x 2 S [O if f(x) 6= f�(x) then s 2 C(x).

De�nition: A system (v0; R; T ) is secure only if (1) v0 and all states reachable from v0
by a �nite sequence of one or more requests from R are (BLP) state secure, and (2) T is
transition secure.

This framework forms a Boolean Algebra of models whose bottom (most restrictive)
element is BLP with tranquility, the transition restriction that no security level can change,

and whose top element (least restrictive element) is BLP with no restrictions on security

level changes whatsoever [McL90b]. Since it gives only necessary conditions for a system to
be secure, the policies in the framework do not contradict each other, and hence, sense can
be made of the Boolean meet, join, and complement of policies. McLean also considers the

framework that results when S is replaced by P (S) and shows that the resulting framework

forms a lattice of models that can be used to model multi-person rules such as the restriction

that it takes two people to launch a missile or that payment for a shipment requires approval
from both a receiving o�cial, who vouches that the shipment was received, and an accounting

6



o�cial, who vouches that the charge is correct and has not previously been paid. These two

frameworks constitute the current state of the art with respect to models for mandatory

access control.

2.1.3 Problems with Access Control Models

An advantage of access control models is that they are intuitive and and can be implemented

with high assurance. One provides a tamper-proof, non-bypassable reference monitor that

controls all subjects' accesses to objects and is small enough to be susceptible to rigorous

veri�cation methods. However, it should be emphasized that determining a system's sub-

jects, objects, read accesses, and write accesses is not as trivial as it �rst may seem. For

example, consider a program that opens a high-level �le for reading, reads a bit from the �le,

and then branches to one of two internal subroutines, write-one or write-zero, depending on

what the high-level bit is. If write-one (write-zero) closes the high-level �le, downgrades the

program of which it is a subroutine, opens a low-level �le for writing, and then writes 1 (0)

to the low-level �le, the result is a nonsecure information 
ow that violates BLP only if one
regards the program counter, itself, an object [McL90b].

However, it is not the case that all such channels are so easy to detect and eliminate.
Consider, for example, a reference monitor's response to a subject that attempts to write to
a nonexistent �le. If the reference monitor informs the subject of the mistake, it will allow a

channel where a low-level subject attempts to write to a high-level �le that a high-level Trojan
Horse systematically creates and removes. If the subject is not informed of the mistake or if
a �le is automatically created when a subject attempts to write to a nonexistent �le, then
the subject will not be made aware of legitimate attempts to write which were thwarted
through a minor typing error.

Channels such as these, �rst noticed by Lampson [Lam73] and now called covert channels,
are caused by the di�culty of mapping an access control model's primitives to a computer
system. The problem is exacerbated in distributed systems where a program must �rst write
to a subsystem in order to read a �le located on that subsystem. It is not surprising that such
a problem is inherent in access control models if we consider the origin of the model. The

concept of access control did not originate with computers, but rather, was brought over to

computers from the paper and safe world. In that world, papers are kept in safes and access
to safes by individuals are moderated by a security o�cial. Covert channels are possible in
such a scheme. For example, a high-level user can pass information to a low-level user by

either approaching or not approaching a safe. However, such channels are not troublesome

for three reasons. First, high-level users are trusted not to exercise such channels. This
is partly because they have been subject to background checks, but primarily because if

a high-level user wanted to communicate with a low-level user, he or she could do so in a
much more e�cient manner after hours. Second, any such channel would be extremely slow.

Third, the monitoring security o�cial could detect something funny if such a channel were
often exploited.

When we turn to computers, covert channels become a real problem. First, we may trust

users not to divulge information they are cleared to see, but given the existence of Trojan
Horses, we can't trust all programs. Second, the speed of a computer raises the capacity of

covert channels to a unacceptable level. Third, seldom is there a human who can determine

7



that such a channel is being exploited in real time.

For this reason covert channel analysis goes hand-in-hand with the implementation of

access control models. It assures us that a system's interpretation of the model's primitives

is not too weak. Such analysis is usually based on tracing the information-
ow paths of

programs [Den76, Den82], checking programs for shared resources that can be used to transfer

information [Kem83], or checking systems for clocks that can be used for timing channels

[Wra91]. However, although such channels can often be detected, their detection comes at

the end of the system development process when system changes are much more expensive

to correct [Boe76]. It would be cheaper to rule out such channels from the beginning and

make sure that they were never introduced into the system in the �rst place.

2.2 Interface Models of Con�dentiality

Rather than specifying a particular method for enforcing security, interface models specify

restrictions on a system's input/output relation that are su�cient for ruling out nonsecure
implementations. It is up to the implementor to determine a method for satisfying the spec-
i�cation. Such an approach allows implementors more 
exibility in designing and building

systems, is more natural for dealing with networks, and, in general, does better with respect
to covert storage channels. However, as we shall see, although the interface approach is
relatively straight-forward with respect to deterministic systems, it becomes rather subtle
when extended to nondeterministic systems

2.2.1 The Noninterference Model for Deterministic Systems

Most interface models for con�dentiality are based on Noninterference, the restriction that

high-level user input cannot interfere with low-level user output. The original formulation
of Noninterference, due to Goguen and Meseguer [GM82], is based directly on the work of
Feiertag [Fei80] and indirectly on earlier work by Cohen [Coh77] and by Popek and Farber
[PF78]. Goguen and Meseguer consider a deterministic system whose output to user u is
given by the function out(u; hist:read(u)) where hist:read(u) is an input history (trace) of

the system whose last input is read(u), a read command executed by user u.2 Security is
de�ned in terms of purges of input histories, where a purge removes commands executed by

a user whose security level is not dominated by u.

De�nition: Let cl be a function from users to security levels such that cl(u) is the clearance
of u. Further, let purge be a function from users� traces to traces such that

� purge(u;<>) =<>, where <> is the empty trace

� purge(u; hist:command(w)) = purge(u; hist):command(w) if command(w) is an input
executed by user w and cl(u) � cl(w), and

� purge(u; hist:command(w)) = purge(u; hist) if command(w) is an input executed by

user w and cl(u) 6� cl(w).

2In [GM82], out actually takes three arguments, u, read, and the state s reached by executing the
commands in hist. Our formulation is identical for purposes of exposition and more in keeping with other
interface models we will be discussing.

8



A system satis�es Noninterference if and only if for all users u, all histories T , and all

output commands c, out(u; T:c(u)) = out(u; purge(u; T ):c(u)).

To help verify that a system satis�es Noninterference, Goguen and Meseguer developed

a set of \unwinding conditions" that are su�cient for establishing Noninterference in state

machines [GM84]. Although these conditions are relatively straight-forward to verify, their

application depends on the development of a state machine model of the system under

consideration. More recently, McLean has shown how to side-step the development of such

a state machine and verify Noninterference directly [McL92]. These veri�cation techniques

help make Noninterference as useful, in practice, as BLP. Although verifying Noninterference,

in general, may be harder than verifying BLP, there is no covert storage channel analysis

remaining to do after the veri�cation.

Since the primitives of BLP lack a precise semantics, one cannot precisely compare the

two models [McL90a]. However, it can be noted that (1) in general BLP is weaker than

Noninterference in that the latter prohibits many of the covert channels that the former

would allow under the standard interpretation of its primitives, and (2) Noninterference is
weaker than BLP in that it allows low-level users to copy one high-level �le to another high-
level �le, which BLP would normally disallow as a high-level read by the low-level user. In

both cases Noninterference seems to be closer to our intuitive notion of security than BLP.
In fact, Millen has shown in [Mil87] that for deterministic systems, Noninterference is

practically perfect in that if input sequence X is noninterfering with output sequence Y and
X is independent of the input from other users, then I(X;Y ) = 0, where I(X;Y ) is the
mutual information between X and Y and represents the information 
ow over the system

from X to Y (see, e.g., [Jon79]). Of course, for Noninterference to rule out timing channels,
time must be considered as part of the input and output alphabet.

The reason why Noninterference is only \practically perfect" is that, as shown originally
by Sutherland [Sut86], it can be too strong. Consider, for example, a system, where user X
and user V are each independently given an opportunity to give an input from the alphabet
f0; 1g and that Y receives as output x�v, where x (v) is the input fromX (V ) if there is one,

else 0. Clearly, X interferes with Y . For example, if x = 1 and v = 1, then y = 1 � 0 = 0,
but if we eliminate X's input, y = 0� 0 = 1. In general, we should not allow such a system
if X and V were high-level users and Y were a low-level user since there are input sequences
from V that would allow X to communicate with Y . (Remember that V could be a Trojan

Horse using the system or a user whose interface to the system was under the control of a

Trojan Horse.) However, if V 's inputs were randomly distributed over 0; 1, then V would,
in e�ect, be providing perfect encryption for X's input, and I(X;Y ) would be 0. In such a

case, X would be interfering with Y , but no information could 
ow since Y cannot detect
X's interference. In this sense, Noninterference is possibly too strong in that it makes a

worse-case assumption about the behavior of other users on the system. As such, it rules

out cryptographic systems as being nonsecure.
Despite this limitation, Noninterference constitutes the current state of the art with re-

spect to interface models for deterministic systems. However, it would be nice if we could

apply Noninterference to nondeterministic systems as well. Although, ultimately, all systems

may be (ontologically) deterministic, it is unreasonable to require that all system speci�ca-

tions (the system descriptions that will, in fact, be analyzed for security 
aws) be (epistem-
ically) deterministic. Further, the limitation to deterministic systems rules out probabilistic

9



algorithms. In the next two sections, we examine ways of generalizing Noninterference to

nondeterministic systems.

2.2.2 Possibilistic Models for Nondeterministic Systems

Before giving a nondeterministic version of Noninterference, we need a framework for describ-

ing nondeterministic systems. We could simply generalize the language in which we presented

Noninterference and consider out to be a relation instead of a function, i.e., allow the same

input to generate di�erent output. However, to catch channels where information is passed

by the order in which output is transmitted by the system, we will, instead, include outputs

in the history itself. The resulting traces represent acceptable input/output behaviors, and a

system is a set of acceptable traces. For example, a system in which a user can give as input

either 0 or 1 and immediately receives that input as output is speci�ed by the following set

of traces: f<>; in(0); in(1); in(0):out(0); in(1):out(1); in(0):out(0):in(1); :::g. For simplicity,

we assume that any pre�x of an acceptable trace must also be an acceptable trace and that

a user can give input at any time (although the system may choose to ignore it).
The obvious way to generalize Noninterference is to require that the purge of an accept-

able trace be an acceptable trace, where the purge of a trace is formed by removing all
high-level inputs from the trace. The problem with this de�nition is that the purged trace
may not be unacceptable due to any security violations, but due to other system require-

ments. For example, consider the system described in the previous paragraph and assume
that all input and output is high-level. Since the system generates no low-level output, it is
trivially secure. Now, we have seen that in(0):out(0) is an acceptable trace of the system.
However, the purge of this trace, viz. out(0), is not an acceptable trace since it contains an
unsolicited output, which the system is not supposed to give.

At this point, the obvious approach is to keep the requirement that the purge of an
acceptable trace be an acceptable trace, but rede�ne the purge operator so that it re-
moves, not simply all high-level input, but all high-level output as well. This approach,
however, also has problems. First, it is too strong in that it rules out any system where
low-level input must generate high-level output. As a result, we would have to regard as

nonsecure a system that secretly monitors low-level usage and sends its audit records as

high-level output to some other system for analysis. A more severe problem is that it
allows nonsecure systems. Consider a system in which the following traces are acceptable:
f<>;highin(0); highin(1); lowout(0); lowout(1); highin(0):lowout(0); highin(1):lowout(1)g.

This system satis�es our security property since if we remove all the high-level events from

an acceptable trace, the result is an acceptable trace. However, it is not hard to come up
with a scenario where a Trojan Horse acting on \behalf" of a high-level user can pass infor-

mation to a low-level user using such a system. For example, if we assume that the high-level
user always has the option if giving input before the next low-level output is generated, then

information can be passed noiselessly. If the Trojan Horse wants to send a 0 or 1 to the
low-level user, it simply gives the appropriate bit as input before the next low-level output

is generated.

The problem with the approaches so far is that when we allow the same input to issue a
variety of outputs to the low-level user, the requirement that the purge of an acceptable trace

be an acceptable trace is too weak. We also need the requirement that high-level events can

10



be introduced into an acceptable trace without rendering the resulting trace unacceptable

to the system. For our last system to meet this stronger requirement, it would also have to

regard the traces highin(0):lowout(1) and highin(1):lowout(0) as being acceptable, which

would close the nonsecure channel. Such a requirementwas not necessary when we considered

only deterministic systems since if the insertion of a high-level input altered the low-level

output of a trace, then we could not satisfy the requirement that the trace that would be

the purge of both traces must have the same output as the original traces.

Of course, it would be too strong to require that any arbitrary insertion of high-level

events into an acceptable trace must be acceptable. The high-level events, themselves, must

be acceptable to the system, and we must take into account the fact that these new events

(possibly in conjunction with existing low-level events) can alter the values of high-level

outputs. These considerations lead us to the requirement that for any two acceptable traces,

T and S, there is an acceptable trace R consisting of T 's low-level events (in their respective

order), S's high-level inputs (in their respective order), and possibly some other events that

are neither low-level events from T nor high-level inputs from S. This property, known as
Nondeducibility, was �rst put forward by Sutherland [Sut86] to capture the requirement
that whatever the low-level user sees is compatible with any acceptable high-level input.

Although Nondeducibility is more general than Noninterference in that it does not assume
determinism, it is equivalent to Noninterference if we limit ourselves to deterministic systems
with only two users. However, Nondeducibility is strictly weaker than Noninterference if we
consider deterministic systems with more than two users. For example, consider the system
described in the previous section of this article where user Y receives as output the exclusive

or of the input from user X and user V . We saw that in such a system user X interferes
with Y 's output, although Y may not be able to detect this. As such, this system fails to
satisfy Noninterference with respect to X and Y . It does satisfy Nondeducibility, however,
since any acceptable input sequence from X and any acceptable output sequence to Y can
be combined into an acceptable trace by inserting suitable inputs from V .3

The trouble with Nondeducibility is that it is too weak. For example, consider a system

where a high-level user H gives arbitrary high-level input (presumably a secret messages of
some sort) and some low-level user L gives the low-level input, look. When L issues look,
he or she receives as low-level output the encryption of H's input up to that time, if there is
any, or else a randomly generated string. Such a system models an encryption system where

low-level users can observe encrypted messages leaving the system, but to prevent tra�c


ow analysis, random strings are generated when there is no encrypted output. This system
satis�es Nondeducibility since low-level users can learn nothing about high-level input. The

problem arises when we realize it would still satisfy Nondeducibility even if we removed the
encryption requirement. For example, given the high level input highin(Attack at dawn),

and the low-level trace lowin(look):lowout(xxx), we can construct the legal system trace

lowin(look):lowout(xxx):highin(Attack at dawn). Similarly, given the acceptable traces
<> and highin(Attack at dawn):lowin(look):lowout(Attack at dawn), we can construct
a legal trace from the high-events of the former and the low-events from the latter, viz.

3In fact, there is a problem with our formulation since Y 's output trace must be long enough to account
for all of X's and V 's inputs. This is an artifact of our formalism, however, and is not a problem for the
original statement of the model. We can get around the problem within our formalism, but as we shall soon
see, Nondeducibility has other problems that render any solution to this problem otiose.

11



lowin(look):lowout(Attack at dawn) since it is possible that the string \Attack at dawn"

was randomly generated. This problem was �rst noticed by McCullough [McC87].

A second problem with Nondeducibility is that it is not composable. Composability is the

second-order property that holds of a �rst-order property if and only if any composite system

formed by connecting two subsystems that satisfy the �rst-order property in an appropriate

way satis�es the �rst-order property as well. McCullough showed that Nondeducibility is

not preserved by secure composition (i.e., composition in which outputs from one subsystem

are connected to inputs of another subsystem only if the outputs and inputs have the same

security level) [McC90].

Referring back to the de�nition of \Nondeducibility", we see that the cause of these

problems is that it allows us too much freedom in constructing an acceptable trace R from

the high-level inputs of an acceptable trace T and the low-level events from an acceptable

trace S. We should require, not only that event order be maintained within T and S, but

that we also be limited in how we can intersperse the events from the two di�erent traces.

In e�ect, we want to require not simply that there is some place in an acceptable trace
where we can insert a high-level event and still obtain an acceptable trace, but that we can
obtain an acceptable trace no matter where we insert a high-level event. This observation

is the motivation for the following security property, known as Generalized Noninterference:
given any acceptable system trace T and an alteration T1 formed by inserting or deleting a
high-level input to or from T , there is an acceptable trace T2 formed by inserting or deleting
high-level outputs to or from T1 after the occurrence of the alteration in T made to form T1
[McC87]. For example, consider the system described above where a low-level user monitors

high-level output. As we noted, a possible trace for that system is lowin(look):lowout(xxx).
If we alter this trace to obtain highin(Attack at dawn):lowin(look):lowout(xxx), we are left
with an unacceptable trace that cannot be made acceptable by inserting or deleting high-
level outputs after the occurrence of the inserted high-level input. Hence, the system fails
to satisfy Generalized Noninterference.

Unfortunately, although Generalized Noninterference solves the �rst problem with Nond-

educibility, it does not solve the second. Generalized Noninterference is not composable
either [McC87]. To create a composable security property, we must be even more restrictive
about how T2 is formed. This leads us to the following de�nition, known as Restrictiveness:
given any acceptable trace T and alteration T1, formed by inserting or deleting a high-level

input to or from T , there is an acceptable trace T2 formed by inserting high-level outputs to

or from T1 after the occurrence of the alteration in T made to form T1 and any sequence of
low-level inputs that immediately follow the alteration to T [McC87]. For example, consider

the acceptable trace wxyz where z is a high-level output and both x and y are low-level
inputs. Now consider the alteration we obtain by inserting a high-level input h after w to

form whxyz. Generalized Noninterference would allow us to form an acceptable trace from

this alteration either by removing z or by inserting a high-level output anywhere in the trace
after h. Restrictiveness forces us to form an acceptable trace only by removing z or by
inserting a high-level output somewhere after y. McCullough showed that this restriction to

Generalized Noninterference, yields a composable security property [McC90].

Although Restrictiveness goes a long way toward providing a nondeterministic version

of Noninterference, it is not problem free. One problem is that it is not preserved by many
standard views of re�nement [Jac89]. For example, consider a system where a high-level user

12



can either input 0 or 1 and a low-level user can receive as output either 0 or 1. In other words,

assume that the following set of traces are all acceptable fhighin(0); highin(1); lowout(0);

lowout(1); highin(0):lowout(0); highin(0):lowout(1); highin(1):lowout(0); highin(1):lowout(1)g.

Since low-level output is compatible with any high-level input, the system is obviously Re-

strictive. If we consider the notion of re�nement used in a number of software engineering

paradigms, however, a perfectly correct implementation of this program could eliminate the

nondeterminism contained in the speci�cation and produce a program that accepted, e.g.,

only the following traces: fhighin(0):lowout(0); highin(1):lowout(1)g. Such a program is

not Restrictive. Since we can have functionally correct implementations of Restrictive speci-

�cations that are not, themselves, Restrictive, we must check for Restrictiveness at each level

of the software development process. This leads to a major increase in the cost of software

engineering.

This problem is caused by the fact that most of these methodologies view properties as

sets of traces and view a program as satisfying a property if its acceptable traces are a subset

of the property. The rub is that security properties such as Noninterference are not sets of
traces, but rather properties of sets of traces { i.e., meta-properties. Properties such as this,
which includes average response time as well, are not preserved by subsetting. Although

there are speci�cation/re�nement methodologies that do a better job of preserving security
under re�nement, they have, so far, been applied only to relatively simple generalizations of
Noninterference [McL92, Mea92].

A second problem with Restrictiveness is that it addresses only noise-free channels.
For example, consider the system described above, but assume that the traces lowout(0),

lowout(1), highin(0):lowout(1), and highin(1):lowout(0), although possible, occur with only
a very small probability, say .0001. Assume further, that whenever a high-level input occurs,
a low-level output immediately occurs with a very high probability. Although this system
is Restrictive, it passes high-level information to low-level users at an extremely high rate.
If a low-level user sees an output, he or she can be almost certain that that the output was
given as a high-level input, and whenever a high-level user gives an input, it is almost certain

that the low-level user will soon receive it as a low-level output. Such noisy or probabilis-
tic channels are beyond the scope of the possibilistic approach to modeling we have so far
considered.

2.2.3 Probabilistic Models for Nondeterministic Systems

The �rst models formulated explicitly to deal with probabilistic channels were put for-

ward in 1990. They were the Flow Model (FM), formulated by McLean [McL90a], and

P-Restrictiveness, formulated by Gray [Gra90]. FM is an extremely general model which
Gray applied to a speci�c system description the next year, calling the system-speci�c in-

terpretation AFM [Gra91]. In that same paper, Gray also introduced a new security model,
Probabilistic Noninterference (PNI), which he compared with AFM. The year after that,

Gray and Syverson produced a veri�cation logic which supports the formal veri�cation of

systems implementing probabilistic models [GS92].
Both AFM and PNI regard a system as a 4-tuple < S; I;C;O >. S is a set of information

sources, i.e., entities that introduce probabilistic behavior into the system. S normally
consists of all system input channels and any internal random number generators. C is the

13



set of system output channels. I and O are the alphabets of S and C, respectively. For

simplicity, we will assume that S consists of two input channels, highin (input from the

high-level user) and lowin (input from the low-level user), and that O consists of two output

channels, highout (output to the high-level user) and lowout (output to the low-level user).

At any time, the low-level user knows the history of the two low channels and the high-level

user knows the history of all the system channels.

At any given time, t, the input to the system consists of the ordered pair < highint;

lowint >, which we denote by int, and the output from the system consists of the ordered

pair < highoutt; lowoutt >, which we denote by outt. We denote the history of inputs and

outputs up to and including t by< in1; in2; :::; int > and < out1; out2; :::; outt >, respectively.

We assume that there is a function Ô which intuitively gives the probability of a certain

output occurring at time t + 1 given the input and output histories up to time t, i.e.,

Ô(outt+1j < in1; in2; :::; int >;< out1; out2; :::; outt >) is the probability that the system

will produce outt+1 as output at time t + 1 given input history < in1; in2; :::; int > and

output history < out1; out2; :::; outt >. We also assume that there is an analogous function
Î which intuitively gives the probability of a certain input occurring at time t+ 1 given the
input and output histories up to time t. Although it is unrealistic, in general, to assume

that a particular Î correctly models a user's input, in the security properties that follow
quanti�cation is made over all such functions so we never need to assume that a particular
Î models any individual user. The reason for introducing Î is to prevent high-level Trojan
Horses from communicating information to low-level users via game-theoretic strategies (see,
e.g., [WJ90]) and, more importantly, to de�ne a probability measure on system events.

Given < S; I;C;O >, Ô, and Î, a probability measure, P , can be constructed that gives the
probability of any event in which the system can engage.

To limit ourselves to systems in which high-level users do not pass information to low-level
users outside the system (since if they do, computer security becomes moot), we require that
low-level input at time t can depend only on previous low-level events and that, conditioned
on previous history, the low-level input must be statistically independent of high-level input

at time t. This requirement can be formalized by requiring that there are two probability
measures H and L, called the high environment behavior and low environment behavior, re-
spectively, such that (1) H(highint+1j < in1; :::; int >;< out1; :::; outt >) gives the probabil-
ity of highint+1 being the high-level input at time t+1, (2) L(lowint+1j < lowin1; :::; lowint >

;< lowout1; :::; lowoutt >) gives the probability of lowint+1 being the low-level input at time

t+ 1, and (3) Î(int+1j < in1; :::; int >;< out1; :::; outt >) = H(highint+1j < in1; :::; int >;

< out1; :::; outt >) � L(lowint+1j < lowin1; :::; lowint >;< lowout1; :::; lowoutt >).

AFM, Gray's formalization of FM within this framework, is the requirement that given
< S; I;C;O > and Ô, for any Î that satis�es the secure environment criteria, P (lowoutt+1j <

in1; :::; int > & < out1; :::; outt >) = P (lowoutt+1j < lowin1; :::; lowint > & < lowout1; :::;

lowoutt >). Hence, AFM intuitively says that conditioned on low-level history low-level
output at time t is statistically independent of previous high-level events.

To formalize PNI, we note that since P is determined by < S; I;C;O >, Ô, and Î, while

Î is determined by H and L, it follows that P is determined by < S; I;C;O >, Ô, H, and

L. Given < S; I;C;O > and Ô, Gray de�nes PNI as the requirement that for any two high

environment behaviorsH1 and H2, any low environment behavior L, and any low-level event

e, PH1;L(e) = PH2;L(e), i.e., the probability measure constructed from < S; I;C;O >, Ô, H1,

14



and L assigns the same probability measure to e as the one constructed from < S; I;C;O >,

Ô, H2, and L. Hence, PNI intuitively says that the probability of a low-level event occurring

is independent of any high-level user behavior.

Gray has shown that PNI is su�cient for guaranteeing that there is no information 
ow

from high-level users to low-level users and that (A)FM is strictly stronger than PNI. In

other words both models are su�cient to guarantee con�dentiality, but there are systems

that satisfy PNI, but fail to satisfy (A)FM. For example, consider a system in which low-level

data is randomly generated. If such data appears as high-level output and then as low-level

output at a later time, the system will satisfy PNI, but not (A)FM. Whether such systems

show that (A)FM is too strong is debatable since it is unclear why low-level data should be

regarded as high-level output. The real strength in (A)FM, however, is that it is easier to

verify than PNI and can be used as a veri�cation condition for PNI [GS92]. Whether we can

build systems that conform to either model, and, if not, whether we can weaken the models

to be more generally applicable are open research issues. If the answer to both questions is

negative, we may be forced to abandon general interface models for computer security and
retreat to access control, relying on covert channel analysis to detect probabilistic channels
[MM92]. For the time being, (A)FM and PNI constitute the current state of the art with

respect to such models.

3 Other Types of Models

As noted in the introduction to this article, not all security models address general con�-

dentiality concerns. Although space does not permit a thorough discussion of other types of
security models, we shall give pointers for where to look. Whereas con�dentiality prohibits
the unauthorized reading of information, availability prohibits the unauthorized withholding
of information. It's concern is not that low-level users can read high-level �les, but that
they can prevent high-level users from accessing these �les. There has been a fair amount

of formal work in this area, �rst by Gligor[Gli83], and then by Yu and Gligor [YG90] and
by Millen [Mil92]. The latter two models present resource allocators. The model of Yu and
Gligor uses temporal logic to specify constraints on such an allocator, and the one by Millen

uses a �nite state machine framework.
When we turn to integrity, which prohibits the unauthorized modi�cation of information,

less progress has been made. The most famous integrity model to date was formulated by
Clark and Wilson [CW87]. The basis of the Clark-Wilson Model is that controlled data

items can be altered only by certain transactions and that such transactions may require
collaboration from other people. The disadvantage of the model is that it is far from formal,

and it is unclear how to formalize it in a general setting (although the framework described

[McL90b] can be used to formalize the multi-person rule part of the model). Part of the

problem is that although we seem to have a clear formal concept of con�dentiality (via

information theory), we have yet to develop a general one for integrity.
A di�erent approach to dealing with these problems is to move from general models

to application-speci�c models. The �rst model to try this approach was the Secure Mil-
itary Message System Model [LHM84]. The constraints expressed in this model are not

general security constraints on subjects and objects, but speci�c security constraints that a

15



message system must meet in its handling of messages. Since then, the application-speci�c

approach has been applied in a number of areas, most notably in the area of database security

[DLS+88].

References

[AS90] P. Ammann and R. Sandhu. Extending the creation operation in the schematic
protection model. In Proceedings of the 1990 IEEE Symposium on Research in

Security and Privacy. IEEE Computer Society Press, 1990.

[Bis84] J. Biskup. Some variants of the take-grant protection model. Information Pro-

cessing Letters, 19(3), 1984.

[BL75] D. Bell and L. LaPadula. Secure computer systems: Uni�ed exposition and multics
interpretation. Technical Report MTR-2997, MITRE, Bedford, MA, 1975.

[Boe76] B. Boehm. Software engineering. IEEE Transactions on Computers, C-
25(12):1226{41, December 1976.

[BS79] M. Bishop and L. Snyder. The transfer of information and authority in a protection
system. In Proc. 7th ACM Symposium on Operating Systems Principles, 1979.

[Coh77] E. Cohen. Information transmission in computational systems. ACM SIGOPS

Operating System Review, 11(5):133{139, November 1977.

[CW87] D. Clark and D. Wilson. A comparison of commercial and military computer
security policies. In Proceedings of the 1987 IEEE Symposium on Research in

Security and Privacy. IEEE Computer Society Press, 1987.

[Den76] D. Denning. A lattice model of secure information 
ow. Communications of the

ACM, 19(5):236{243, May 1976.

[Den82] D. Denning. Cryptography and Data Security. Addison-Wesley, Reading, Mas-
sachusetts, 1982.

[DLS+88] D. Denning, T. Lunt, R. Schell, W. Shockley, and M. Heckman. The sea view
security model. In Proceedings of the 1988 IEEE Symposium on Research in

Security and Privacy. IEEE Computer Society Press, 1988.

[Fei80] R. Feiertag. A technique for proving speci�cations are multilevel secure. Technical
Report CSL-109, SRI, Menlo Park, CA, 1980.

[GD72] G. Graham and P. Denning. Protection { principles and practice. In Proc. Spring

Joint Computer Conference. AFIPS Press, 1972.

[Gli83] V. Gligor. A note on the denial-of-service problem. In Proceedings of the 1983

IEEE Symposium on Research in Security and Privacy. IEEE Computer Society
Press, 1983.

16



[GM82] J. Goguen and J. Meseguer. Security policies and security models. In Proceed-

ings of the 1982 IEEE Symposium on Research in Security and Privacy. IEEE

Computer Society Press, 1982.

[GM84] J. Goguen and J. Meseguer. Unwinding and inference control. In Proceedings of

the 1984 IEEE Symposium on Research in Security and Privacy. IEEE Computer
Society Press, 1984.

[Gra90] J. Gray. Probabilistic interference. In Proceedings of the 1990 IEEE Symposium

on Research in Security and Privacy. IEEE Computer Society Press, 1990.

[Gra91] J. Gray. Toward a mathematical foundation for information 
ow security. In
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1991.

[GS92] J. Gray and P. Syverson. A logical approach to multilevel security of probabilistic
systems. In Proceedings of the 1992 IEEE Symposium on Research in Security

and Privacy. IEEE Computer Society Press, 1992.

[HR78] M. Harrison and W. Ruzzo. Monotonic protection systems. In R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, editors, Foundations of Secure Computa-

tion, pages 337{365. Academic Press, New York, 1978.

[HRU76] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems. Com-

munications of the ACM, 19(8):461{471, August 1976.

[Jac89] J. Jacob. On the derivation of secure components. In Proceedings of the 1989

IEEE Symposium on Research in Security and Privacy. IEEE Computer Society
Press, 1989.

[JLS76] A. Jones, R. Lipton, and L. Snyder. A linear time algorithm for deciding security.
In Proc. 17th Annual Symp. on Found. of Comp. Sci., 1976.

[Jon79] D. S. Jones. Elementary Information Theory. Oxford University Press, Oxford,
1979.

[Kem83] R. Kemmerer. Share resource matrix methodology: An approach to identifying
storage and timing channels. ACM Transactions on Computer Systems, 1(3):256{
277, August 1983.

[Lam71] B. Lampson. Protection. In 5th Princeton Symposium on Information Sciences

and Systems, March 1971. Reprinted in ACM Operating Systems Review, 8(1)
(1974).

[Lam73] B. Lampson. A note on the con�nement problem. Communications of the ACM,
16(10):613{615, October 1973.

[LHM84] C. Landwehr, C. Heitmeyer, and J. McLean. A security model for militarymessage
systems. ACM Transactions of Computer Systems, 2(3):198 { 222, August 1984.

17



[LS78] R. Lipton and L. Snyder. On synchronization and security. In R. DeMillo,
D. Dobkin, A. Jones, and R. Lipton, editors, Foundations of Secure Computa-

tion, pages 367{385. Academic Press, 1978.

[McC87] D. McCullough. Speci�cations for multi-level security and a hook-up property. In
Proceedings of the 1987 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1987.

[McC90] D. McCullough. A hookup theorem for multilevel security. IEEE Transactions on

Software Engineering, 16(6):563 { 568, June 1990.

[McL85] J. McLean. A comment on the `basic security theorem' of Bell and LaPadula.
Information Processing Letters, 20(2):67 { 70, February 1985.

[McL90a] J. McLean. Security models and information 
ow. In Proceedings of the 1990

IEEE Symposium on Research in Security and Privacy. IEEE Computer Society
Press, 1990.

[McL90b] J. McLean. The speci�cation and modeling of computer security. Computer,
23(1):9 { 16, January 1990.

[McL92] J. McLean. Proving noninterference and functional correctness using traces. Jour-
nal of Computer Security, 1(1):37 { 57, January 1992.

[Mea92] C. Meadows. Using traces based on procedure calls to reason about composability.
In Proceedings of the 1992 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1992.

[Mil87] J. Millen. Covert channel capacity. In Proceedings of the 1987 IEEE Symposium

on Research in Security and Privacy. IEEE Computer Society Press, 1987.

[Mil92] J. Millen. A resource allocation model for denial of service. In Proceedings of

the 1992 IEEE Symposium on Research in Security and Privacy. IEEE Computer
Society Press, 1992.

[MM92] I. Moskowitz and A.Miller. The channel capacity of a certain noisy timing channel.
IEEE Transactions on Information Theory, 38(4):1339 { 1344, July 1992.

[PF78] G Popek and D. Farber. A model for veri�cation of data security in operating
systems. Communications of the ACM, 21(9):237{249, September 1978.

[San88] R. Sandhu. The schematic protection model: Its de�nition and analysis for acyclic
attenuating schemes. Journal of the ACM, 35(2):404{432, 1988.

[San91] R. Sandhu. The typed access matrix model. In Proceedings of the 1991 IEEE

Symposium on Research in Security and Privacy. IEEE Computer Society Press,
1991.

[Sny81] L. Snyder. Theft and conspiracy in the take-grant model. Journal of Computer

and Systems Sciences, 23(3):333{347, 1981.

18



[Sut86] D. Sutherland. A model of information. In Ninth National Computer Security

Conference. National Bureau of Standards/National Computer Security Center,

1986.

[WJ90] T. Wittbold and D. Johnson. Information 
ow in nondeterministic systems. In
Proceedings of the 1990 IEEE Symposium on Research in Security and Privacy.
IEEE Computer Society Press, 1990.

[Wra91] J. Wray. An analysis of covert timing channels. In Proceedings of the 1991 IEEE

Symposium on Research in Security and Privacy. IEEE Computer Society Press,
1991.

[YG90] C-F Yu and V. Gligor. A speci�cation and veri�cation method for preventing
denial of service. IEEE Transactions on Software Engineering, 16(6):581 { 592,
June 1990.

19


