
Transaction Processing Using an Untrusted Scheduler in a
Multilevel Database with Replicated Architecture*

Oliver Costich

Center for Secure Information Systems, George Mason University, 4400
University Drive, Fairfax, Virginia 22030, USA

Software Architecture and Engineering, 13100 Worldgate Drive, Herndon,
Virginia 22070, USA

Abstract
Replicated architecture has been proposed as a way to obtain acceptable

performance in a multilevel secure database system. This architecture contains
a separate database for each security level such that each contains replicated
data from lower security classes. The consistency of the values of replicated
data items must be maintained without unnecessarily interfering with
concurrency of database operations. This paper provides a protocol to do this
that is secure, since it is free of covert channels, and also ensures one-copy
serializability of executing transactions. The protocol can be implemented with
untrusted processes for both concurrency and recovery.

1. INTRODUCTION

In recent history, significant energy has been expended in attempts to
develop database systems that protect classified information from
unauthorized users based on the classification of the data and the clearances of
the users. These are generally referred to as multilevel database systems.

 *This work was supported by the Naval Research Laboratory under Contract
N0001489-C-2389.

Earlier efforts to develop this kind of database system utilized the
integrity lock approach [4] or the kernelized DBMS approach [8,10]. The
former approach relies on a trusted front-end process that applies
cryptographic check values to data in an untrusted back-end database. The
latter approach relies on decomposing the multilevel database into single level
databases that are stored separately. The data must be recomposed to obtain
multilevel data in response to queries.

The integrity lock approach is computationally intensive and has a
potential covert channel [4]. There is also a risk that service could be denied by
forcing checksums to fail continuously. The kernelized approach can yield
reduced performance due to the need to recombine single level data to produce
multilevel data. More recently, a replicated architecture approach has been
proposed with the speculation that performance degradation due to security
requirements would not be as severe as with the other approaches [5].

Basically, the replicated architecture approach uses a physically distinct
back-end DBMS for each security level, with each one containing all the data
at its security level and below. The system's security is assured by a trusted
front-end, that permits a user access to only the DBMS that matches their
security level. In this approach, some of the less desirable features of the other
approaches are avoided but at a cost. The cost is that of maintaining the
consistency of the data that is contained in more than one back-end database
(almost all of it) without compromising security or losing the potential for
concurrent execution of database operations. The problem, then, is to develop a
protocol that does this "correctly", i.e., so the user's view is that of a single
database running only the user's transactions in some sequential order.

A number of protocols have been developed for kernelized architecture
multilevel database systems that can be adapted to the replicated architecture
ones. A protocol using a trusted scheduling process is proposed in [7], and an
untrusted one in [9]. Both of these utilize a timestamp ordering technique with
a global "clock" that makes them potentially susceptible to a covert channel,
depending on how the "clock" is implemented.

For the replicated architecture multilevel database, a transaction
processing protocol is presented in [6]. This protocol uses a trusted queue
manager in its scheduler. In addition, the protocol fails unless the security
levels are linearly related. It is interesting that this protocol has been adapted
to a kernelized architecture model [10]. In [6], it is also noted that although
the architecture appears to be that of a distributed database, the standard
techniques used for consistency control in such systems fail due to the security
requirements imposed. For example, the classical two-phase commit protocol
has a covert channel, the capacity of which is computed in [3]. Concurrent with
the work presented here, another approach to this problem using fully
replicated transactions has been explored in [12].

In this paper, a scheduling protocol for the replicated architecture will
be defined that relies solely on untrusted processes, does not require a linear
ordering of the security levels, and does not rely on timestamp ordering

methods. The criterion for "correctness" that is brought to bear is drawn from
the standards used in the theory of replicated database systems, namely one-
copy serializability.

The presentation is organized as a description of the model used,
followed by the specification of the protocol, the proof of its correctness,
remarks about garbage collection and recovery, the conclusion, and directions
of future work.

2. THE MODEL

The security model used here is based on the framework established by
Bell and LaPadula [1]. The notation for the security and the replicated
architecture database model is adapted from that in Jajodia and Kogan [6].
Both are sketched in the following sections.

2.1 Security Paradigm
The database system (DBS) consists of a finite set D of data items that

are objects of the trusted system, and a finite set T of transactions, that act on
behalf of users and are subjects of the trusted system. There is a lattice** S of
security classes, (S,<). If security classes u and v are in S then u dominates v
if v ≤ u. There is also a labeling function L that assigns unique security
classes to data items and transactions:

L:D∪T → S

The notion of security here only encompasses mandatory access control
requirements. Discretionary access control issues are not discussed. The
mandatory access control requirements are:

(1) If transaction Tj reads data item x then L(Tj)≥L(x).

(2) If transaction Tj writes data item x then L(Tj)=L(x).

Enforcement of these two conditions guarantees that information
concerning high security level data items cannot flow to lower security level

 **It is not necessary that the security classes form a lattice. A partially ordered
set is sufficient, though the lattice case is easier to comprehend intuitively. In the
description of the protocol, the necessary addition to protocol to extend it to this
case is noted.

transactions (and users). The second condition is more restrictive than the
traditional -property in that Ti cannot write data item x if L(Ti)<L(x), i.e., no
write-ups are permitted. In [6], it is argued that write-ups are undesirable in
trusted database systems for integrity reasons and may permit covert
channels. In any case, the restriction on writing-up is imposed to bound the
complexity of the protocol, and can be removed at the cost of an increase in the
complexity of the model definition and the attendant protocol.

2.2 DBS Architecture
The replicated database architecture is obtained by adding a collection of

single-level, untrusted database systems to the security structure, one for each
security class. That is, by adding a set {Cv v∈S} of back-end databases. The
system also contains a front-end processor, the trusted front end (TFE), that
mediates the access of subjects (transactions) to objects (data items). The TFE
will contain the trusted computing base (TCB), but not all of the TFE need be
trusted. In particular, much of the scheduling mechanisms for the protocol will
be in the untrusted portion of the TFE.

Each database Cv contains copies of all data items in all databases
whose security level is dominated by v. The copy of data item x in the
database Cu is denoted by xu. Alternatively, if L(x)=u so x∈Cu, there is a copy
of x in each database whose security level dominates u.

2.3 Transaction Model and Concepts
A database transaction is the execution of a set of atomic operations on

the data items of the database. The operations permitted on the data items are
Read(x), that returns the value stored by the data item, and Write(x), that
changes the value of the data item to a specified value. Other transaction
operations such as Start, Commit, and Abort, while significant for the control
of transaction processing [2], need not be made explicit for communicating this
protocol. In fact, only committed transactions will be considered in defining the
protocol. If Ti is a transaction, then a Read(x) operation by Ti is denoted ri[x],
and a Write(x) operation by wi[x].

The atomicity of the transaction's operations ensures that the DBS
behaves as if it executes the operations sequentially even though it may do so
concurrently. The transaction model reflects the possibility of concurrent
execution in the following definition.

Definition A transaction Ti is a partially ordered set with ordering relation <i

where

(1) Ti ⊆ {ri[x] x∈D} ∪ {wi[x] x∈D}

(2) If ri[x], wi[x]∈Ti, then either ri[x]<i wi[x] or wi[x]<i ri[x].

The definition requires only that operations on the same data item be
ordered. Two operations, from perhaps different transactions, conflict if they
operate on the same data item and at least one of them is a Write. Operations
of several transactions can be commingled so that concurrency of execution can
be extended to sets of transactions, as reflected in the following.

Definition A complete history H over a set of transactions T = {T1, T2, ,
Tn} is a partial order with ordering relation <H where

(1) H ⊇ T1 ∪ T2 ∪ ∪ Tn

(2) <H ⊇ <1 ∪ <2∪ ∪ <n

(3) If p, q are operations of H that conflict, then either p<H q, or q<H p.

Since only complete histories will be considered, they will be referred to
simply as histories.

The preceding view of transaction processing is the view of the user, to
whom replicas or versions of data items are transparent. Histories of this type
will be called one-copy histories when it is necessary to distinguish them from
histories that represent the system's view of a transaction and that deal with
copies of data items.

When a set of transactions is executed by a replicated DBS, an
operation in a transaction must be translated into the equivalent operation on
some or all of the copies of the data item. A translation function h performs
the mapping. For a Read(x), h determines the copy of x to be read, i.e.,
h(ri[x])={ri[xu]} for some u. For a Write(x), h determines what copies of x are
to be updated, i.e., h(wi[x]={wi[xa], wi[xb], }. In the case at hand, if
L(Ti)=u, then h(ri[x])={ri[xu]}, and h(wi[x])={wi[xv] v≥u}.

The concept of a replicated data history is needed to represent the
actions of the translated transactions on the replicated data. In the replicated
architecture, two operations on data items conflict if they operate on the same
copy of the data item and at least one of them is a Write. In the following
definition, oi[x] represents either a Read(x) or a Write(x) operation.

Definition A replicated data history H over a set of transactions T={T1, T2,
 ,Tn} is a partial order with ordering relation <H such that

(1) H=h(T1) ∪ h(T2) ∪ ∪ h(Tn)

(2) If ri[x]<i oi[y] in Ti, then h(ri[x])<H p for all p∈h(oi[y])

(3)If wi[x]<i oi[y] in Ti, then wi[xu]<H oi[yu]for all u∈S such that
 wi[xu]∈h(wi[x]) and oi[xu]∈h(oi[y])

(4) If p, q∈H and they conflict, then either p<q or q<p

It should be noted that this definition is not as restrictive as that in [2],
and though not necessary for this paper, all the results there appear to hold
under this weakened definition.

Replicated data histories represent the execution of a set of transactions
as seen by the entire MLS-DBS rather than as seen by the user, to whom
copies of data items are transparent. Notice that such histories preserve the
orderings stipulated by the transactions (conditions (2) and (3)).

The concepts of reads-from and final write are essential to
understanding the relationships among histories over the same set of
transactions. These may be defined for one-copy or replicated data histories.

Definition Let H be a history (one-copy or replicated data) over a set of
transactions T.

(1) Tj reads-x-from Ti in H if wi[x]<H rj[x] and there is no Tk∈T for
which wi[x]<H wk[x]<H rj[x]

(2) wi[x] is a final write of x in H if there is no Tk∈T for which wi[x]<H
 wk[x]

This definition clearly makes sense for one-copy histories, and does also
for replicated data histories if applied to a single copy of a data item. That is,
"Tj reads-xu-from Ti" and "wi[xu] is a final write of xu" are meaningful. These
concepts are used to define the notion of equivalent histories.

Definition Let H and G be histories of the same type (one-copy or replicated
data) over a set of transactions T. H and G are view equivalent if they have
exactly the same reads from relationships and the same final writes.

Correct execution of a set of transactions should appear to the user as if
the transactions were executed one at a time in some order. This concept of
correctness is formalized as follows.

Definition A history H is serial if for every pair of transactions Ti, Tj of H,
either all operations of Ti appear before all those of Tj, or vice versa. A history
H is serializable if it is view equivalent to a serial history.

Any protocol for processing transactions on a replicated architecture
database may give rise to a replicated data history. This history will represent
a "correct" execution of the transactions if it appears to the user that the
transactions executed serially on a one-copy database. Therefore a notion of
equivalence between a one-copy history and a replicated data history is
necessary. This requires the following definitions.

Definition If H is a replicated data history, say Tj reads-x-from Ti in H if for
some u∈S, Tj reads-xu-from Ti.

Definition Let H and H1C be replicated data and one-copy histories,
respectively, over the same set of transactions T. H and H1C are equivalent if

(1) H and H1C have the same reads-from relationships, i.e., Tj reads-x-
from Ti in H if and only if Tj reads-x-from Ti in H1C.

(2) For each final write wi[x] in H1C, wi[xu] is a final write in H for
some u∈S.

Definition A replicated data history H is one-copy serializable (1SR) if it is
equivalent to some one-copy serial history.

One-copy serializablility is the criterion for "correctness" that will be
applied to protocols for transaction processing in a replicated architecture
database. The protocol to be described herein yields replicated data histories
that are one-copy serializable.

To complete the specification of the model, the update projection Ui of a
transaction Ti is defined as {wi[x] wi[x]∈Ti}. For each transaction Ti, Ui can
be regarded as a transaction that must be executed at each database Cu for
which u>L(Ti), in order to propagate the updates generated by Ti to copies of
the data items affected. In particular, each transaction Ti on the replicated
database can be decomposed into a primary transaction that acts on Cu where
u=L(Ti), and its update projection Ui, that acts on Cv for v>L(Ti). It is often
useful to think of a primary component or an update projection as a one-copy
transaction acting on a single back-end database. Two update transactions, or
an update transaction and a primary transaction conflict if their
(nonreplicated) parent transactions conflict. It should be noted that write-up
transactions could be allowed by modifying the definition of an update
projection to include the write-up operations. The extension of the model and
the protocol to this case is quite complicated and including it adds a measure
of complexity that would only obscure this exposition, and will be given in
detail in a future paper.

3. DESCRIPTION OF THE PROTOCOL

The problem is to define a protocol for executing the primary
transactions and the update projections in the "correct" way. As previously
mentioned, a protocol will be considered "correct" if the resulting replicated
data history is one-copy serializable.

In the following, the symbol < will be used for all order relations (on the
security lattice, transactions and histories). The intended order relation will be
clear from the context in which it is used. The notation Ti will be used for both
the entire transaction on the one-copy database and its primary component on
the back-end database, with the context again the arbiter.

The protocol is a variant of the traditional primary site algorithm [2].
Each back-end Cu will have a scheduler Pu that produces view serializable
schedules for the transactions executed there (primary components and update
projections). In addition, Pu must preserve, in its serialization ordering, the
order in which it receives update transactions. There are several types of
schedulers that accomplish this, among which are variants of conservative two-
phase locking and conservative timestamp ordering protocols [2]. Pu need not
be trusted.

In fact, if one has decided on a primary site type of protocol, and has
decided that correctness is represented by one-copy serializability, then one is
locked into a particular approach to specifying the protocol, at least in the
most abstract sense. Once a serialization order between transactions and/or
update projections has been established at some back-end database, the same
order must be maintained between the update projections at all higher security
level back-end databases, else one-copy serializability is not enforced. If update
projections could be executed a at high security level back-end before they
were executed at some lower level back-end, a serialization order could be
established at a high level. Since this serialization order cannot be
communicated downward without violating the security policy, such behavior
cannot be permitted. Therefore update projections must be propagated to
higher level back-end databases in an order consistent with that of the security
lattice. Thus the previous assumption on the behavior of schedulers (or some
other means of preserving serialization orderings) is necessary. It follows from
this discussion that, under these assumptions, specifying the protocol amounts
to specifying the means by which update projections are propagated upward
through the back-end databases.

A list Qu is associated with each back-end database Cu. The purpose of
Qu is to maintain a list of the primary transactions and update projections that
have been executed and committed at Cu. The list is ordered by the
serialization order of the execution of these transactions, which need not agree
with the order in which transaction are actually executed or committed. The
Qu are used to make the correct order of execution at lower security level back-
end databases available to those at higher security levels.

In addition, there is, for each u∈S, an untrusted mechanism Ru that
maintains Qu and can read the contents of Qv for all v≤u and is considered to
be part of the global scheduler.

The actual location of the Qu or Ru is not important for the correctness
of the protocol, but since any access to them must be monitored by the TCB, it
is most efficient for them to be within the untrusted part of the TFE.

One additional concept is necessary prior to describing the protocol. Say
a back-end database Cu covers Cv if L(Cu) covers L(Cv) in the security lattice.
(Recall that u covers v in a lattice if u>v and there is no w for which u>w>v.)

The protocol works basically as follows. A transaction is submitted to the
TFE which dispatches it for execution to the back-end database with the same
security class as the transaction. The primary transaction is executed and
committed there, and the update projection is added to Qu, where u is the
security level of the transaction. The update projection is then promulgated to
the back-end databases for which the security class strictly dominates that of
the transaction. The distribution and timing of the update projections is
controlled by the untrusted process Rv for v>u. If Cv covers Cu, Rv can scan
Qu, retrieve an update projection, and dispatch it to the scheduler at Cv. The
crucial part of the protocol is in specifying the rules for retrieval of an update
projection by Rv. If not done correctly, the resulting histories will not be 1SR.

Notice that each Cu, in isolation, can be considered to be a one-copy
database. Primary transactions with security level u, and update projections
from transactions whose security level is dominated by u can be considered as
transactions on this one-copy Cu. Therefore, the concepts of scheduling,
execution, and commitment can be applied to these transactions locally (at Cu).
The scheduler Pu can generate a serializable schedule for these transactions at
Cu and, as they commit, place the update projections into Qu in the order of an
equivalent serial schedule. The reader is referred to [6] for methods of placing
update projections into Qu in serialization order when that order differs from
the commit-time ordering.

The protocol does not permit an update projection to be scheduled at
higher security level back-end databases until its primary transaction has been
committed locally. In fact, an update projection cannot be scheduled at Cv until
it has been committed at all Cu for u<v.

The protocol processes transactions as follows.

At each back-end database Cu:

I.1 Primary transactions and update projections are received from the
TFE and submitted to the local scheduler. Actions on data items
are translated into the correct actions on local copies.

I.2 As local transactions (primary transactions and update
projections) are committed, a report of their commitment is sent
to the TFE. These reports are sent in an order consistent with the
serialization order determined by the local scheduler. That is. if Vi

and Vj are two local transactions, primary or update, at Cu and
the scheduler Pu schedules Vi before Vj in the local serialization
ordering, then the commitment report for Vi is sent to the TFE
before that for Vj. If there are no conflicts between Vi and Vj, then

Pu need not impose a serialization order on them, and the reports
can be sent in any order.

At the TFE:

II.1 For each transaction Ti submitted to the TFE, Ti is dispatched to
Cu for processing, where L(Ti)=u.

II.2 Whenever a commitment report for Ui is received from Cu, it is
added to the end of Qu.

II.3 The Ru scan the lists Qv for those v for which Cu covers Cv. Ru

will retrieve an update projection Ui from Qv and send it to Cu to
be executed when the following conditions are satisfied.

a. Ru has already retrieved and dispatched to Cu all Uj for
which Uj was serialized before Ui by Pv.

b. If Cu also covers Cw, and Ui can eventually appear in Qw,
then it does appear in Qw.

The crux of the protocol is II.3 because it controls the order in which the
primary transactions and update projections are distributed to the back-end
databases for processing by holding the submission of an update transaction
until all preceding updates have been submitted. It is important to understand
how this step can be performed by an untrusted Ru.

II.3.a is possible because Ui and Uj arise from transactions Ti and Tj for
which, say, L(Ti)≤L(Tj)=v. Thus the primary transaction Tj obtains a
serialization order with either the primary transaction Ti or the update
projection Ui from Pv. In either case, Qv lists Ui and Uj in the required relative
serialization order and these lower security level lists are visible to Ru. The
order established at Qv is maintained as the updates migrate upward following
the security lattice ordering. II.3.b is possible because if Ui appear in some
Qv where Cu covers Cv and Cu also covers Cw, then Ru can detect whether Ui

will eventually appear at Cw. Suppose Ui arises from the primary transaction
Ti. Then Ui will eventually appear at Cw if and only if w≥L(Ti). Ru can know
the structure of the security lattice below its own level, which is sufficient to
detect the required condition.

Note: As previously noted, a partially ordered set (poset) of security

classes can be used rather than a lattice of security classes at the cost of
adding additional processing to the protocol. To do this, topologically sort the
security poset obtaining a global linear ordering of the security classes. For
each Cu, this imposes a linear ordering on the Cv that are covered by Cu. We
now add condition c to Step II.3

II.3.c. If Ui in Cv and Uj in Cw can both be retrieved by Ru, and v
precedes w in the global linear order, then Ru retrieves Ui before
Uj.

This is necessary because with a security poset, the following situation
could arise. Suppose both Cu and Cv cover Cy and Cz (this is not possible with
a security lattice). Further suppose U1 is in Qy and U2 is in Qz, and they both
satisfy conditions to be retrieved by both Ru and Rv. II.3.c then determines the
order in which they will be retrieved, preventing the possibility of inconsistent
serialization orders being forced at higher security levels.

As mentioned earlier, the replicated architecture must pay the price of
maintaining the consistency of the replicated data. In this protocol, the price is
paid in two ways. First, there is the overhead of maintaining the lists in the
TFE in terms of both the space required and the added processing. Second,
because updates are delayed, and the delay increases as the distance from the
primary transaction's security level to higher levels increases, transactions at
higher security levels may read data that may not be current.

4. PROOF OF CORRECTNESS

For the proof of correctness of the protocol, the definition of the protocol
will be modified slightly for the sake of mathematical convenience. The
redefinition does not affect the concurrency of operations specified by the
protocol.

The modification eases the mathematical proof by explicitly accounting
for the existence of read-only transactions in the execution of a set of
transactions. Because read-only transactions have an empty update projection,
there is no need to record them in the Qu, since the information there is used
only to correctly propagate updates. Consequently, the serialization
information for read-only transactions is not maintained by the system, nor is
it necessary for the correctness of the protocol. For purposes of the proof of
correctness, it would be convenient if it did. Therefore, for the proof, Qu will
not only contain the update projections of transactions executed and committed
at the security level of Qu and below, but it will also contain a marker
corresponding to read-only transactions that were executed and committed at
the lower levels. For the sake of the proof, then, read-only transactions will

have update projections that serve solely to mark their position in the
serialization ordering of all transactions. These update projections propagate
through the Qu just as if they were non-empty.

One other artifice is necessary if the security lattice S has no maximal
element. One is simply created and added to the lattice, and will be designated
by t. No back-end database need exist for this artificial security level, but only
the list Qt. If S already has a maximal element, no additional element is required.

Let U={Ui Ti∈T} be the set of all update projections, including the null
ones for the read-only transactions, and let U* be the set of all strings from U.
Then for each pair of security classes u and v of S, for which u≥v, there is a
projection uv:U

→U that is defined as follows.

(1) uv(Ui)=Ui if L(Ti)≤v

(2) uv(Ui)= , the null string, otherwise.

(3) Extend uv to U* by recursive definition.

Lemma. If u and v are in S, with u≥v, then the serial histories associated
with uv(Qu) and Qv are view equivalent.

Proof. The proof is by induction on the minimal length n of a path from u to v
in the lattice S. The result is trivial for n=1, since if Cu covers Cv, then the
order of conflicting operations in Qv is the same as the order in which they are
inserted into Qu by the condition imposed on the back-end schedulers. If the
length of the minimal path from u to v is n>1, find w for which u>w>v. Then
the path lengths from u to w and from w to v are smaller than n, so the
induction hypothesis is true for these paths. Thus Qw is view equivalent to
 uw(Qu), and Qv is view equivalent to wv(Qw). Since uv= wv uw, the result
follows.

In particular, the serialization order for all transactions that is specified
by Qt, where t is the maximal class in S, is consistent with the serialization
orderings at each back-end database. The one-copy serial history that
corresponds to this ordering, say J, will be shown to be equivalent to the
replicated data history produced by the protocol.

As an intermediate step to facilitate the proof, let H be the replicated
data history produced by the protocol, and let G be the history obtained from
H by topologically sorting the security lattice and putting the serial histories of
the Cu, as specified by the Qu, sequentially in this topological order.

Lemma. G and H are view equivalent as replicated data histories.

Proof. Clearly G and H have the same operations. Since reads-from
relationships and final writes are properties local to each back-end database,

these local properties are preserved in the structure of H. That is, if Tj reads-
xu-from Ti in H, then Tj reads-xu-from Ti in G as well. A similar statement
holds for final writes.

Theorem. H is 1SR.

Proof. Since H is view equivalent to G, it suffices to show that G is 1SR.
Claim that G is equivalent to the one-copy history J.

1) Suppose wi[x] is a final write of x in J. Then if wi[xt] is not a
final write of xt in G, there is a Tk for which wi[xt]<wk[xt]. Then
Ui precedes Uk in G, and so also in Qt. But then Ti precedes Tk in
J, a contradiction. Hence wi[xt] is a final write of xt in G.

2) Suppose that Tj reads-x-from Ti in G, so that for some u,
wi[xu]<rj[xu] and no other transaction at Cu writes xu between
these operations. Notice that u=L(Tj), but L(x)=L(Ti) may be
strictly dominated by u. If Tj does not read-x-from Ti in J, then
there is a Tk for which wi[x]<wk[x]<rj[x]. Then in the serial
history J, Ti precedes Tk which precedes Tj. Since Ti and Tk both
write x, L(Ti)=L(Tk) which is dominated by u. Since tu(Qt)
specifies a serialization order that is view equivalent to that of Qu,
Ui precedes Uk precedes Uj in Qu, that contradicts that Tj reads-
xu-from Ti.

Conversely, suppose Tj reads-x-from Ti in J. Let u=L(Tj) and
v=L(Ti)=L(x), and suppose Tj does not read-x-from Ti in G. Then
there is a Tk, L(Tk)=v, for which wi[xu]<wk[xu]<rj[xu]. It follows
that Ui precedes Uk precedes Uj in Qu and thus also in J,
contradicting that Tj reads-x-from Ti in J.

5. GARBAGE COLLECTION AND RECOVERY

In implementing the protocol as described, the size of the lists, the Qu,
can become arbitrarily large. This may be wasteful of storage as well as
increase the execution time for scanning the Qu by Ru. In order to remedy this
situation, some form of garbage collection should be included to maintain the
Qu at a reasonable size.

The security policy does not allow Ru to access information that would
indicate whether or not a particular Ui must be kept for future use by the
protocol, as this depends on information known only at higher security levels.
Therefore, garbage collection requires that trusted mechanisms be used. The

earliest point at which a particular Ui may be discarded from Qu is when Ui

has been retrieved from it (and dispatched to the appropriate back-end
database) by all the Rv for which Cv covers Cu.

Trusted components could be built to perform the deletions at this point,
but would be inordinately complex for the task. A more likely approach would
be to wait until a particular Ui is inserted into Qt (where t is the maximum
class in the security lattice). In fact, this may be the only reason for
maintaining Qt (other than to simply the proof of correctness), since it is
otherwise unnecessary. A relatively simple trusted mechanism could then
remove Ui from all of the relevant Qu. Such a mechanism can be invoked at
regular intervals. Doing garbage collection at the checkpoints taken for
recovery purposes may be sufficient.

As for recovery, the back-end databases have their own recovery
managers, so that the only concern is the recovery of the contents of the
dynamic data structures in the TFE. The recovery scheme to accomplish this
is straightforward and quite similar to what is generally used for databases. A
log is maintained in the stable storage corresponding to security level u. The
log for security level u can be located on the same hardware as the back-end
database Cu to maintain security of the recovery logs. Alternatively, a
collection of single level logs could be maintained in the stable storage
dedicated to the TFE. Whenever Ru receives an update report from a back-end
database and adds it to Qu, a log entry is created and written to the log in
stable storage. If the TFE should fail, the logs can be used to reconstruct the
Qu.

In addition, as for databases in general, a checkpoint can be taken,
recording the state of the whole DBS. Performing the garbage collection
function at this point and pruning the logs of any unnecessary entries reduces
the amount of data that is stored.

After a crash, recovery is accomplished by restoring the state at the last
checkpoint and using the logs to update the DBS to the point of failure. The
proposed technique requires little trusted code.

6. CONCLUSION

The replicated architecture for MLS-DBSs has the potential to provide
performance significantly better that the kernelized architecture design since
the work performed for a user during a single log-in session takes place within
a single, conventional database system. What is needed to make the replicated
architecture work is an untrusted mechanism that maintains database
consistency without giving up the potential for concurrent execution of
database operations. The protocol presented here provides this. The additional
overhead to provide the consistency control is not excessive and relatively
straightforward to implement. Most of the concurrency control and recovery

processes are provided by the back-end databases themselves. Moreover the
additional code required for the management of the lists in the front-end need
not be trusted, reducing the effort required for system assurance.

7. FUTURE RESEARCH

An interesting question arose while doing the work for this paper
concerning the notion of "correctness" for transaction processing in a multilevel
database system. The usual concept of a database transaction precludes
transactions from communicating with each other. In this context,
"correctness" of execution is usually interpreted as looking to the user as if
their transactions operated one at a time in some order. In untrusted
(ordinary) replicated database systems, this position is satisfactory and one-
copy serializability is an acceptable criterion for "correctness". In the replicated
architecture multilevel case, however, something more seems appropriate.

Consider the following example. In the untrusted situation, a user
submits the transaction w[x]r[x]w[y]. That is, the user writes new value for
x, reads it and performs some process and writes a new value for y. The user
is assured that the value of x used in the ensuing process is the one just
written because w[x] and r[x] conflict and are therefore ordered within the
transaction. Now suppose that x has a low security level and y a high one, and
that the process that reads x and writes y is a high security level analysis.
The user can no longer bind the write and read operations on x so that the
desired ordering is enforced. In the multilevel situation, the original
transaction must be broken into two transactions, w[x] and r[x]w[y], that
must be submitted at two different security levels. Moreover, one-copy
serializability no longer guarantees that the user's expectations about the
order of execution are realized. In fact either ordering of the two transactions
satisfies that criterion, regardless of which of the two transactions is submitted
first.

If one holds to the common practice of identifying a user with a single
level log-on session, then a user is a single level entity for whom one-copy
serializability gives a consistent view of the database. But users do not view
themselves in this way in a multilevel situation. Rather, one usually thinks of
a person who can log-in to the system at a number of security levels, so that
the situation described above can actually occur. It appears that some notion of
multilevel transaction and a corresponding concept of "correctness" are
required to extend the ideas of this paper to what users expect to happen.

This problem seems to be related to a number of issues that arise from
commingling database theory with that of computer security. The distinction

between database user and a subject in a secure system, as noted above, seems
to be at least part of the problem. Investigation of this problem and related
issues will be the subject of future work.

8. ACKNOWLEDGEMENTS

The author thanks Judy Froscher and John McDermott of the Naval
Research Laboratory for reviewing this paper and making many helpful
suggestions. A special thanks to Sushil Jajodia and Boris Kogan for
introducing the author to the field of trusted database systems.

9. REFERENCES

1. D.E. Bell and L.J. LaPadula, "Secure Computer Systems:prUnified
Exposition and Multics Interpretation," The Mitre Corp., March 1976.

2. P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

3. Oliver L. Costich and Ira S. Moskowitz, "Analysis of a Storage Channel in
the Two Phase Commit Protocol", Proceedings of the Foundations of
Computer Security Workshop IV, Franconia, NH 1991.

4. D. Denning, "Commutative Filters for Reducing Inference Threats in
Multilevel Database Systems," Proceedings of the IEEE Symposium on
Security and Privacy, pp. 134-146, Oakland, CA 1985.

5. Judith N. Froscher and Catherine Meadows, "Achieving a Trusted
Database Management System using Parallelism," in Database Security
II:Status and Prospects, ed. Carl Landwehr, pp.151-160, North-Holland,
1989.

6. Sushil Jajodia and Boris Kogan, "Transaction Processing in Multilevel-
Secure Databases using Replicated Architecture" in Proceedings of the
IEEE Symposium on Security and Privacy, pp. 360-368, Oakland, CA May
1990.

7. T.F. Keefe and W.T. Tsai, "Multiversion Concurrency Control for
Multilevel Secure Database Systems" in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 369-383, Oakland, CA May 1990.

8. T. Lunt, D. Denning, R. Schell, M. Heckman, and W. Shockley, "The
SeaView Security Model," IEEE Transactions on Software Engineering,
SE-16,6 (June 1990), pp. 593-607.

9. William T. Maimone and Ira B. Greenberg, "Single-Level Multiversion
Schedulers for Multilevel Secure Database Systems" in Proceedings of the
Sixth Annual Computer Security Applications Conference, pp.137-147,
Tucson, AZ December 1990.

10. Richard C. O`Brien, J.T. Haigh, and D.J. Thomsen, "Trusted Database
Consistency Policy" Rome Air Development Center Technical Report
RADC-TR-90-387, December 1990.

11. M. Tamer Öszu and Patrick Valduriez, Principles of Distributed Database
Systems, Prentice-Hall 1991.

12. John McDermott, Sushil Jajodia, and Ravi Sandhu, "A Single Level
Scheduler for the Replicated Architecture for Multilevel-Secure Databases"
in Proceedings of the Seventh Annual Computer Security Applications
Conference, San Antonio, TX December 1991

