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Abstract

In most models of trusted database systems, transactions are considered to be
single-level subjects. As a consequence, users are denied the ability to execute
some transactions which can be run on conventional (untrusted) database
systems, namely those that perform functions that become inherently multilevel
in the MLS environment. This paper introduces a notion of multilevel transaction
and proceeds to an algorithm for their concurrent execution. The algorithm is
proven to be correct in the sense that resulting schedules for executing the
multilevel transactions is one-copy serializable.

1. INTRODUCTION

Most approaches to transaction processing for trusted database systems (TDBS)
do something like the following. There is a set of data items, labeled with security
classes from a lattice of security classes (or levels), which serve as the objects of
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the system. There is another set, of transactions, also labeled with security
classes, in the role of the subjects of the system. A mandatory access control policy
is adopted that enforces the Simple Security and  -property of Bell and LaPadula
[1]; namely subjects may write to objects only if the label of the subject is
dominated by that of the object, and subjects may read from objects only if the
label of the subject dominates that of the object. (Frequently the write condition
is restricted to permit a subject to write to an object only if the labels are the
same.) From the point of view of the security world, then, subjects and objects are
the atomic units of interest. The approach described above enforces this point of
view on the database system (and its users) as well. 

On the other hand, in the database world, a different view of what constitutes
atomicity prevails. Data items remain the elements of interest from the users'
point of view. However, DBS users see two types of entities that operate on the
data items. First there are read and write operations that are applied directly to
data items. They also construct transactions as sequences of these operations that
the users' expect to be executed atomically on the database. That is, a transaction
is either executed completely and the resulting changes to the values of the data
items made permanent, or the transaction has no effect at all. In addition, these
transactions are independent in that there is no communication among
transactions except through their effect on the values of data items. There is no
external communication among transactions.

At first glance, the views of the security world and the database world seem in
agreement. However, a conflict between them does exist. Implicit in the security
view is that transactions have a unique security level. That is, subjects are single-
level. From the database users' view, operations on data items are single-level,
but requiring entire transactions to be so may be inadequate for many
transactions that they may want to use. Examples may help.

A satellite uses sensors to collect sensitive information in its scanning range. That
data, together with the position of the satellite, is used by an analytical process.
The position data has security level U (unclassified) while the other data and the
result of the analysis has security level S (secret). The security world would like
to split this into two transactions; a U transaction that records the position data
and an S transaction that then reads the position data, retrieves the other data,
performs the analysis, and finally writes the result to the database. To do this,
the user would have to log-on to the system at level U and submit the first
transaction, then log-out and log-in at level S, where the second transaction would
be submitted. The database world would like to do this using only a single
transaction since it must be done as a single atomic action to insure that the
result be correct. The two transactions approach embodies the following pitfall.
Since the two transaction cannot communicate except through their action on
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data items, there is no assurance that the second transaction will read the
position data submitted by the first. Incorrect data could be read by the second
transaction in two ways. The update to the position data may not have been made
by the time the second transaction reads the position data item and so the old
position would be used in the analysis. This can be overcome by the user waiting
for a commitment message from the system before logging out from the U level.
But there is another way that incorrect data can be read by the second
transaction. Namely, newer position data is written by a different user's
transaction before the correct data is read by the second transaction and again
the analysis is incorrect. This cannot be corrected without the two transactions
communicating in some external way.

The situation can get more complex, as shown in this second example. Suppose
a company records the hours worked by each employee and computes the
employees' salaries for the pay period. The hours data has security level U
(unclassified) while the hourly rate data and the gross salary data have security
level S (secret). The transaction to be performed first updates the hours worked
from the time card, and then retrieves the hourly rate and computes the salary.
Finally, the hours worked data item is reset to zero. The security world technique
would require three transactions. The first updates hours worked. The second
retrieves the rate and computes the salary. The third resets the hours worked to
zero. Three distinct log-ins are required, and the first and second have the same
problem as our previous example. Beyond that if the third were completed before
the second transaction retrieved the hours data, the salary would be calculated
incorrectly.

In the conventional (not trusted) database world, these problems would not exist,
because the user could submit these combined actions as a single transaction.
Ordinary concurrency control mechanisms (which enforce serializability of
collections of transactions) would insure that correct values were read and written
in the proper sequence. 

It appears that some notion of multilevel transaction is required to resolve this
dilemma. Previous work in this direction for a limited class of multilevel
transactions and for replicated architecture multilevel database systems appears
in [4]. Here we intend to extend the idea of multilevel transaction to a
significantly larger class of multilevel transactions, one that encompasses
virtually every situation that we can construct. We will formally define notions
of multilevel transaction and the correctness of their execution (serializability) in
centralized multilevel database systems with kernelized architecture. A
scheduling algorithm will be presented and shown to be correct. 
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2. THE SECURITY MODEL

The architecture for the systems under consideration is based on one that is
frequently proposed [7,8]. The security features are enforced by a security kernel,
the trusted computing base of the trusted operating system, together with
whatever additional trusted processes are necessary in the database application
to enforce the overall system's security policy. The idea is to minimize the trusted
processes required to do this.

The security policy for our system will be a variant of the mandatory access
control policy of Bell and LaPadula [1]. There is a set D of data items of the
database system that serve as the objects of the multilevel system. The subjects
of the system, denoted Sub, are quite similar to the single-level transactions used
in earlier work [3,6,7,8,9,10]. However our transactions will be more complex and
will be formed by interleaving the subjects of the database system.

More formally, we limit operations on the data items. Only Reads, denoted r[x],
and Writes, denoted w[x] together with Aborts, denoted a, or commits, denoted
c are considered. A subject of Sub is a sequence of Reads and Writes ending with
either an Abort or a Commit (but not both). There is a lattice (SC,<) of security
labels and a function L, mapping subjects and objects into security classes, i.e.,
L:D∪Sub→SC. The security policy has two conditions:

(1) (Simple Security Property) If T∈Sub and r[x]∈T, then L(x)≤L(T).

(2) (Restricted  -Property) If T∈Sub and w[x]∈T, then L(x)=L(T).

That is, subjects can read from dominated security levels, but only write at their
own security level. These are basically the mandatory access control policies of [1],
slightly modified.

3. THE TRANSACTION MODEL

To define multilevel transaction, we need some preliminaries. A data item x can
take on values from its domain, dom(x). A state of the database is determined by
assigning each x in D a value from its domain, i.e., the states are functions
f:D→∪{dom(x)x∈D and f(x)∈dom(x)}. V will denote the set of all such functions.
Further, let D  l={x∈DL(x)≤l and l∈SC} and let V  l be obtained by restricting
each f∈V to D  l (denoted f l). Notice that any action on the database defines a
mapping of V to V. In particular, if T is a transaction and f∈V, then (T(f))(x) is
the value of x resulting from executing T on the database starting with the values
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of the data items specified by f. T  l will denote T restricted to V  l.
Alternatively, T  l is the transaction obtained by discarding the operations not
dominated by l (and keeping the implied order).

Definition A multilevel transaction Ti is a sequence**, ordered by ≤i, of ordered
pairs of the form (oi,l) where oi is one of ai, ci, ri[x], wi[x] for some x∈D and
l∈SC that satisfies the following conditions:

(1) Either {(ci,l)l∈SC}⊆Ti or {(ai,l)l∈SC}⊆Ti, but not both.

(2) Let ei be either ai or ci. Then for each l∈SC, (oi,l)≤i(ei,l) .

(3) For f∈V, we have Ti  l(f l)=(Ti(f))  l for each l∈SC.

The first condition requires a multilevel transaction to commit at each security
level or abort at each security level. Security considerations alone would only
require that no commits occur at security levels higher than one at which an
abort had occurred, else lower level subtransactions would have to be rolled back
to insure atomicity. Imposing this condition guarantees that this possibilty is
avoided. We should point out that we are only accounting for aborts due to
concurrency control considerations and not for those due to violations of integrity
constraints, such as range constraints. Aborts for other reasons are problematic
regardless of the concurrency control technique employed. The second condition
forbids further operations to be done at a given security level after the commit or
abort at that level. 

The third condition is more difficult to explain. Notice that for a multilevel
operation (oi,l), oi can only operate on a data item whose security level is
dominated by l in SC. This means that operations in T  l are only applied to
data items at the level of l or below, and that T  l(f l) is the result of applying
these operations to those data items. (Ti(f)) l is the result of executing T on the
entire database and then looking only at the result on the data items with
security level l or below. The equality in the condition says that the values of data
items at level l and below which result from executing T depend only on the
values of those data items when T was initiated, and not on the values of any

                                           

     **We could use a definition of transaction based on partial orders, as in [2].
However the results are actually no more general but the definitions, the
algorithm, and the proofs are more complicated. We will use sequences rather
than partial orders throughout this paper since it simplifies the explication
with no loss of generality.
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higher level data items. Said differently, no information about the value of higher
level data items can flow to lower level data items by virtue of running the transaction.

Consider our earlier examples in light of this definition. The first example
becomes (w[x],U)(c,U)(r[x],S)(r[y],S)(w[z],S)(c,S) where L(x)=U, and the other
data items have security level S. This clearly satisfies the conditions. Condition
(3) is satisfied since the transaction never writes to a lower level data item after
accessing a higher level one. Transactions of this form are treated in [4] for a
different architecture.

Our second example becomes (omitting the commit operations for simplicity),
(w[x],U)(r[y],S)(r[y],S)(w[z],S)(w[x],U). Unlike the prior example, this
transaction writes a lower level data item after reading a higher level one. But
since the second time x is written the value is always zero, the last condition is
satisfied, and we have a legitimate multilevel transaction.

Whether the third condition is satisfied is not easily determined by the TDBMS
itself. One way to resolve this difficulty is to limit transactions to those that
satisfy a more restrictive, but more easily detectable form (as in [4], for example).

Another solution, which we believe is more likely, is to restrict multilevel
transactions to predefined transactions that can be determined ahead of time and
verified to satisfy this condition. Ad hoc user defined transactions would not be
allowed because of the risk of violating the condition. Under this approach, the
data items on which a transaction would operate would be known at the time the
transaction is submitted to the system. The algorithm presented here relies on
this assumption.

Operations of several transactions can be commingled so that concurrency of
execution can be extended to sets of transactions, as reflected in the following.

Definition A complete multilevel history H over a set of multilevel transactions
T = {T1, T2,     , Tn} is a sequence with ordering relation <H where

(1) There is a multilevel T0 that precedes all other transactions. T0 has
operations {(w0[x],l)x∈D}.

(2) H ⊇ T0 ∪ T1 ∪ T2 ∪     ∪ Tn

(3)  <H ⊇ <0∪<1 ∪ <2∪     ∪ <n

The first condition provides initial values of the data items, so a Read operation
always succeeds some Write operation on the desired data item [11]. The second
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requires the history to contain precisely the operations of the original
transactions. The third condition provides that the ordering of operations within
the history is consistent with that of each transaction. 

Notice that our notion of multilevel transaction does not limit the number of Read
or Write operations on a given data item within a transaction, or even within a
given level of a transaction, in contrast to the usual practice in concurrency
control theory [2,11]. Since it does not, a transaction may read or write the same
data item several times. We will denote the nth Write operation on x by Ti by
wi,n[x] when necessary to avoid confusion. This multiple write capability has led
us to choose a multiversion approach to concurrency control. Multiversion systems
create a new version of a data item each time it is written and maintain the old
versions, which does not impose significant additional burden on the DBMS, since
these versions must be maintained for purposes of recovery in any case.

The preceding definition of history represents the view of the user, to whom
versions of data items are transparent. The users' view represents the logical
order of the execution of operations as seen by the users. Histories of this type
will be called one-copy histories when it is necessary to distinguish them from
histories that represent the system's view of a transaction and that deal with
multiple versions of data items. The representation of the system's view requires
a different definition of history.

When a set of transactions is executed by a multiversion DBMS, an operation in
a transaction must be translated into the equivalent operation on some version
of the data item. A translation function h performs the mapping. For a Read, h
determines the version of x to be read, i.e., h(ri[x],l))=(ri[xi,n],l) where xi,n is the
nth version of x written by Ti. For a Write, h, determines what version of x will
be created, i.e., h(wi[x],l)=(wi[xi,n],l) if w[xi] is the nth Write operation on x in Ti. 
 
The concept of a multiversion data history is needed to represent the actions of
the translated transactions on the multiversion data. Recall that T0 is an
initializing transaction that writes initial values into every data item in D.

Definition A multiversion data history H over a set of multilevel transactions
T={T1, T2,    ,Tn} is a linear order with ordering relation <H such that

(1) H ⊇ h(T0) ∪ h(T1) ∪ h(T2) ∪     ∪ h(Tn)

(2) If (pi,l), (qi,m)∈Ti with (pi,l) <i(qi,m) then h(pi,l)<Hh(qi,m)

(3) For all l∈SC, all i>0, (w0[x0,1],l)<H(ri,1[x],l) for all x∈D.
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A multiversion data history represents the order in which operations are executed
by the data manager of the TDBMS on the data items stored in the TDBMS.

The first condition says that the history contains the translations of the original
transactions. The second condition insures that the order of operations within
transactions is preserved. The third condition provides that at each security level,
T0 initializes each data item before it is read by any of the original transactions.

Histories, one-copy or multiversion, are complete if they contain no operations
from aborted transactions. Since we are primarily concerned with these kinds of
histories, we will refer to them simply as histories. (As it turns out, our algorithm
prevents aborts, so the notions are coincident in any case.) We now turn to
defining a notion of correctness for execution of multilevel transactions.

A history, one-copy or multiversion, is serial if for every pair of transactions Ti

and Tj that appear in H, either all of the operations of Ti precede those of Tj or
vice versa. In one-copy histories, correctness is defined as being equivalent to a
serial history, where equivalence is, in turn, defined in terms of reads-from
relationships and final writes in the usual way [2]. It is well known in the theory
of database concurrency control that the parallel notion of equivalence is
insufficient for multiversion transactions [2] because Read operations may now
read from different versions of a data item, and a transaction may read from the
correct transaction but choose the wrong version. We will now make these ideas
more formal. 

Definition In one-copy histories, we say (rj[x],m) reads-x-from (wi[x],l) if
(wi[x],l)<H(rj[x],l) and there is no (wk[x],l) for which (wi[x],l)<H(wk[x],l)<H(rj[x],l).
Notice that m≥l and that there is no requirement that i, j, and k be distinct. If i≠j,
we say Tj reads-x-from Ti, and call it a transaction reads-from. If i=j, we call it
a reflexive reads-from. We can extend these notions to multiversion histories by
considering different versions of a data item x as distinct data items, as usual.

Definition Two histories, one-copy or multiversion are, equivalent if they have
the same transaction and reflexive read-from relationships. In the one-copy case
we also require that they have the same final writes (which we will not define as
we will not use equivalence for this case).

As previously mentioned, it is inadequate to require that a multiversion history
be equivalent a serial multiversion history for a history to represent a correct
execution of the given transactions. Something more is required. We must require
that, in addition to being equivalent to a serial history, that it be equivalent to
a special class of serial history. 
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Definition A multiversion history H is one-copy serial if it is serial and satisfies

(1) If Tj reads-x-from Ti is a transactions reads-from then the first Read
operation in Tj that reads any version of x, reads it from the version of x
written by the last Write operation of Ti (note that this is well-defined
since H is serial.)

(2) If (ri[xi,n],m) reads-x-from (wi[xi,p],l) is a reflexive reads-from, then p=n.
That is, each Read of x in Ti reads-x-from the version produced by the
immediately preceding Write of x in Ti.

It is intuitively quite clear that one-copy serial histories are correct since they
look just like the corresponding one-copy history except that the data items have
versions and the Read operations are "correctly" matched to the right Write
operations.

Definition A multiversion history is one-copy serializable (1SR) if it is equivalent
to a one-copy serial multiversion history.

To show that this is an adequate criterion for correctness for (multilevel)
multiversion histories, we state the following theorem without proof. A proof can
be easily constructed from [2, Theorem 5.3]. Only minor changes are required are
to account for reflexive reads-froms. 

Theorem Let H be a multiversion history over a set of multilevel transactions
T={T1, T2,     , Tn}. Then H is equivalent to a serial one-copy history over T if
and only if H is 1SR.

4. THE INFORMAL PRESENTATION OF THE ALGORITHM

What must the concurrency control process in our multilevel database system do?
First, it must produce a 1SR multiversion history. In addition, the way in which
transactions and their operations are scheduled cannot result in the flow of high
security level information to lower security level subjects. In particular, no lower
security level transaction can be allowed to roll back because of the execution of
a higher security level part of a transaction. We want to accomplish this with a
minimum of trusted processes.
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Definition Given a multilevel transaction Ti and l∈SC, the l-projection of Ti =l

of Ti is {(oi,l)(oi,l)∈Ti} with the linear ordering inherited from Ti. We refer to
these l-projections generally as subtransactions.

Definition The write set of Ti =l is WS(Ti =l)={x∈D(w[x],l)∈Ti} and it's read set
is RS(Ti =l)={x∈D(r[x],l)∈Ti}. Similarly, WS(Ti  l)={x∈D(w[x],m)∈Ti and m≤l}
and RS(Ti  l)={x∈D(r[x],m)∈Ti and m≤l}.

Notice that Ti =l is a subject of the trusted system as we have defined them, and
that Ti =l also can be viewed as a single-level transaction with security level l.
Every multilevel transaction naturally gives rise to a set of subtransactions.
Notice that the definition of multilevel transaction guarantees that values written
at one security level cannot depend on values read at higher security levels, even
if the Read precedes the Write. This means that every multilevel transaction is
equivalent to one that executes the subtransactions in an order consistent with
the security lattice ordering (from low to high).

Our multiversion TDBMS will also have an untrusted strict multiversion
timestamp order scheduler [2], Pl, for each l∈SC. These schedulers will be called
local schedulers and will be used to schedule the subtransactions for their level,
just as if they were single level transactions. Subtransactions, therefore, may
commit (and, in theory, abort) and we refer to such as local commits (or aborts).
If a subtransaction has begun execution but not locally committed, we say it is
active. 

There is also a global scheduler Q, which will manage subtransactions across
security levels (between the local schedulers). Q will be largely untrusted, though
a few trusted processes will reside there. Q will assign timestamps to
transactions, compare read sets and write sets as necessary, and distribute
subtransactions to the appropriate local schedulers. 

Informally, the algorithm works as follows. When a multilevel transaction is
received, a timestamp is assigned and Read and Write operations on each data
item are indexed. I.e., the first Write of x is indexed by 1, the next is indexed by
2, and so on. Read operations receive the same index as the last preceding Write
of the same data item, or 0 if there is none. The indices will allow reflexive reads-
froms to find the correct version and also indicate which Read operations are
involved in transaction reads-froms. 

The multilevel transaction is then parsed into its subtransactions, which are
distributed to the corresponding schedulers. The algorithm will execute the
multilevel transaction by correctly executing the subtransactions and controlling
the interleaving of subtransaction among the various transactions. The algorithm
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must simultaneously insure that reads-froms are executed so as to generate a
1SR history and yet not allow information to flow from high security levels to
lower ones because of concurrency control mechanisms. (In this paper, we do not
address covert channels that may arise for other reasons.) 

We see two ways in which transaction processing might allow high level data to
be transmitted to lower security levels. First, since multilevel transactions can
have Write operations that execute after higher level data items have been read
by the same transaction, one must be sure that any values written after reading
higher level data items do not depend on the values read at the higher levels.
This is precisely what is insured by the third condition of our definition of a
multilevel transaction. Second, execution of transactions must be scheduled so
that no rollback of lower level or noncomparable level subtransactions can result
from the scheduling mechanisms for those at higher security levels. In particular,
the concurrency control algorithm cannot allow a subtransaction to abort after
another subtransaction of the same multilevel transaction has been executed at
a lower level. Allowing this would require that the subtransactions at lower
levels or noncomparable levels be rolled back (to satisfy the first condition of the
definition of multilevel transaction), creating a covert channel.

The problem is avoided by the following technique. First, for a given multilevel
transaction, subtransactions are executed in the order determined by the security
lattice. That is, the subtransaction at a given security level cannot begin to
execute its operations until all of the subtransactions at dominated security levels
have locally committed. This guarantees that a reflexive read-from will always be
able to find the correct version of the data item to be read. But it is not sufficient
to insure correct schedules that avoid aborts.

Multiversion timestamp order schedulers require that each Write operation create
a new version of the data item, and each Read operation will read the last version
written by a committed transaction with an earlier timestamp (or from the last
version written by the same transaction in the case of reflexive reads-froms).
Aborts arise in such schedulers when a Write operation occurs after a Read
operation on the same data item and the timestamp of the Read is later than that
of the Write. That is, the Write operation has arrived too late to preserve the
timestamp ordering. In such instances, the transaction requesting the Write is
aborted because executing it would invalidate a Read operation that had already
been performed. In our system, we cannot allow a subtransaction to locally abort
if another subtransaction of the same multilevel transaction locally commits.
Because the security classes form a lattice, and a transaction may have
subtransactions at noncomparable security levels, to prevent covert channels we
must insure that transactions never locally abort.
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In other words, we must guarantee that if a subtransaction is going to write a
data item, then no subtransaction with a later timestamp will ever want to read
it. We must be sure that Read operations only occur after all subtransactions with
later timestamps and that Write the same data item have been locally committed.
Our security policy implies that it is sufficient that the local commitment criterion
hold for subtransactions at security levels dominated by the level of the Read
operation. The algorithm forces subtransactions to wait to start until its read set
has a null intersection with the write sets of all subtractions that are active (not
locally committed) at the same or lower security levels and have earlier
timestamps. Notice that there is no reason to ever delay the execution of a lower
level subtransaction because of a higher level subtransaction, since any relexive
reads-froms can always locate the correct version of the required data item.

Finally, though these are really implementation details, we mention how one
might start a multilevel transaction, though other scenarios are possible. The user
would submit the transaction to Q by logging on the system at the least upper
bound of the security classes of the operations of the transaction. If there is no
operation of the transaction at the level of the greatest lower bound of the
transaction's operations, then Q creates an artificial one, thereby reducing the
amount of trusted code if the lowest levels of the transaction's operations are
noncomparable, since then the indication that it is all right to start the
transaction would be transmitted across noncomparable levels. The processing
could then proceed as described above.

5. SPECIFICATION OF THE ALGORITHM

We need a few additional definitions before specifying the algorithm. We use
ts(Ti) to denote the timestamp assigned to the multilevel transaction Ti. Similar
notation is used for the timestamps of subtransactions and operations, which
inherit them from their parent transactions. We denote by lub(i) the least upper
bound of the security classes of the subtransactions of Ti.

Definition If Ti =l is a subtransaction, the conflict set of Ti =l, CS(Ti =l), is
∪{WS(Tj  l)Tj  l is active}.

CS(Ti =l) is precisely the set of Write operations that have the potential to
invalidate a Read operation of Ti =l, because subtransactions can only read data
items at or below their own security level.

 The algorithm processes transactions as follows.
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At the global scheduler Q:

I.1 The initializing transaction T0 is received and assigned a timestamp.

I.2 As a transaction Ti begins to be received, it is assigned a timestamp and
Read and Write indices are assigned.

a. (wi[x],l) receives an index of 1 larger than the last preceding Write
operation of Ti on x unless there are none, whence it receives an
index of 1.

b. (ri[x],l) receives an index equal to that of the last preceding Write
operation of Ti on x unless there are none, whence it receives an
index of 0.

I.3 After an operation (oi,l) is indexed, it is sent to a single-level subprocess Ql

of Q.

I.4 The Ql construct the subtransactions Ti =l for all relevant l, and form each
WS(Ti =l) and RS(Ti =l).

I.5 The Ql distribute the Ti =l, their read and write sets, and their index
information and timestamps to the corresponding local scheduler Pl.

I.6 Commit(Ti) messages are received from Plub(i), and Q globally commits the
multilevel transaction.

At each local scheduler Pl:

II.1 Pl receives subtransaction packages for the Ti =l from Ql and determines
RS(Ti =l)∩CS(Ti =l).

a. If RS(Ti =l)∩CS(Ti =l)=∅, then Pl initiates execution of Ti =l,
provided that Ti =m has been locally committed for all m<l in SC.

b. If RS( Ti =l)∩CS(Ti =l)≠∅, then Pl queues Ti =l for later execution.

II.2 As Pl executes Ti =l, it performs the operations according to the rules

a. For (wi[x],l), a new version xi,n is created where n is the index of the
operation, i.e., (wi[xi,n],l) is done.
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b. For (ri[x],l), if the index of the operation is n>0, the value written
by (wi[xi,n],m) with index n is read. If the index is 0, (ri[x],l) reads
from the last version of x written by a committed Tj =m that has the
largest timestamp < ts(Tj =l).

c. When all operations of Ti =l have been performed, Pl locally commits
Ti =l.

II.3 For the Ti =l that have been queued for later execution by II.1.b, Pl

periodically checks whether RS( Ti =l)∩CS(Ti =l)=∅. If so then Pl initiates
execution of Ti =l, provided that Ti =m has been locally committed for all
m<l in SC. (A new timestamp is not issued).

II.4 Plub(i) recognizes when every subtransaction of Ti has been locally
committed, and then sends a Commit to Q.

Steps I.1, I.2,and I.3 require some level of trust. These steps deal directly with the
multilevel transaction, so will see operations at various security levels. The
amount of trusted code needed to implement these is very small relative to what
would be required to construct a complete trusted scheduler. The remainder of the
algorithm can be done with untrusted processes.

Since the Ql deal only with entities of a single security level, they may be
untrusted (for the access control policy here), so I.4 and I.5 can be performed
without trusted processes.

For I.6, notice that the global commitment of a multilevel transaction is a
technical requirement only, used solely to let the "user" know that the work
submitted is finished. The rest of the scheduling mechanism does not make use
of this information, but relies only on the behavior of the local schedulers.

II.1 can be untrusted since the computation required relies solely on information
available at Pm for m≤l. The same observation applies to II.2 and II.3. II.4 clearly
can be implemented untrusted.

6. VARIATIONS ON THE ALGORITHM

The version of the algorithm presented above is very pessimistic (conservative?)
in that it waits to execute a subtransaction until it is absolutely certain that it
can be executed without (locally) aborting or rolling back. Aside from minor
changes that make the algorithm somewhat more optimistic, which may be
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beneficial for some applications, we believe that the algorithm is intuitively as
good as can be done for these kinds of transactions.

Given the nature of multilevel transactions, the conventional definitions of
database theory, and the security policy, there seems to be limited choice in the
approach to constructing a multiversion timestamp scheduler if trusted processes
are to be minimized.

There appear to be three general statements that can be made about this family
of algorithms. First, because of the security policy, it seems necessary that there
be some way of determining when the subtransaction are finished, so that it is
safe to use the values they produce. This is our notion of local commit or abort.
Second, because of the required atomicity of database transactions, if one local
commit occurs, then all local commits must occur. Third, the behavior of higher
security level operations must conform to what is done at lower levels in order to
obtain correct results and prevent covert channels. The variations of the
algorithm arise by enforcing these three conditions in slightly different ways.

For reflexive reads-froms, a Read of a data item x cannot occur until the proper
Write operation has been done, possibly by a lower security level subtransaction.
We have chosen to make the higher security level subtransactions wait until the
lower level ones from the same multilevel transaction have locally committed to
insure that the correct version is available to be read. A more optimistic
alternative would allow the higher level subtransaction to begin and progress
until some Read operation could not be performed because the corresponding
Write operation had not been completed. The higher level subtransaction could
continue to attempt to read other data items until a Write operation is
encountered (which could depend on a blocked Read operation for its value), at
which point the whole subtransaction would be suspended. As the appropriate
Write operations are done and the blocked Read operations completed, the
subtransaction would resume. This technique requires significantly more overhead
than the pessimistic approach, but may be warranted for some applications when
it is unlikely that the reflexive reads-froms will result in waiting.

For transaction reads-froms, there are two variations, both more optimistic than
the one presented. The first is similar to the technique for reflexive reads-froms.
Subtransactions process their operations up to the point of reading data that
might be invalidated by a Write operation at the same or lower security level,
whence it is blocked until the lower level subtransaction from which it might read
is locally committed. As before, such Read operations could continue until a Write
operation is encountered, and then suspended. It could continue when the
potentially offending lower level subtransaction is locally committed. The second
variation is more optimistic in that it attempts to execute all subtransactions at
the various security levels simultaneously. No initial determination of the read
sets or write sets of potentially conflicting subtransactions is done. Rather, as



subtransactions are completed at lower security levels, the resulting read sets and
write sets are compared with the results already obtained at the higher levels. If
the higher level actions are inconsistent with those of the lower levels, they must
be rolled back and redone, reading the correct versions and redoing the Write
operations that depend on them. These roll backs may involve cascading of these
reversals through all higher security levels. Whether either of these variants is
more appropriate than the pessimistic approach depends on the frequency of the
need to invoke suspensions or rollbacks.

7. PROOF OF CORRECTNESS OF THE ALGORITHM

We must show that the multiversion (multilevel) history produced by the
algorithm is 1SR by showing that it is equivalent to a one-copy serial history. To
this end let G be the multiversion history produced by arranging the multilevel
transactions in timestamp order with operation indices and versions ordered so
that G is one-copy serial. That this is possible is trivial. Let H be the multiversion
history produced by the algorithm. Clearly H satisfies the definition of a
multiversion history. We have the following result.

Theorem Let T={T1,T2,   ,Tn} be a set of multilevel transactions. If H is a
multiversion history produced by the algorithm for T, then H is 1SR.

Proof Let G be as defined above. It is obvious from the definition of G and the
specification of the algorithm, that G and H have the same reflexive reads-from
relationships. Thus it is sufficient to show that G and H have the same
transaction reads-from relationships to prove the theorem.

First, suppose Tj reads-x-from Ti in G so there are (wi[x],l)∈Ti, (rj[x],m)∈Tj for
which (wi[x],l)<G(rj[x],m), and no other Write operation on x falls in between.
Suppose now that Tj does not read-x-from Ti in H. Then there is a (wk[x],l)∈Tk

for which (wi[x],l)<H(wk[x],l)<H(rj[x],m). Now if i=k, then (rj[x],m) would not
have read x from the last Write of x by a committed subtransaction as required
by the algorithm, so i, j, and k must be distinct. Since (wi[x],l)<H(wk[x],l), the
local scheduler Pl must have scheduled (wk[x],l) after (wi[x],l), so
ts(Ti)=ts(Ti =l)<ts(Tk =l)=ts(Tk). Again, by the algorithm, Pm would not allow
Tj =m to begin until Tk =m was locally committed, since it reads x after it, so
ts(Tk)=ts(Tk =l)<ts(Tj =m)=ts(Tk). Therefore Tk appears between Ti and Tj in G,
contradicting that Tj reads-x-from Ti in G. Hence Tj does read-x-from Ti in H.

Conversely, suppose Tj reads-x-from Ti in H so there are (wi[x],l)∈Ti,
(rj[x],m)∈Tj) for which (wi[x],l)<H(rj[x],m), and no other Write operation on x
falls in between. Suppose now that Tj does not read-x-from Ti in G. Then there
is a (wk[x],l)∈Tk for which (wi[x],l)<G(wk[x],l)<G(rj[x],m). If i=k, G would not be
one-copy serial. As before, i ,j, and k are all distinct, and



ts(Ti)=ts(Ti =l)<ts(Tk =l)=ts(Tk)<ts(Tj =m)=ts(Tk) because G is one-copy serial in
timestamp order. Since Tk =l writes x and has an earlier timestamp than Tj =m

but later than that of Ti =l, the algorithm would have finished Tk =l before
starting Tj =m, contradicting that Tj reads-x-from Ti in H. Thus Tj does read-x-
from Ti in G.

We conclude that G and H have the same reads-from relationships and so are
equivalent. Therefore H is 1SR.   

8. CONCLUSION

The notions of atomicity for transaction processing that are usually suggested for
databases are not easily reconcilable with those of multilevel secure systems. This
is extremely problematic for multilevel secure database systems. Users'
expectations may not be met if what the user considers a single transaction is
decomposed into a sequence of single-level transactions that are then treated as
non-communicating entities by the system's concurrency control mechanisms.
Further, it is incumbent upon those who develop multilevel secure database
systems to ensure that the users' needs and expectations are met to avoid
misunderstandings about the system's functionality. To this end, we have
proposed the idea of multilevel transactions to resolve these difficulties. In cases
where this is not an acceptable solution, system-high systems may be a solution,
or developing completely trusted database systems, though this would be a
significantly more costly route.

In this paper we have defined multilevel transaction for multilevel secure
databases and defined a notion of correctness that is consistent with the
traditional idea of correctness for database systems. To demonstrate the
applicability of these ideas, an algorithm for correct transaction processing within
this framework was presented for a multiversion architecture multilevel database.
Very few trusted processes are needed to implement the algorithm, which greatly
reduces the time and cost needed to develop a system using the algorithm.

We chose to develop the algorithm for the kernelized architecture since it has
been the one of most interest to the database security community. The problem
for multilevel secure database systems based on the replicated architecture [5],
however, is no less interesting a research (and application) issue. An algorithm
for this case, based on the correctness criterion for transaction processing in
replicated database systems, will be the subject of future work.
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