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ABSTRACT

In this paper we develop methods for analyzing key management and authentication protocols using
techniques developed for the solutions of equations in a term rewriting system. In particular, we describe
a model of a class of protocols and possible attacks on those protocols as term rewriting systems, and
we also describe a software tool based on a narrowing algorithm that can be used in the analysis of such
protocols. We formally model a protocol and describe the results of using these techniques to analyze
security properties. We show how a security 
aw was found, and we also describe the veri�cation of a
corrected scheme using these techniques.

1 Introduction

It is di�cult to be certain whether or not a cryptographic protocol satis�es its requirements. In a number
of cases subtle security 
aws have been found in protocols some time after they were published. These

aws were independent of the strengths or weakness of the cryptographic algorithms used. Examples
include the Needham-Schroeder key distribution protocol [23] which was found by Denning and Sacco [7]
and Bauer, Berson and Feiertag [1], to be vulnerable to various kinds of replay attacks that can be used
whenever old keys are compromised, the software protection scheme of Purdy, Simmons, and Studier [25],
for which Simmons [28] showed how a penetrator could combine previously generated messages in such
a way that the system could be induced to grant unauthorized access to software, and a protocol in the
CCITT X.509 draft standard [5], which was shown by Burrows, Abadi, and Needham [4] to be vulnerable
to replay attacks even when keys are not compromised. Other similarly 
awed protocols are discussed by
Moore in [21].

As more systems are designed that depend upon such protocols for more varied and complex security
needs, it is likely that other 
aws will arise. If systematic means of assuring correctness are not used,
these 
aws may not be discovered until signi�cant damage has been done.

One approach to the problem of assuring correctness that has been suggested, for example by Kemmerer
in [13], is to use machine aided formal veri�cation techniques. The protocol and its desirable security
properties are modeled in a formal speci�cation language, and a machine veri�cation system is used in an
attempt to prove that these properties hold. If the attempt succeeds, one has gained greater assurance
that the protocol satis�es its requirements. If it fails, then the examination of the reasons for the failure
may point out security 
aws in the protocol.

Techniques like these have been applied in the design of communication protocols and of secure com-
puting systems. Thus it seems likely that they will be useful in the analysis of key management protocols,
which have some of the properties of both. Yet so far they have found little application. Part of the
reason for this may be that existing machine veri�cation systems do not emphasize the theorem-proving
techniques that would be most useful in the analysis of such protocols. In this paper we attempt to �ll
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this gap by showing how a formal model and a software tool implementing specialized theorem-proving
techniques, originally described by the author of this paper in [17], were successfully applied to the analysis
of the selective broadcast protocol designed by G. J. Simmons [28]. The fact that the application of these
techniques uncovered a subtle security 
aw in this protocol shows that they promise to be useful.

The rest of the paper is organized as follows. In Section 2 we compare our approach with other work
on the speci�cation and veri�cation of cryptographic protocols and give a brief survey of other work in the
�eld. In Section 3 we describe the selective broadcast protocol and the results of our analysis. In Section 4
we describe our formal model, which is an adaptation of Dolev and Yao's [8] term-rewriting system model
of public-key protocols. We also describe the proof techniques we use and a Prolog program that assists
us in applying them. In Section 5 we describe the formal speci�cation of the protocol. In Section 6 we
give an outline of our analysis and show how it uncovered a security 
aw. In Section 7 we discuss the
implications of our results and ways in which our system could be improved.

2 Comparison With Other Work

Approaches taken in the formal veri�cation and analysis of security properties of cryptographic protocols
that are independent of the strengths or weaknesses of the cryptoalgorithms used fall into four main
categories. The �rst of these is the attempt to model and verify the protocol using speci�cation languages
and veri�cation tools not speci�cally developed for the analysis of cryptographic protocols. This, for
example, is the approach taken by Britton in [3], by Kemmerer in [13], and by Viradharajan in [33].

Another is to develop expert systems which a protocol designer can use to try out di�erent scenarios.
This is the approach followed by Millen in [20], Longley and Rigby in [15], and to a limited extent by
Kemmerer in [13]. That this approach can be successfully used to detect previously undiscovered 
aws
in a protocol has been shown by Longley and Rigby in [15]. However, these systems do not guarantee
that the investigation of a protocol's security is complete; thus, although they may be useful in identifying

aws, they can not be used to provide greater assurance of a protocol's security.

A third approach is to model the requirements of a protocol formally using logics developed for the
analysis of knowledge and belief. This, for example, is the approach taken by the Burrows, Abadi, and
Needham logic [4] and its extensions (for example [10], by Moser in [22], and by Rangan in [26]. Formal
semantics for such logics have been developed by Syverson [30, 31] and Bieber [2]. This approach has
resulted in the discovery of security 
aws in protocols as is reported in [4]. But the result of analysis using
such logics is not precisely to get a proof of security of a protocol that tells the analyst whether or not a
certain undesirable event can occur. Rather one gets an analysis of the kinds of trusts and beliefs that are
necessary for a cryptographic protocol to complete successfully. (See for example Nessett's counterexample
[24] and the analysis by Syverson in [32].) Thus one can think of these methods as complementary to the
kinds of techniques that we have presented in this paper.

The fourth approach is to develop a formal model based on the algebraic term-rewriting properties
of cryptographic systems. This is the approach followed by Dolev and Yao's public-key model [8], upon
which our model is based, and the model of Kasami, Yanamura, and Mori [12], also used by Lu and
Sundareshan in the veri�cation of a hierarchical key management protocol [16].

Although our model is based on the Dolev-Yao model, it is more similar to the Kasami-Yanamura-Mori
model in that Dolev and Yao concentrate on protocols that can be completely modeled as term-rewriting
systems and for which e�cient algorithms for deciding security problems can be found, while we and
Kasami et al. follow a more general approach. The main di�erences between our approach and the
Kasami-Yanamura-Mori and Dolev-Yao approaches is that we provide automated support for the security
analysis and we allow a user to query the system about the attainability of internal system states as
well as the obtainability of secret words by a penetrator. This allows us to model security goals such as
authentication in a more natural way.
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3 Description of the Selective Broadcast Protocol

3.1 The Protocol

The selective broadcast protocol described in [28] is intended to provide a means by which one participant
can encrypt a message so that it can only be decrypted by a designated subset of the other participants, and
so that participants with the ability to decrypt a message cannot pass on the ability to other participants.
The protocol relies for its security on a combination of encryption and tamperproof processors that will only
perform certain actions prescribed by the protocol. Messages may either be released to the participants
when decrypted, or stored in the processors and not made directly available to the participants. Examples
of applications of this protocol in the latter case are software protection, in which the messages would
be software that could only be executed inside the tamper-proof processors, and key distribution, in
which the messages would be session keys that could never appear in the clear outside the processors. In
our speci�cation and analysis of the protocol, we assumed that the latter case held, since this was the
assumption under which the original software protection protocol held.

Since the protocol relies for its security on the correct operation of the processors, the set of decisions
that must be made by the processors is made as simple as possible, and the amount of data that must
be stored is kept at a minimum. This means that the processors do not do much checking of input data,
and thus will perform their operations on just about any data that is input. Hence it must be shown
that there exists no set of data obtainable by a penetrator that, when input, could result in a violation of
the protocol's security requirements, even when the penetrator is a legitimate user or set of users of the
system who may have access to one or more processors. Indeed, it was a 
aw of this sort in an earlier,
similar, protocol [25], that lead to the development of the selective broadcast protocol.

We use the notation e(X,Y) to mean the encryption of word Y with key X, and d(X,Y) to mean the
decryption of word Y with key X. Multiple encryption is represented by the use of nested functions; e.g.,
if we encrypt word Z with key Y, and then decrypt that using the decryption of word X with word W,
that is denoted by d(d(W,X),e(Y,Z)).

The protocol relies upon single-key cryptography, but no other assumption is made about the cryp-
toalgorithm used. The protocol runs as follows. Each participant has access to a tamper-proof processor
A which has access to a unique secret key q(A). The processors also have access to a common key k. Both
k and q(A) are only available to the processors, and never appear in the clear outside the processors.
Messages are only decrypted inside the tamper-proof processors. Each processor has a unique identi�er
e(k,q(A)), which is made public. If participant A wishes participant B to be able to use message M, he
�rst chooses an identi�er J for M and has his processor encrypt M using the key d(q(A),d(k,J)). He then
sends the encrypted message and an encrypted key e(k,e(q(B),d(q(A),e(q(B),d(q(A),d(k,J)))))) to B. B
inserts key and message, along with the identi�er e(k,q(A)), into his processor. The processor uses its
knowledge of k, e(k,q(A)), and q(B) to decrypt the key, uses the key to decrypt the message, and then
uses the message according to the rules of the application.

Each processor can be run in three modes: encrypt message, encrypt key, and decrypt message. In each
mode, the user inserts two K-bit words X and Y (and possibly a third word M) and the processor outputs
e(k,q(A)), where q(A) is the processor's identi�er, and e(k,e(d(k,X),d(q(A),e(d(k,X),d(q(A),d(k,Y)))))).

In the encrypt message mode, the user inserts X = e(k,q(A)), Y = J, and M = message, where J is
the identi�er of the message. The second output of the processor reduces to J. This is used to check that
the system is working properly. The processor also outputs e(d(q(A),e(d(k,X),d(q(A),d(k,Y)))),M), which
reduces to e(d(q(A),d(k,J)),M), the encrypted message.

In the encrypt key mode, the user inserts X = e(k,q(B)) and Y = J, where B is the processor
to which he wishes to send the message. In this case the second output of the processor reduces to
e(k,e(q(B),d(q(A),e(q(B),d(q(A),d(k,J)))))), which is the encrypted key.

In the decrypt message mode, the owner of processor B inputs

X = e(k,q(A));
Y = e(k,e(q(B),d(q(A),e(q(B),d(q(A),d(k,J)))))), and;
M = e(d(q(A),d(k,J)),message).
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In this case the second output reduces to J. This is used to check that the key transfer has taken place
correctly, and to provide authentication of the message. The processor also decrypts the key and uses it
to decrypt the message, that is, to compute d(d(q(B),e(d(k,X),d(q(B),d(k,Y)))),M), which produces the
decrypted message inside the processor. The processor then uses the decrypted message according to the
rules of the application.

This protocol is relatively simple. We were able to specify it using only eleven protocol rules and three
rewrite rules, thus making an analysis that proceeded largely by hand practical. However, the complexity
of the operations used, which made it di�cult for an analyst to gain an intuitive feeling for the security
of the protocol, and its reliance on mechanisms similar to those employed by an earlier, 
awed, protocol
[25], suggested that a formal analysis was necessary. These facts made the protocol an excellent test case
for our methods.

3.2 The Attack

Our analysis found a means by which a penetrator could induce a participant to believe that he was
decrypting a message supplied by some other honest participant when he was actually decrypting a
message supplied by the penetrator. By supplying incorrect information to his processor when it is run
in encrypt message mode, a penetrator can encrypt his own message using another processor's key. This
allows a penetrator to impersonate other members of the network. This 
aw can be corrected by relying
on the processor, instead of the protocol participant, to supply the �rst word input when it is run in
encrypt message mode. We altered the speci�cation to correct this 
aw, and used our techniques to prove
that the altered speci�cation satis�ed the desired security property.

The attack on the original protocol works as follows. We assume that the penetrator has access to
some module x. First, the penetrator purchases the right to program p with identi�er j from some honest
user a. User a sends

e(k,q(a))
e(k,e(q(x),d(q(a),e(q(x),d(q(a),d(k,j))))))
e(d(q(a),d(k,j)),p)

to the penetrator. The �rst word is a's encrypted identi�er, the second is the encrypted key, and the third
is the encrypted message. The penetrator submits the following words to his module in encrypt message
mode:

X = e(k,q(a))
Y = e(k,e(q(x),d(q(a),e(q(x),d(q(a),d(k,j))))))
Z = px

where px is a program supplied by the penetrator, and the second word supplied is the encrypted key
supplied by a. The third word output by the module is

e(d(q(x),e(d(k,e(k,q(a))),d(q(x),d(k,e(k,q(x),d(q(a),e(q(x),d(q(a),d(k,j))))))))),px)

which reduces to

e(d(q(a),d(k,j)),px).

Now suppose that user b requests program p with identi�er j from user a. User a sends

e(k,q(a))
e(k,e(q(b),d(q(a),e(q(b),d(q(a),d(k,j))))))
e(d(q(a),d(k,j)),p)

to b. The penetrator intercepts the message and replaces the third word by e(d(q(a),d(k,j)),px). He then
sends the message to b. User b inserts the three words in his module in decrypt message mode. The
module outputs the words
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e(k,q(b))
e(k,e(d(k,e(k,q(a))),d(q(b),e(d(k,e(k,q(a))),d(q(b),e(q(b),d(q(a),e(q(b),d(q(a),d(k,j))))))))))

which reduces to j. Thus the module believes that it has received the correct message, and produces the
decrypted message

d(d(q(b),e(d(k,e(k,q(a))),d(q(b),d(k,e(k,e(q(b),d(q(a),e(q(b),d(q(a),d(k,j)))))))))),e(d(q(a),d(k,j)),px))

which reduces to px.

3.3 The Fix

In our analysis of the protocol, we were able to prove that a penetrator could successfully pass o� his
message px as user a's if and only if he was able to produce the word e(d(q(a),d(k,j)),px). Thus, in order
to modify the protocol so that it would be secure, all that was necessary to do was to make it impossible
for the penetrator to produce that word. We did this by requiring that the module itself supply the
�rst word input when it is run in encrypt message mode. This can be done since that word is just the
encrypted identi�er of the module. We then proved a general theorem which implied that any state that
was unreachable in the old protocol was also unreachable in the new one. This meant that we did not
have to reverify old security results, which were de�ned in terms of unreachability of states. Finally, we
showed that the word e(d(q(a),d(k,j)),px) was unobtainable in the new version of the protocol.

In the remainder of this paper, we will show how we modeled the protocol, and how we discovered the

aw and veri�ed the security of the corrected protocol.

4 Description of the Model and Proof Techniques Used

The model we use is an adaptation of the public-key model developed by Dolev and Yao in [8]. We
consider a protocol as a set of rules for passing messages between the participants. A participant in the
protocol who receives a message will, if he accepts it as genuine, generate a new message by performing
certain operations upon it or other messages received earlier. Thus a cryptographic protocol may be
thought of in part as a set of rules for generating words in some formal language. In symbolic terms,
we can think of these operations as being applied in two steps: �rst operations are applied to a word or
set of words, and then algebraic properties of the operations are used (such as the fact that encryption
cancels out decryption with the same key and vice versa) to produce the actual words generated. Since
in many cases the algebraic properties of the operations involved can be interpreted as reduction rules
(that is, a set of rules for transforming words into words that are \simpler" according to some well-de�ned

measure), the protocol may be thought of in part as a set of rules for generating words in a term-rewriting
language. A penetrator who tries to break the protocol by intercepting messages, supplying false messages
to the participants, and performing operations on messages himself in order to �nd out a secret word, may
be thought of as attempting to determine whether a particular word belongs to a given term-rewriting
language.

In Dolev and Yao, the security of a protocol is expressed in terms of a penetrator's being unable to
generate words belonging to some predetermined set. Thus, for example, a protocol may be considered
secure if a penetrator is unable to discover secret data not intended for him. In our model this notion of
security is extended to cover the penetrator's inability to cause internal state variables to take on certain
values. Thus we might say that a protocol is insecure if a penetrator is able both to learn a word K and
convince an honest participant that K is a session key good for communication with some other honest
participant.

In our model protocol rules are expressed as statements of the form

If I �W and A and Cond(I,A) then W := W [ O and A0

where W denotes the set of words known by the penetrator, I denotes the words making up a message
sent to a participant in the protocol, O denotes the words making up a message sent by a participant in
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the protocol, A and A0 are statements consisting of conjunctions of equations of the form S = T, where
S is a state variable name, and Cond(I,A) is a set of further conditions on I and A of the form C 6= D,
where C is a subterm of I or A, and D is a term. Rules may be either deterministic or nondeterministic,
in the sense that a rule may either always apply, or only apply under circumstances which have not yet
been speci�ed. Rules of this form may be used to describe events as various as:

1. A participant in the protocol responding to a message from the penetrator;

2. A change in the internal state values of a participant;

3. A participant initiating an instance of a protocol, or;

4. The penetrator using the facilities available to him to generate a message.

For example, if the penetrator is able to encrypt data, we can represent this by a rule

If fX,Yg �W then W := W [ fe(X,Y)g

where e(X,Y) denotes the result of encrypting message Y with key X. On the other hand, if a participant
in a protocol will encrypt all messages sent to it with the current session key and send them out, this may
be described by the rule

If fYg �W and KEYSTATE(a) = X then W := W [ fe(X,Y)g.

The speci�cation also includes a set of rewrite rules (also known as reduction rules) that describe ways in
which complex words may be reduced to simpler ones. Examples of such rewrite rules are:

1. d(X,e(X,Y)) ! Y where e(A,B) denotes encryption of word B with key A, and d(A,B) denotes
decryption of word B with key A, and;

2. p(s(X)) ! X where s and p are the successor and predecessor operators, respectively.

Thus we make the following de�nition of a speci�cation of a cryptographic protocol.

De�nition 3.1: A speci�cation S of a protocol is a tuple

[T(�,F ), Ê, S, R, W0, A0]

where � is a countable set of variables, F is a �nite set of function symbols, T(�,F) is a set of terms made

up from � and F , Ê is a set of rewrite rules de�ned on T(�,F ), S is a set of state variable names, , W0

is set of words from T(�,F ) initially known to the penetrator, A0 is a set of initial assignments of values
to the state variables, and R is a set of protocol rules of the form

If I � W and A and Cond(I,A) then W := W [ O and A0

where I and O consist of terms from T(�,F ), Cond(I,A) is a set of conditions on I and A, and A and A0

are conjunctions of equations of the form T = D, where T is a state variable name and D 2 T(�,F ). As
before, I denotes the words input into the rule, A denotes the state variable values input, O denotes the
words output, and A0 denotes the state variable values output.

De�nitions of terms and related ideas are given below. The concepts are standard, but the particular
de�nitions used are from [34].

De�nition 3.2: Let � be a countable set of variables and F a family of function symbols disjoint from
� with associated arity. A term is either a variable or a function symbol followed by n terms, where n is
the arity of the function symbol. A function symbol of arity zero is called a constant. Let T(�,F ) denote
the set of all terms made up from � and F . A substitution is a function from � to T(�,F ) that is the
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identity on all but a �nite subset of �. The term obtained by applying a substitution � to the variables
of a term F is denoted by �T . A uni�er of two terms F and G is a substitution � such that �F = �G.
A most general uni�er of F and G is a uni�er � of F and G, such that, if � is another uni�er, there is
another uni�er � such that � = ��. Most general uni�ers are unique up to renaming of variables.

Since our analyzer is written in Prolog, we will follow its conventions and represent function symbols by
lower-case words and variables from � by capital letters or words beginning with capital letters. Variables
not from �, such as, for example, the variable I used to represent the words input into a rule, will be
represented by italicized capital letters or italicized words beginning with capital letters.

De�nition 3.3: A term-rewriting system over T(�,F ) is a set of directed equations Ê such that, for
T1 ! T2 in Ê, V(T2) � V(T1), where V(T) denotes the set of variables appearing in T. !

Ê
is the �nest

relation over T(�,F ) containing Ê and closed by substitution of terms for variables and replacement of
subterms by their reduced forms. If A is a term, and there is a unique irreducible term that can be
obtained by applying reductions to A, we call that term nf(A), or the normal form of A. A substitution
�T(�,F ) is said to be a uni�er of U and T with respect to Ê if �U and �T are reducible to the same term
using repeated applications of the rewrite rules in !

Ê
. A set of uni�ers � of A and Bwith respect to Ê

is complete if, for any unifer � of A and B with respect to Ê, there is a substitution � and a � 2 � such
that � = ��.

We will be interested in term-rewriting systems that are Noetherian and locally con
uent. These are
de�ned below.

De�nition 3.4: Let Ê be a term-rewriting system over T(�,F ). We say that Ê is Noetherian if,
whenever term A is reachable from term B via a sequence of applications of reduction rules, then term A

is reachable from term B via a �nite sequence of such applications. We say that Ê is locally con
uent if
whenever A is reducible to B and to C by two di�erent single reductions, then B and C are both reducible
to a fourth term D.

Noetherian, locally con
uent systems have the property that every term A is reducible to a unique
irreducible normal form nf(A). See Huet and Oppen [11] for a discussion.

We now de�ne what we mean by a system state, and show how we describe states.

De�nition 3.5: A system state is a pair (�,�) where � gives the set of words known by the penetrator
and � = 
1 = �1,...,
k = �k gives the values of the internal state variables 
1, ..., 
k. A state description

(L,D) is a pair such that L is a set of terms from T(�,F ) and D = G1 = D1,...,Gt =Dt is the assignment
of a set of terms Di from T(�,S) to state variables Gi. We say that (�,�) satis�es the description (L,D)
if all terms in (�,�) are irreducible and there is a substitution � such that �L � � and �D � �.

Thus, for example, given the state description (fe(k,X)g,fg), we assume that the penetrator knows
a word e(k,�X), where � is a substitution assigning X to a term such that e(k,�X) remains irreducible.
Hence the penetrator might know e(k,m) or e(k,e(r,s)), but not e(k,d(k,m)), which reduces to m.

The assumption of irreducibility is necessary in order for the de�nition of state description to be
meaningful. For example, suppose that we did not enforce this restriction, and we assumed that the
penetrator knew some word of the form e(k,X). Then, since X could equal d(k,Y), and e(k,d(k,Y)) reduces
to Y, all this would mean would be that the penetrator knows some word Y. This is not very useful
information.

A rule may now be interpreted as a means of moving from state description to state description as
follows. The conditions of a rule set out a state description that must be satis�ed for a rule to apply, and
the conclusions give the rules for constructing the new state description that holds after the rule has �red.
This notion is set out formally below.

De�nition 3.6: Let (L,D) and (L0,D0) be state descriptions. Let R be a rule of the form
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If I � W and A and Cond(I,A) then W := W [ O and A0

such that there is a substitution � assigning terms to the variables of R and leaving the terms of (L,D),
(L0,D0), I, and A irreducible, such that

a) �I � �L;

b) �A � �D;

c) Cond(�A,�I) is not contradicted (that is, Cond(�A,�I) contains no inequality of the form X 6= X);

d) �L0 � �L [ nf(�O);

e) �D0

� (�D - �D00) [ nf(�A0), where �D00 is the set of assignments in �D that are replaced by new
assignments in �D0 or nf(�A), and;

f) either �L0 \ nf(�O) is nonempty or �D0

\ nf(�A0) is nonempty (in order to avoid trivial state transi-
tions).

Then we say that the state description (�L,�D) is reachable from the state description (�L0,�D0) via
the rule R. We say that P 0 is reachable from P via the rules R1, ..., Rk if there is a sequence of state
descriptions P0, ...., Pk, such that P 0 is reachable from Pk via Rk, and so on.

Note that, in our description of how we use a rule to move from one state description to another,
we required that the input be interpreted as irreducible words, but not necessarily the output. This is
because, as we noted before, we think of the input of the rule as giving a state description that must
hold for the rule to �re, and of the output of the rule as giving the method for producing a new state
description, but not the state description itself.

As an example of moving from one state description to another via a rule, suppose the penetrator
knows the word \message" and KEYSTATE(a) = key1. If we let � be the substitution Y := message, Z
:= a, and X := key1, then we can apply the rule

If Y �W and KEYSTATE(Z) = X then W := W [ e(X,Y)

so that the new state becomes one in which the penetrator knows the words fmessage, e(key1,message)g
and KEYSTATE(a) = key1. Thus we moved from the state description (fmessageg,fKEYSTATE(a) =
key1g) to the state description (fmessage,e(key1,message)g,fKEYSTATE(a) = key1g) via application of
the rule.

Thus we see how we can progress from state to state in following the progress of a protocol. But,
in proving that a protocol is secure, we want to show, not how we can proceed from state to state,
but that certain states cannot be reached from any initial state. In order to do this, we need to be
able to determine, given a state description, what states can immediately precede a state satisfying that
description. We do this by unifying a state description with the reduced form of the conclusion of a rule.
But the techniques we apply are somewhat di�erent than the techniques we apply in order to �nd what
states can immediately follow a state. Suppose as before that we are given a state description (L,D). We
now look for a substitution � such that �A0 reduces to a statement that does not contradict D and either
some subset of �O reduces to a subset of �L or some subset of �A0 reduces to a subset of �(D). We then
examine �O and �A and check that

a �I, �A, �L, and �D are irreducible;

b Cond(�I,�A) is not contradicted, and;

c if �D contains an assignment �(Si = Di) and �A contradicts �(Si = Di), then nf(�A0) contains an
assignment �(Si = Di); otherwise, nf(�(A')) fails to contradict �(Si = Di).
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The description of the state immediately preceding is then one in which the penetrator knows �I [ (�L -
nf(�O), and �A holds together with all Si = Di from �D such that Si is not assigned a value by nf(�A0).

For example, suppose that we want to �nd all states immediately preceding one in which the penetrator
knows the word Q, where Q is a variable standing for any word. If we let � be the substitution Q :=
e(X,Y) we can apply the rule

If Y �W and KEYSTATE(Z) = X then W := W [ e(X,Y) .

to get the previous state to be one in which the penetrator knows Y and KEYSTATE(Z) = X. On the other
hand, if we apply the same rule but let � be the substitution Y := d(X,Q), then e(X,Y) := e(X,d(X,Q))
reduces to Q and the previous state is one in which the penetrator knows d(X,Q) and KEYSTATE(Z) =
X.

As we see from above, there is often more than one � unifying a system state description with the
conclusion of a rule. Since we want to be able to describe all possible system states that can immediately
precede a state satisfying a given description, we want to be able, for each rule, to �nd all � matching
up the state description with the conclusion of that rule. There are usually an in�nite number of such
�, but it is often possible to �nd a �nite and complete set of such �, that is a set � such that, if tau is
a substitution matching up the state with a conclusion of a rule, then there is a � 2 � such that tau =
�sigma for some substitution �. (However, we will not use any members of � that make any terms in the
target state reducible.)

We can �nd such complete sets by using algorithms developed for �nding complete sets of uni�ers
with respect to some equational theory [11]. The term-rewriting system we use is Noetherian and locally
con
uent and thus we were able to make use of one of a class of algorithms, called narrowing algorithms,
�rst discussed by Slagle [29], that can be used to generate complete sets of uni�ers with respect to such
term-rewriting systems. Accordingly, we have written a program in Prolog [6], that uses a modi�ed
version of the NARROWER algorithm of Rety et al. [27] to generate from a protocol speci�cation and a
description of a system state P a complete description of all system states that can immediately precede
a state that satis�es P .

In order to see how the program works, suppose that we we are given a speci�cation consisting of the
single rule

If Y �W and KEYSTATE(Z) = X then W := W [ e(X,Y)

and we ask the program how the penetrator can �nd the word Q. The program �nds a complete set of
uni�ers of Q with e(X,Y) with respect to the term rewriting system

e(A,d(A,B)) ! B
d(A,e(A,B)) ! B

There are two members of the set, Q := e(X,Y), and Y := d(X,Q). Applying the �rst uni�er, it produces
the conditions Y �W and KEYSTATE(Z) = X, and says the the word Q = e(X,Y) was learned. Apply-
ing the second uni�er and taking the appropriate rewrites, it produces the condition d(X,Q) � W and
KEYSTATE(Z) = X, and says that the word Q was learned.

In order to apply our program, we want to be able to use it to show that some insecure state S de�ned
in terms of words known by the penetrator and values of state variables is not reachable from an initial
state. In order to do this, we will want to be able to show that, as we work backwards from S, we enter
an in�nite loop of states, none of which are the initial state. But it is not usually the case that we keep
entering the same set of states over and over again. Instead, what often happens is something like the
following. Suppose that we want to know whether or not the penetrator can obtain a word a. We put the
question to the analyzer, and we �nd that it is necessary and su�cient to have obtained either the word
e(X,a) and X, or d(X,a) and X, where X can be any word. When we ask the analyzer how the penetrator
can obtain e(X,a) or d(X,a), we �nd that, in the �rst case, knowledge of e(Y,e(X,a)) or d(Y,e(X,a)) is
needed, and in the second case, that knowledge of e(Y,e(X,a)) or d(Y,e(X,a)) is needed. These results
suggest that we attempt to prove the unobtainability of the irreducible members of the formal language
K de�ned by
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K ! a
K ! e(L,K)
K ! d(L,K)

where L is the language consisting of all words of T(�,F ), by showing that knowledge of any irreducible
word of K requires previous knowledge of some other irreducible word of K. We do this by running the
analyzer on each production K. We have already run it on the �rst, and obtained the result for that
production. We next run it on e(A,B) and d(A,B), where B is assumed to be an irreducible member of K,
and analyze the results. For example, suppose that we run the analyzer on e(A,B), with the assumption
that B is an irreducible member of K, and it tells us that prior knowledge of either A and B, e(Z,e(A,B))
for some Z, or d(Z,e(A,B)) for some Z, is required. Since B, e(Z,e(A,B)), and d(Z,e(A,B)) all belong to
K, and since by the assumption under which the analyzer operates, they are all irreducible, this means
that knowledge of an irreducible member of the second production of K requires previous knowledge of
an irreducible member of K.

Once we have proved that any state that includes knowledge of a particular word or a member of
a family of words is unreachable, we can use that result to prove that other states are unreachable by
showing that, in order to reach these states, the penetrator needed to know one of the unreachable words.
This is the way in which our analysis usually proceeded.

5 Modeling the Selective Broadcast Protocol

In this section we describe how the selective broadcast protocol was formally modeled, and give the
speci�cation of the protocol.

We will assume that the system consists of an unspeci�ed number of users, where each user is repre-
sented by a processor T capable of generating an in�nite number of messages mess(T,N) to be encrypted,
where N ranges from 1 to in�nity. (Since we do not care about the content of the messages, no loss of
generality results from assuming that the messages are generated by the processor rather than the user.)
We will assume that messages are generated in numerical order. We only pay attention to the �rst K
bits of each message where K is the block length of the cryptosystem involved; thus we can assume that
each message is a K bit block. We will assume that the penetrator has gained control of an unspeci�ed
number of processors. We identify each processor under control of the penetrator by q(ID,dishonest),
where ID is a processor identi�er, one of id1 through idk. We identify each processor not under control of
the penetrator by q(ID,honest).

We give each processor �ve state variables. Each state variable takes on a term or a list of terms as
a value. Each state variable is subscripted with the identi�er of the processor it belongs to. The state

variables are listed below:

MESSTATE(T) This holds the identi�er of the next message that T can generate. Initially, the variable
MESSTATE(T) is 1 (or s(zero), where s denotes the successor operator).

IDSTATE(T) This holds the identi�er of a message to be decrypted by the user and the identi�er of the
originator of the message.

KEYSTATE(T) holds the value of the decrypted key.

READYSTATE(T) This variable is set equal to \true" if IDSTATE(T) and KEYSTATE(T) are tested
and accepted according to the rules of the protocol.

RUNSTATE(T) holds the value of the decrypted message.

The function symbols used in the modeling of the selective broadcast protocol are listed below:
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name arity

= =

zero zero

yes zero

s one

p one

e two

d two

q two

honest zero

dishonest zero

name two

identical two

id1, ..., idk zero

mess two

m zero

We make use of the following three rewrite rules:

e(X,d(X,Y)) ! Y
d(X,e(X,Y)) ! Y
id check(X,X) ! yes

Lemma 4.1: The term rewriting system

e(X,d(X,Y)) ! Y
d(X,e(X,Y)) ! Y
id check(X,X) ! yes

is Noetherian and locally con
uent.

Proof: It is clear that the system is Noetherian, since every reduction transforms a string into a shorter
string. Thus every sequence of reductions is terminating. In order to prove local con
uence, we make use
of the Knuth-Bendix theorem [14], which uses the set of critical pairs, which are de�ned as follows:

1. Rename variables so that no two reduction rules have any variables in common.

2. For each pair of reduction rules � ! � and �0 ! �0 such that there is a non-variable subterm � of

� unifying with �0, let � be the most general uni�er of � and �0.

3. We say that the pair h��[�  �0], ��i is a critical pair (where �[�  �0] denotes the replacement of
� in � with �0).

The Knuth-Bendix theorem says that a rewrite system is locally con
uent if, for each critical pair
hT1,T2i, T1 and T2 reduce to the same unique irreducible term.

Our system contains two critical pairs, constructed from the rewrite rules

e(X,d(X,Y)) ! Y
d(A,e(A,B)) ! B

To obtain the �rst, we unify d(A,e(A,B)) with d(X,Y), to get the substitution X := A and Y :=
e(A,B). The critical pair thus obtained is he(A,B),e(A,B)i. The other pair hd(X,Y),d(X,Y)i, is obtained
by unifying e(X,d(X,Y)) with e(A,B). Since both pairs consist of two identical irreducible elements, they
trivially satisfy the conditions of the Knuth-Bendix theorem. 2

Now that we have shown that our term-rewriting system is Noetherian and locally con
uent, we are
ready to give our speci�cation of the protocol. We �rst model the behavior of the honest processors and
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their owners, who we assume behave according to the rules of the protocol. Each honest processor can
generate and encrypt messages. Each message is identi�ed by a name denoted by name(q(X,Y),N) where
q(X,Y) is the identi�er of the processor originating the message, and the message is the N'th message
generated by that processor. The message itself (as opposed to its name) is denoted by mess(q(X,Y),N).
The distinction between message and name is that the name can be made public, while the message
remains secret. Thus the rule for generation and encryption of messages is given as:

If MESSTATE(q(ID,honest)) = N

then W := W [ fname(q(ID,honest),N),

e((d,q(ID,honest),d(k,name(q(ID,honest),J))),mess(q(ID,honest),N))g

and MESSTATE(q(ID),honest)) := s(J)

where s(N) denotes the successor of N.
Each honest processor can also encrypt a key for a message and send it to another processor P. We

will assume that an encrypted key for message name(q(ID,honest),N) is sent only after a request for that
message has been received from P. A processor (or its owner) may decide not to honor a request; however,
we do not specify the decision process. Thus this rule may be thought of as a nondeterministic one. We
will also assume that is is possible that a processor may forward a key without determining whether or
not the identi�er given is an identi�er for an existing processor and not some other K-bit word.

If fX,Yg �W

then W :=

W [ fe(k,q(ID,honest)), e(k,e(d(k,X),d(q(ID,honest),e(d(k,X),d(q(ID,honest),d(k,Y))))))g

Finally, a processor can attempt to decrypt a message. In our speci�cation of this rule, we divided it
up into four parts. Since the encrypted message is generated separately from the encrypted key, we found
it simpler to specify the parts in which the key and message are loaded in two separate rules. We then
included a rule in which the checking of key and message is performed, and a rule which describes the
processor's behavior after the check is performed. Thus the four steps are as follows.

1. A processor receives a message name and the identi�er of the sender of the message.

2. The processor receives and decrypts a key.

3. The processor checks the key against the identi�ers.

4. If the check in Step 3 succeeds, the processor receives the message and decrypts it.

The separation between Steps 3 and 4 was necessary, since Step 4 involves a comparison with the
reduced form of a word produced in Step 3. As our system stands now, such comparisons cannot be done
within a single rule, but must be divided across two or more rules: one which generates the word, and one
which does the comparison. The separation between Steps 1, 2, and 3, however, was largely a matter of
convenience and was motivated by the desire to avoid having to specify a step in which the originator of
an encrypted message concatenates encrypted message, encrypted key, and message identifer into a single
message. Note that all we have done is break a process that was originally described in a single rule into
four components. Thus there is no loss of realism.

We begin by specifying the �rst rule. First, a processor accepts a message name and the identi�er of
the message originator. In doing so, it checks that IDSTATE does not hold any old name-identi�er pairs,
that is, that IDSTATE = zero, and that KEYSTATE, RUNSTATE, and READYSTATE are zero.
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If fX,Yg �W

and IDSTATE(q(ID,honest)) = zero

and KEYSTATE(q(ID,honest) = zero

and READYSTATE(q(ID,honest)) = zero

and RUNSTATE(q(ID,honest)) = zero

then IDSTATE(q(ID,honest)) := [X,d(k,Y)].

Next, the processor accepts and decrypts a key. Again, it checks that KEYSTATE, READYSTATE,
and RUNSTATE do not hold any old key values.

If fXg � fWg

and IDSTATE(q(ID,honest)) = [Y, Z]

and KEYSTATE(q(ID,honest)) = zero

and RUNSTATE(q(ID,honest)) = zero

and READYSTATE(q(ID,honest)) = zero

then KEYSTATE(q(ID,honest)) :=

[d(q(ID,honest),e(Z,d(q(ID,honest),d(k,X))))]

Once key and identi�er are loaded, the processor checks to see if they agree.

If IDSTATE(q(ID,honest)) = [X,Y]

and KEYSTATE(q(ID,honest)) = [Z]

and READYSTATE(q(ID,honest)) = zero

and RUNSTATE(q(ID,honest)) = zero

then READYSTATE := [id check(X, e(k,e(Y,Z)))]

The processor now decrypts the encrypted message. In doing so, it �rst checks that no message is presently
stored in RUNSTATE.

If X �W

and KEYSTATE(q(ID,honest)) = [Y]

and READYSTATE(q(ID,honest)) = [yes]

and RUNSTATE(q(ID,honest)) = zero

then RUNSTATE(q(ID,honest)) := [d(Y,X)]

The processor can also zero out all variables at any time. In an actual application, this would either
be at the direction of the user, or possibly in response to an error, or both. Note that, since we do not
specify the conditions under which the zeroing out may occur, the \if" portion of this rule is empty.

IDSTATE(q(ID,honest)) = zero

and KEYSTATE(q(ID,honest)) = zero

and READYSTATE (q(ID,honest)) = zero

and RUNSTATE(q(ID,honest)) = zero
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We now model the interactions of a penetrator with the processors under his control. First of all, the
penetrator can use a terminal to encrypt a message. This is similar to the way in which an honest terminal
encrypts a message, except the values encrypted can be any arbitrary values input by the penetrator:

If fX,Y,Zg �W

then W := W [ fe(k,q(ID,dishonest)),

e(k,e(d(k,Y),d(q(ID,dishonest),e(d(k,Y),d(q(ID,dishonest),d(k,X)))))),

e(d(q(ID,dishonest),e(d(k,Y),e(d(q(ID,dishonest),d(k,X)))),Z))g

The rule for encrypting a key is identical to the rule for encrypting a message, except that the last
output is not given. Since the penetrator learns no more from that rule than from the rule for encrypting
a message, we will omit it.

Secondly, the penetrator can use a terminal in order to attempt to decrypt a message. These rules are
identical to the rules for the honest processors, except that, in the rule describing READYSTATE, the
penetrator can learn the terminal output. The READYSTATE rule is given below:

If IDSTATE(q(ID,dishonest)) = [X,Y]

and KEYSTATE(q(ID,dishonest)) = [Z]

and READYSTATE(q(ID,dishonest)) = zero

then READYSTATE(q(ID,dishonest)) := [id check(X, e(k,e(Y,Z)))]

and W := W [ fe(k,q(ID,dishonest)), e(k,e(Y,Z)))g.

Finally, we assume that the penetrator can encrypt and decrypt data on his own:

If fX,Yg �W then W := W [ fe(X,Y)g

If fX,Yg �W then W := W [ fd(X,Y)g

There are at least three goals that a penetrator may try to attain. One of these, of course, is to decrypt
a message from an honest processor on one of the processors under his control that is not authorized to
decrypt that message. Note that this includes the case in which another processor under his control may be
authorized to decrypt the message. The second is to convince a processor to decrypt a message supplied
by the penetrator under the illusion that it is decrypting a message supplied by an honest processor.
Finally, if the protocol is used in a situation in which users are not allowed to see messages in the clear
even if they are allowed to decrypt them inside their processor, the penetrator may try to obtain a copy
of an honest processors's message in the clear.

The penetrator will have attained his �rst goal if he is able make some state variable
RUNSTATE(q(ID1,dishonest)) take the value mess(q(ID2,honest),K) without processor q(ID1,dishonest)
having requested the right to that message. He will have attained his second goal if he is able to
make one of the state variables RUNSTATE(q(ID2,honest)) = mess(q(ID1,dishonest),N) and IDSTATE

= [Q,q(ID3,honest)]. He will have attained his third goal if some mess(q(ID1,honest),N) 2W.
We will assume that initially the penetrator knows all processor identi�ers e(k,q(A,B)), as well as a

set of messages mess(q(ID,dishonest),B) belonging to the dishonest processors, along with their names,
and the value zero.

6 Analysis of the Selective Broadcast Protocol

In our analysis of the selective broadcast protocol, we asked three questions:

1. Can a penetrator obtain a cleartext copy of a program belonging to an honest user of the system?
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2. Can a module under the control of the penetrator gain access to a program belonging to an honest
user which has not been legitimately been granted by that user?

3. Can a penetrator pass o� his own program as a program originated by an honest user?

The answers to the �rst two questions turned out to be negative. Details of that analysis are provided
in [18].

As we mentioned earlier, the answer to the third question was positive. But, in order to be able to
present our analysis, we need to make use of several lemmas we proved about the unobtainability of certain
kinds of words. We omit the proofs since they are lengthy and similar to other proofs that are provided
in this paper. Details of the proofs are provided in [18].

Lemma 5.1: It is impossible for a penetrator to obtain an irreducible word of the form d(X,Y) unless
X and Y are already known.

Thus, if we ask the analyzer how a penetrator could �nd some word Y, we can ask it to ignore all
output that requires previous knowledge of d(X,Y), since this would require that Y already be known.

Lemma 5.2: Let A be the formal language de�ned by

A ! k
A ! e(L,A)
A ! d(L,A)

where L is the set of all possible words from T(�,F). Then it is impossible for the penetrator to obtain
any irreducible member of A.

Corollary 5.3: The word d(q(ID2,honest),d(k,name(q(ID2,honest),Q))) is unobtainable.

Proof: By repeated application of Lemma 5.1, d(q(ID2,honest),d(k,name(q(ID2,honest),Q))) is unobtain-
able unless k is previously known. But Lemma 5.2 tells us that the word k is unobtainable. 2

The next lemma requires a few preliminary de�nitions. To begin with, we need the standard de�nition
of occurrence, as presented in Huet and Oppen [11]. An occurrence is a means for locating subterms in a
term that makes use of a notation similar to the Dewey Decimal system.

De�nition 5.4: If T is a term, we de�ne the set of occurrences in T, O(T) and their values as follows:

1. � 2 O(T) and T/� = T. In other words, � is the occurence of T in itself.

2. If T = f(T1,...,Tn), and o 2 O(Ti), then i.o 2 O(Ti) and T/i.o = Ti/o.

If o 6= �, de�ne pre�x(o) to be the string o minus the last number, that is, the occurrence of the parent
term of the term occurring at o.

Thus, for example, in the word T = e(a,d(b,c)), T/1 = a, T/2 = d(b,c), and T/2.1 = b.
We now de�ne odd words. 1

De�nition 5.5: We begin by de�ning even words. These are all irreducible words W from T(�,F) that
satisfy the following criteria:

a) There exist expressions A and N such that W is a member of the formal language B(A,N) de�ned by

1The de�nition of odd word replaces the de�nition of odd word in [18], which was incorrect. (The string of 2's in this

de�nition replaces the string of 1's in the earlier de�nition.) However, the proof of the following lemma is identical to the

proof in [18], and so we omit it here.
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B(A,N) ! d(k,name(q(A,honest),N))
B(A,N) ! e(L,B(A,N))
B(A,N) ! d(L,B(A,N))

b) There is at least one other occurrence of k at 2*.1, where 2* represents a possibly empty sequence of
2's such that e(k,Y) occurs at the pre�x of that occurrence in W for some expression Y.

c) Let O be such an occurrence, and suppose there is no other such occurrence in W. Let O' be the pre�x
of O. Then, for all expressions E, the number of occurrences S in W of the form O'.2*.1 such that
E occurs at S is even.

A word is odd if it satis�es the �rst two criteria and no instance of it satis�es the third.

Thus

e(k,e(q(A,honest),d(q(B,dishonest),d(k,name(q(ID2,honest),N)))))

is odd, since q(A,honest) occurs at 2.1 and q(B,dishonest) occurs at 2.2.1, and so is

e(q(B,dishonest),e(k,e(q(B,dishonest),d(k,name(q(ID2,honest),N))))),

since, while q(B,dishonest) occurs twice, there is only one occurrence, 2.2.1, that is of the form O'.2*.1,
where O' = 2 is the pre�x of O = 2.1, the other occurrence of k. However,

e(k,e(X,d(Y,e(X,d(Y,d(k,name(q(ID2,honest),N)))))))

is even, since X occurs twice at 2.1 and 2.2.2.1, and Y occurs twice at 2.2.1 and 2.2.2.2.1, where O, the
other occurrence of k, is 1, and O' is �. The word

e(k,e(X,e(Y,d(k,name(q(ID2,honest),N)))))

is not even, but is not odd, either, since the instance given by the substitution X = Y is even.

Lemma 5.6: No odd word is obtainable by the penetrator.

Proof: See [18].

We now wish to attempt to show that a penetrator cannot pass o� his own message as somebody
else's. Recall that a message mess(q(ID,dishonest),N) has been successfully substituted for a message
mess(q(ID2,honest),Q) if there is a processor q(B,honest) with

IDSTATE(q(B,honest)) = [name(q(ID2,honest),Q),q(ID2,honest)]
RUNSTATE(q(B,honest)) = mess(q(ID,dishonest),N)

Accordingly we run the analyzer on these two state values and �nd that the following set of conditions
must hold immediately prior to attaining these values:

knowledge of e(X,mess(q(ID,dishonest),N))
IDSTATE(q(B,honest)) = [name(q(ID2,honest),Q),q(ID2,honest)]
KEYSTATE(q(B,honest)) = X
READYSTATE(q(B,honest)) = yes
RUNSTATE(q(B,honest)) = zero

Running the analyzer on the four state values given above, we �nd that the following must have held
previously:
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IDSTATE(q(B,honest)) = [name(q(ID2,honest),Q),q(ID2,honest)]
KEYSTATE(q(B,honest)) = X = d(Y,d(k,name(q(ID2,honest),Q)))
READYSTATE(q(B,honest)) = zero
RUNSTATE(q(B,honest)) = zero

Thus the penetrator can substitute mess(q(ID,dishonest),N) for mess(q(ID2,honest),Q) if and only
if he can obtain e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q)))),mess(q(ID,dishonest),N)) and cause the
state variables of processor q(B,honest) to take on the values given above.

Running the analyzer on the state values listed above, we �nd that one of the following is required to
hold previously:

a) IDSTATE(q(B,honest)) = [name(q(ID2,honest),Q),q(B,honest)]
KEYSTATE(q(B,honest)) = zero
READYSTATE(q(B,honest)) = zero
RUNSTATE(q(B,honest)) = zero
with knowledge of name(q(ID2,honest),Q)

b) IDSTATE(q(B,honest)) = [name(q(B,honest),Q),q(ID2,honest)]
KEYSTATE(q(B,honest)) = zero
READYSTATE(q(B,honest)) = zero
RUNSTATE(q(B,honest)) = zero

with knowledge of
e(k,e(q(B,honest),

d(q(ID2,honest),e(q(B,honest),d(q(ID2,honest),d(k,name(q(ID2,honest),Q)))))))

The word name(q(ID2,honest),Q) is obtainable when processor q(ID2,honest) transmists the word
name(q(ID2,honest),Q), while the word

e(k,e(q(B,honest),d(q(ID2,honest),e(q(B,honest),d(q(ID2,honest),d(k,name(q(ID2,honest),Q)))))))

is obtainable by having processor q(B,honest) purchase the rights to mess(q(ID2,honest),Q).
Running the analyzer on the state values given in a) and b), we are told that they may be obtained

if previously all state values are zero and name(q(ID2,honest),Q) is previously known, and, in case a), if
e(k,q(B,honest)) is previously known, and, in case b), if e(k,q(ID2,honest)) is known. Since all e(k,q(S,T))
are assumed to be known, and since all state values can be made zero at any time by applying the rule
that sets all the values to zero, and since name(q(ID2,honest),Q) is obtainable, this set of state values is
obtainable. Thus, working our way back up, we have shown that the set of state values

IDSTATE(q(B,honest)) = [name(q(ID2,Q),q(ID2,honest)]
RUNSTATE(q(B,honest)) = mess(q(ID,dishonest),N)

is obtainable if and only if the word

Z = e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))

is obtainable.
Thus our next task is to show that Z is unobtainable, and we set out to do this. However, after running

the analyzer on Z we �nd that this it is obtainable by the penetrator. The scenario is as follows. Pro-
cessor q(ID,dishonest) obtains an encrypted key to mess(q(ID2,honest),Q) from processor q(ID2,honest).
Processor q(ID,dishonest) applies the rule for encrypting messages:

If fA,B,Mg �W

then W := W [ fe(k,q(ID,dishonest)),

e(k,e(d(k,B),d(q(ID,dishonest),e(d(k,B),d(q(ID,dishonest),d(k,A)))))),

e(d(q(ID,dishonest),e(d(k,B),e(d(q(ID,dishonest),d(k,A)))),M))g
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with input

A = e(k,e(q(ID,dishonest),
d(q(ID2,honest),e(q(ID,dishonest),d(q(ID2,honest),d(k,name(q(ID2,honest),Q)))))))

B = e(k,q(ID2,honest))
M = mess(q(ID,dishonest),N)

where A is the encrypted key to mess(q(ID,honest),Q). The word output is

Z = e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N)).

This gives us the penetration scenario described in Section 2.
Fortunately, the 
aw uncovered is easy to correct. If the rule for encrypting messages had been

applied correctly, the second word input would have been e(k,q(ID,dishonest)). Moreover, both k and
q(ID,dishonest) are stored in processor q(ID,dishonest). Thus, we can alter the message encryption rule
such that the processor either checks that the second word input is the correct one, or supplies the word
itself without requiring any input. Thus we can replace the penetrator's program encryption rule with

If fP Mg � W

then W := W [ fe(k,q(ID,dishonest)),P,e(d(q(ID,dishonest),d(k,P)),M)g

However, recall that the original message encryption rule subsumed the key encryption rule as well.
This is no longer the case, and so we must supply the key encryption rule separately:

If fA,Bg �W

then W := W [ fe(k,q(ID,dishonest)),

e(k,e(d(k,B),d(q(ID,dishonest),e(d(k,B),d(q(ID,dishonest),d(k,A))))))g.

We now wish to prove that the new protocol satis�es the desired security property. However, we do
not wish to reverify the properties the old protocol already satis�es if we can avoid it. Thus we introduce
the notion of restrictions of rules and protocols.

De�nition 5.7: A rule R2 =

If I2 �W and A2 and Cond(I2,A2) then W := W [ O2 and A
0

2

is a restriction of a rule R1 =

If I1 �W and A1 and Cond(I1,A1) then W := W [ O1 and A
0

1

if there is a substitution � acting as the identity on the variables of R2 such that

1. �I1 � �I2;

2. �A2 implies �A1;

3. �Cond(I2,A2) implies �Cond(I1,A1);

4. �O2 � �O1, and;

5. �A0

1 = �A0

2.
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De�nition 5.8: A protocol speci�cation S0 is a restriction of a protocol speci�cation S if S0 is obtained
by replacing every rule in S either by itself or by a number of restrictions of that rule.

Lemma 5.9: Let S be a protocol speci�cation, and let S' be a restriction of S. Let P be a description of
a state in terms of words known by a penetrator and values of state variables. If all states described by
P are unreachable in S, then all such states are unreachable in S'. Moreover, if the states described by P
are unreachable in S except via some state described by a description P', then the same is true for S'.

Proof: Let P be such a description, and suppose that there is a state Q described by P that is reachable
in S' but not in S. Thus there is a sequence

Q0 ! R0 ! Q1 ! .... Rk�1 ! Qk ! Rk ! Q

where Q0 is an initial state, and Qi ! Ri ! Qi+1 means that Qi+1 is reached from Qi by means of Ri.
Since each Ri is either equal to a rule R0

i
in S or a restriction of such a rule, there exists a substitution

� on the variables of R0

i
acting as the identity on the variables of Ri such that R0

i
di�ers from �Ri only

in that possibly more words are required for input, fewer words are output, and stronger conditions are
required on the input words and states. Thus, if Qi+1 is reachable from Qi via R

0

i
, it is reachable via �Ri,

and hence, by the de�nition of reachability, via Ri. Thus Q is reachable in S0.
A similar argument works for the second assertion of this lemma. 2

The two new rules that we de�ned satisfy all the requirements of a restriction of the original rule except
that the input words of the original rule do not form a subset of the input words of the new rules. We can
get around this noting that this property is satis�ed if we require that e(k,q(ID,dishonest)) is required to
be an input word in the program encryption rule. Since this word is assumed to be known initially by the
penetrator, its inclusion or omission has no e�ect on the reachability or nonreachability of a state. Thus
we do not need to reprove any of the lemmas that we proved earlier. Nor do we need to reprove the fact
that a penetrator can pass o� his own message as somebody else's only if he is able to produce the word
e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))

We now want to use our revised speci�cation to prove the theorem:

Theorem 5.10: The word

e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))

is unobtainable.

Proof: We now run the analyzer using the revised speci�cation, on the word

e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N)),

asking it to ignore cases that require prior knowledge of

d(Z,e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N)))

or

d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),

and, after discarding cases which require prior knowledge of an odd word, we �nd that one of the following
three conditions must be satis�ed:

a) prior knowledge of
e(X,e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N)))
and X;

b) prior knowledge of
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e(k,e(B,d(C,e(B,d(C,d(k,e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),
mess(q(ID,dishonest),N)))))))),

or;

c) KEYSTATE(q(E,dishonest)) =
d(X,d(k,e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))))
and IDSTATE(q(E,dishonest)) = [Y,X].

In the case of c, we run the analyzer on KEYSTATE(q(E,F)) =

e(X,d(k,e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))))

and IDSTATE(q(E,F)) = [Y,X], and �nd that prior knowledge of one of

c1) e(k,e(B,d(C,e(B,d(C,d(k,
e(d(q(A,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N)))))))), or;

c2) e(d(q(ID2,honest),d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))

is required. This leads us to attempt to verify the unobtainability of all irreducible words from the language
C de�ned by

C ! e(d(q(ID2,honest,d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))
C ! e(L,C)
C ! d(L,C)

Lemma 5.11: No irreducible word of C is obtainable.

Proof: We prove that C is unobtainable by showing that knowledge of a word from C implies previous
knowledge of either a word already shown to be unobtainable or another word fromC. We do this by using
the technique outlined in Section 2, and running the analyzer on each of the productions of C. However,
by Lemma 5.1, knowledge of d(X,Y) implies previous knowledge of Y, so we already know that knowledge
of a word from the third production implies previous knowledge of a word from C. Thus we only need to
run the analyzer on the �rst two productions. We �rst run it on

X = e(d(q(ID2,honest,d(k,name(q(ID2,honest),Q))),mess(q(ID,dishonest),N))

asking it to ignore all solutions that require previous knowledge of X, e(Z,X), or d(Z,X) for some Z, since
all these words are known to be members of C. The analyzer produces a number of solutions. All of them
require previous knowledge of a word of C, except for two, one of which requires previous knowledge of

e(k,e(q(ID3,dishonest),d(q(ID2,honest),d(k,name(q(ID2,honest),N))))).

and one of which requires previous knowledge of

mess(q(ID,dishonest),N)
and
d(q(ID2,honest),d(k,name(q(ID2,honest),N))).

The last of these is unobtainable by Corollary 5.3. Next, we run the analyzer on e(X,Y), where Y is
assumed to be a member of C. We ask the analyzer to ignore all solutions that require previous knowledge
of e(X,Y), Y, e(Z,e(X,Y)), or d(Z,e(X,Y)). All of the necessary conditions turned up by the analyzer fall
into one of the following cases:
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a) X = k, Y = e(A,d(B,e(A,d(B,d(k,C))))), and prior knowledge of C is required;
b) X = k, Y = e(k,e(A,d(B,e(A,d(B,C)))), and prior knowledge of e(k,C) is required;
c) X = k, Y = e(A,d(B,e(A,C))), and prior knowledge of e(k,e(B,C)) and e(k,B) is required;
d) X = k, Y = e(A,d(B,C)), and prior knowledge of e(k,e(B,d(A,C))) is required;
e) X = k, Y = e(A,C), and prior knowledge of e(k,B) and e(k,e(B,d(A,e(B,C)))) is required;
f) X = k, Y = C, and prior knowledge of e(k,e(B,d(A,e(B,d(A,C))))) is required;
g) X = D, Y = C, and prior knowledge of e(k,e(B,d(A,e(B,d(A,d(k,e(D,C))))))) is

required;
h) X = k, Y = d(q(R,dishonest),e(A,C))), and prior knowledge of e(k,e(q(R,dishonest),C) is

required.

We begin by giving the proof for case a) in detail. Since we assumed Y 2 C, and Y =
e(A,d(B,e(A,d(B,d(k,C))))), this means that either d(B,e(A,d(B,d(k,C))))) 2 C or A =
d(q(ID2,honest,d(k,name(q(ID2,honest),Q))) and d(B,e(A,d(B,d(k,C)))) reduces to the word
mess(q(ID,dishonest),N). But the latter is impossible, since Y, and hence d(B,e(A,d(B,d(k,C)))), is as-
sumed to be irreducible. Thus, d(B,e(A,d(B,d(k,C)))) 2 C. From this fact, by the de�nition of C and
the irreducibility of the word d(B,e(A,d(B,d(k,C)))), we have e(A,d(B,d(k,C))) 2 C. Using this fact and
reasoning similar to the case for the word d(B,e(A,d(B,d(k,C)))), we get that d(B,d(k,C)) 2 C. From the
de�nition of C, we get that d(k,C) 2 C, and using the de�nition of C again, we get that C 2 C. Since
prior knowledge of C is required in case a), this means that prior knowledge of a word from C is required.

Similar reasoning can be used to prove the result for all cases except c), e), and h); we show that the
word must belong to the second or third production of C, and work our way down.

In cases c), e) and h) this reasoning fails if A = d(q(ID2,honest),d(k,name(q(ID2,honest),N))) and C
= mess(q(ID,dishonest),N). In cases c) and e), if these values for A and C hold, prior knowledge of

e(k,A) = e(k,d(q(ID2,honest),d(k,name(q(ID2,honest),N))))

is required. In case h), if these values for A and C hold, prior knowledge of

e(k,q(R,dishonest),C)) = e(k,q(R,dishonest),mess(q(ID,dishonest),N))

is required. Thus, all we have to show is that

e(k,d(q(ID2,honest),d(k,name(q(ID2,honest),N)))),
e(k,e(q(ID3,dishonest),d(q(ID2,honest),d(k,name(q(ID2,honest),N))))),
and
e(k,q(R,dishonest),mess(q(ID,dishonest),N))

are unobtainable. But these are all odd words, which are unobtainable by Lemma 5.6. Thus we have
shown that knowledge of a member of the language C requires prior knowledge of an unobtainable word
or of another member of C, and so we are done. 2

7 Discussion

The fact that our techniques could be used to �nd security 
aws in a previously published protocol
shows that it is likely that they can be re�ned and developed into useful tools for protocol analysis. Our
experience in specifying and analyzing this protocol also points out ways in which they can be improved.

To begin with, in our speci�cation we modeled a protocol in which all systems operated correctly.
Thus we were able to show that no security violations occurred in a system in which no errors occurred.
However, the goal of most protocols is, not only to ensure security if everything operates correctly, but
to minimize the e�ects of system errors and security violations. If it fails to do so, it is considered to be
inadequate. For example, the 
aw in the Needham-Schroeder protocol [23] discovered by Denning and
Sacco [7] required the existence of a previously compromised session key to be exploited.

Similar issues arose in our analysis of the Simmons protocol in [18]. For example, we discovered that
it was possible for a penetrator to gain illegal access to messages if the cryptographic modules failed in a
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certain way. Although in [18] we listed this as a 
aw in the protocol, it can not really be considered one
since the Simmons protocol explicitly depends upon the correct operations of the cryptographic modules.
However, it is still of interest because the type of failure required was not one that would appear at �rst
glance to be likely to cause a security breach. Hence, knowledge of the e�ects of this failure might be
useful to someone who is trying to �nd out what assumptions about the cryptographic modules we can
a�ord to weaken.

Thus, there are two types of failures that it would be useful to be able to handle. One of these is the
class of failures that we consider likely to occur, such as the compromise of a used session key. We can
include such failures by specifying them as part of the protocol; this, for example, is what we did in [19] in
an analysis of a variant of the Needham-Schroeder protocol. The other is the class of failures that may or
may not be likely, but can be shown to cause security failures in the protocol. It is, of course, impossible
to list all such failures, but it would be useful to have a system that could assist in their discovery.

Another related question that arose in our analysis was the question of what penetrator actions we
should consider relevant to the security of the protocol. Clearly, the ability of the penetrator to insert
information into his own processors, to communicate with the other protocol participants, and to encrypt
and decrypt on his own, were relevant to the security of the protocol and were included in the speci�cation,
but we did not include the penetrator's ability to apply the successor and predecessor operators. However,
we had no formal basis for making these decisions. Likewise, if we had also attempted to specify the
incorrect operation of the protocol, we would have had no good means of choosing which errors to consider
as important.

One means of deciding what penetrator actions to include would be to examine previous, similar
protocols and see what actions penetrators used to exploit 
aws in these. This was the reasoning behind
our decision to include the actions we did; we looked at the earlier protocol described in [25] and included
the actions that a penetrator would have used to exploit its security 
aw. But it would be helpful if
we had a more formal basis for excluding certain penetrator actions in the analysis of the protocol. In
particular, we would like to be able to prove general results that give classes of protocols such that, if a
protocol belongs to a certain class and is vulnerable to an attack involving a certain penetrator action,
then it is vulnerable to an attack not involving that action. This is the kind of result proved by Even,
Goldreich, and Shamir in [9]. They de�ne a class of public-key protocols and show that, if a protocol
belonging to this class is vulnerable to an attack involving certain algebraic properties of the RSA, then
it is vulnerable to an attack not involving these properties. The result of Even et al. was obtained for
a relatively narrowly de�ned class of protocols, and it is unlikely that we would be able to prove similar
theorems for more broadly de�ned classes. However, we might be able to develop techniques for proving
theorems about protocols that will allow us to show that a particular penetrator action is irrelevant to
the security of a given protocol.

Another question that arises is: how do we characterize the insecure states of a protocol? The tech-
niques that we have outlined in this paper give us no assistance in answering this question. Our techniques
allow us to specify the operation of a protocol, but they do not help us to determine its requirements.
Extensions to the our system that we have subsequently developed make characterization of security and
insecurity a little easier; in [19] we introduce a model in which we can specify the security of a protocol
not only in terms of words learned by a penetrator and values of internal state variables, but in terms
of histories of events that should or should not occur. Since most cryptographic protocols are informally
speci�ed in terms of such histories, this allows a more natural way of mapping the designer's intuitive
notion of what characterizes the desirable behavior of a protocol to our more formal model. However, it
still does not give a formal methodology for characterizing the security of a protocol. In order to do so,
we should turn to other methods. One such is the use of logics of belief or trust to analyze cryptographic
protocols, such as the work of Burrows, Abadi, and Needham [4], or that of Rangan [26], both discussed
in Section 2. In these systems, a protocol is mapped to a set of assertions in modal logic. The goal of
the protocol is mapped to another such assertion. The set of assertions is then analyzed using formally
de�ned inference rules to determine whether or not the asserted goal of the protocol is derivable. If they
are not, the assertions that the protocol should but fails to provide are generated. Thus the security of a
protocol is examined at a much higher level of abstraction then our method of analysis provides.

The weakness of this approach is that the mapping of the protocol to the assertions and the construction
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of the inference rules is relatively informal. Moreover, since the level of abstraction is high, many features of
the protocol are necessarily not captured. Thus, although the use of these techniques in the analysis of the
selective broadcast protocol would probably have uncovered the need for the assertion that a participant
in the protocol can only encrypt messages with his own key, it would have been unlikely to provide any
assistance in determining whether or not the protocol satis�ed this assertion. Our analysis showed that
the protocol did not.

Thus, it seems that what might be useful is some sort of layered approach, applying modal logic tech-
niques to determine the requirements of a protocol, and then using techniques similar to those described
in this paper to determine whether or not a protocol can meet those requirements. This is in line with
current practice in system veri�cation. There is no one veri�cation technique that is appropriate for all
layers of abstraction. Instead, one uses di�erent techniques to perform speci�cation and veri�cation at
di�erent level of abstractions. The results of the veri�cation at a given level provide assertions to be
proved at the next lower level of abstraction.

One more question remains to be answered. That is: how well will these techniques scale up? Our
techniques worked well on a relatively simple protocol that could be speci�ed using a small number of
protocol rules and a small number of rewrite rules. How can we make them work well on more complex
protocols? This question can be answered in part by improving the mechanisms we use in the protocol
analysis: by improving the e�ciency of the narrowing algorithm we use, by extending the program so
that it generates complete sets of equational uni�ers for broader classes of equational theories, and by
extending the functionality of the program. For example, it would be useful if our program included
mechanisms for determining whether or not a word belonged to a formal language input by the protocol
analyzer. This would have eliminated a lot of the hand analysis we had to do. But we will also need
to develop techniques for showing that the composition of already veri�ed pieces of a system satis�es its
security requirements, and techniques for limiting the reveri�cation that needs to be done when a system
is modi�ed.

8 Conclusion

In this paper we have presented a formal model for a class of cryptographic protocols, a procedure for
proving security properties of protocols speci�ed according to this model, and a program that provides
automated assistance in these proofs. We speci�ed a published protocol and attempted to prove it secure
using our techniques. The fact that these techniques exposed a 
aw in the protocol provides evidence that
these techniques can provide signi�cant assistance in the analysis of protocols.
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