A Single-Level Scheduler for the Replicated Architecture for Multilevel-Secure
Databases

John P. McDermott
Naval Research Laboratory
Sushil Jajodia
Ravi S. Sandhu
George Mason University

The replicated architecture for multilevel secure data- [11,14,16] places less trust in the database system software
base systems provides security by replicating data intoand thus should cost less to build to the same level of as-
separate untrusted single-level database systems. To bisurance. It finesses the trust problem by storing multilevel
successful, a system using the replicated architecture musobjects in single-level fragments that are protected by the
have a concurrency and replica control algorithm that underlying trusted operating system. However, the Hinke-
does not introduce any covert channels. Jajodia and Schaefer approach needs to reconstruct logical multilevel
Kogan have developed one such algorithm that uses up-objects from separate single-level objects and may give up
date projections and a write-all replica control algorithm. some time performance in return.

Here we describe an alternative algorithm. The new algo- In the frontend-backend architecture category, the in-
rithm uses replicated transactions and a set of queues or-tegrity-lock architecture [8,5] uses a trusted frontend sys-
ganized according to security class. A new definition of tem to apply cryptographic check values to data stored in a
correctness is required for this approach, so we presentsingle backend database system. It is generally not intend-
one and use it to show that our algorithm is correct. The ed for use in high assurance systems. The SD-DBMS ar-
existence of this new algorithm increases the viability of chitecture [20,9] uses a trusted frontend to control multiple
the replicated architecture as an alternative to kernelized backends where the data is distributed but not replicated.

approaches. Like the Hinke-Schaefer architecture, the SD-DBMS ar-
) chitecture places little trust in the database system soft-
1. Introduction ware thus reducing assurance costs. Like the Hinke-

Schaefer architecture, the SD-DBMS architecture can

database system is critical to its effectiveness. Convention-have time performance problems due to the need to mate-

al database system architectures do not include a trustew;'rggzn?eﬁglgal objects whose physical representation is
computing base and incorporating one requires significant Our paper is concerned with another frontend-backend

change to the conventional architecture. Multilevel Securearchitecture, which we call theplicated architecture

database _system grchﬂectures can be characterl_zed 35 Yhe Naval Research Laboratory, in its SINTRA project
therkernelizedarchitectures dirontend-backendarchitec- : . : ;
. . ; (Secure INformation Through Replicated Architecture), is
tures [18]. Kernelized architectures incorporate the trusted. L . . :)
investigating the replicated architecture. Like the Hinke-

computing base into some architectural layer of the ma- : : : .
: Schaefer architecture, little trust is placed in database sys-
chine that hosts the database system. Frontend-backend a : :
tem software but where the Hinke-Schaefer architecture

chitectures incorporate the trusted computing base on ¢ : i . :
: fragments apparently-multilevel objects into single-level
frontend machine and host the database system on one ¢ : :
.fragments the SINTRA architecture replicates apparently-

more backend machines. There are many variations of ei- .) . .
ther approach [10] multilevel objects as single-level copies. Lower-level data
: is replicated in the higher level databases (See Figure 1).

Kernelized architectures can place more or less trust in o : .
The replication overcomes the object-materialization per-
the database system software. For example, the Advance . ; .
formance problem facing other architectures. Data that is

Secure DBMS architecture [7] places more trust in the da- . : .
o . apparently (to the user) multilevel is physically stored to-
tabase system software by allowing it to process multilevel . . .)
. : ; gether as a single-level object in a single-level database
objects directly (most of the DBMS is part of the trusted e
computing base) and as a consequence of this otentiall\SyStem and thus does not need to be materialized.
puting g P © The critical difficulty with the replicated approach is

achieves higher performance than other approaches bu o . C
: correct replication. Conventional approaches to replication
costs more to assure. The Hinke-Schaefer approact

The architecture of a high-assurance multilevel secure

and the related concurrency control issues are well under- Figure 1 illustrates the basic SINTRA architecture. No-
stood. Unfortunately, the conventional solutions are either tice that the low data appears at all backends, blue data at
unworkable in the context of multilevel security or at best the blue and high backends, etc.
introduce covert channels. If data cannot be correctly rep-
licated without introducing security flaws, then the repli-
cated approach is not viable. DBS high

In this paper we show a new way of maintaining correct frontend
replication in a secure manner and relate it to the previous-
ly published algorithm of Jajodia and Kogan [12]. Our
scheduler does not use any trusted components and use
conventional algorithms for the local scheduling. The new B|__|DBS blue
algorithm increases the viability of the replicated architec-
ture as an alternative to the kernelized approach.

DBS red

K

We continue in this section with a discussion of the DBS
SINTRA architecture and the problem of replicating data low
in a multilevel-secure database system. We also presen
the model and notation we use for the rest of the paper. high

Next, in section 2, we explain why conventional approach- ~ Security class partial order

es to replica and concurrency control are not suitable for
multilevel-secure database systems. In sections 3 and ¢
we present two algorithms: write-all using update projec-

tions and a central queue and write-all using replicated low
transactions and multiple queues. Then we show the cor-
rectness of the new algorithm, using a new definition of

correctness mandated by our replicated-transaction ap- For this paper, our mathematical model of the SINTRA
proach. In section 6, we compare the algorithms qualita- architecture consists of a finite set of passive entilies

blue red

Figure 1. The Replicated Architecture

tively and in section 7 we conclude our paper. called data items a finite set of active entitieE, called
1.1 The SINTRA Architecture Lrlzr;:gnons and a finite partial ordeS(<) of security

The frontend-backend architecture with full replication We denote elements bBf by lower case letters y, and
has been around as a concept for some time [18]. In itsz, and subscript them ag, xg, X, etc. when emphasizing
SINTRA project, the Naval Research Laboratory is cur- the fact that the data items in question are replicas of each
rently prototyping several frontend-backend architectures other. We denote the elementsToby T or by T;, T;, and
with full replication. What will be called in this paper the elements oSChy uppercase lettes B, C, etc. We use a
SINTRA architecture was first proposed for serious con- mappingL:DOT - SCto give the security class of every
sideration by Froscher and Meadows [6]. data element and every transaction and a similar mapping

The SINTRA architecture uses full replication to pro- S:DOT - SCto give the apparent source security class
vide multilevel security. There is an untrusted backend da- of every data element and every transaction. The mapping
tabase system for each security class. Data fromS models the fact that replicas of data may appear to the
dominated security classes is replicated in each backencuser to have a lower classification than the backend that
system. Logically, the user is allowed to read down and holds the replica. For example, in the database system of
write at the same class but physically the frontend reads allFigure 1, if a transactioh with L(T)=low writes a logical
data at the same class and writes at the same class and (data itemx, there will be, among others, replicgsy and
into dominating classes to maintain the replicas. It is im- xyig, With L(xeg)=red andL(xqgr)=high but with
portant to remember that while the replicated architecture S(xeg) = S(ign) = low.
uses distributed database system technology, the replicater The model contains the following (partial) security pol-
architecture is for centralized database systems and not foicy:
distributed systems. It could be implemented on a single 1. Transactio is not allowed to read data element
machine such as LOCK [22]. xOD unlessL(T)=L(x).

2. TransactioT is not allowed to write into data ele-
ment x(OD unlesd_(T)<L(x).
3. L(T)andS(T)do not change, arldx) andS(x)do not
change.

We model the replication by partitioning the data items TransactionsT; andT, originate at security clagand
D into a set of equivalence classd#] where are also run at security cla&go maintain consistency be-
[A] ={xOD |L(x)=A} . We will frequently denote equiva- tween the replicas of. Transactionl; runs at security
lence clasgA] asDa. The SINTRA architecture requires, classA only. TransactiorT, is used by an automatic-up-
for any security classesandB [0 SCsuch thaB<A, that date program to updatefrom raw reports. Transactian
there be a corresponding replica data ifgD, if there at security clas8 is used by a progrargstimateX to
is a data itenxg[l Dg. compute a best estimate of current position, course, and
s . speed. Another progrargstimateY uses transactiom.
1.2 The Prqblem of Maintaining Consistency Be- aﬁd sometimes cf?anges the estimate of track hostilify.
tween Replicas A locally correct scheduler for a backend could inter-

The concurrency control algorithm of a single-copy da- leave the operations @, T,, andTs as long as the result
tabase system is considered to be correct if its execution ofwas equivalent to some serial schedule. Instead of giving a
concurrent transactions is equivalent (we define equiva-locally correct interleaving of individual operations we
lence more precisely in the following section) to some se- Will simply list the transactions below at each back-end
rial execution of those transactions on the same data itemsdatabase they act on and assume that each transaction is
This correctness criterion is callegrializability [2, 21]. executed serially. Clearly, this execution represents local
For replicated databases, the correctness criterion is generserializability at each security class.
alized to require that an algorithm appear to execute con- At backendDg: To; Ty
current transactions on replicas of data in a way that is At backendDp: Ty; Tp; T
equivalent to serial execution of those transactions on a This particular execution by the database concurrency
single copy of the data. This is callede-copy serializ- ~ control mechanism would cause the progréstimateY
ability [2]. If the values stored in the replicas are produced running atA to base its computation gfon Estimate
by a one-copy serializable execution of the transactionsValue forx (that is, Ty's value). The prograristimateX
then the replicas amonsistentReaders interested in seri- running T, at security clas8 would read the value of
alizability for kernelized architectures should see [16, 13]. that held beford; ran at security clas8. Unfortunately,

A replicated database that has local serializability (i.e. €ven thougtEstimateYthrough its action i3, would use
in each back-end database system) cannot achieve oneT2's value forx, the valuer, would compute fox could be
copy serializability by simply copying everything, as the different because at security cladgransactionT, read
following example will show. T,’s value forx when it should have read the value die-

Example 1 Consider a hypothetical database system fore Ty changed it.
with the SINTRA architecture that has just two security ~ The two expert systems could advise a user based on
classesA andB, with B<A. This database system acts as a different views of the world that were an artifact of the
server in a naval command and control system. One of thereplication. A user could see them giving contradictory re-

uses of this database system is to stareks which are sults just because the local concurrency control mecha-
collections of sensor reports associated with particu|ar nism in the database server made an arbitrary choice. If the

submarines, ships, or airplanes. Among the data items ituser chose to udestimateXsresults aB and make his or

stores are two logical data itemsndy with S(xFB, and her own estimate of track hostflithe or she might get a
S(yFA. Data itemx stores the best available position, Position, course, and speed that would indicate a hostile
course, and speed associated with a particular track and track. Meanwhile the program running/Authat followed
stores the best available estimate of whether the track isthe same rules as the usepould say the track was not
hostile. The database has, among others, three predefinehostile, becaus&;'s value ofx was different at security
transactionsT;, T,, andTs, that are used automatically by ~ classA. Although our backend systems were locally cor-
the command and control system, that is, under programrect (serializable) the overall concurrency control ap-

control and not submitted by a human. proach did not give us consistent database results.
Tq: write(x) 1.3 The Transaction Model of Concurrency Con-
T,: readf); trol
x := EstimateXx);

A transactionis an abstract unit of concurrent compu-

T .\:Ier;zg). tation that executes atomically. The effects of a trgnsaction

s readg/)', do not interfere with the effects of other transactions that
yi= Es,tim ateYx, y); access the same data, and a transaction either happens with

write(y) e all of its effects made permanent or it doesn’t happen and

none of its effects are permanent. A useful model of a
transaction must show how such properties can be

achieved by composing smaller units of computation, j#i, w[x] <wi[X], that is, all other writes of come before
when those smaller units are not necessarily guaranteed t(T;’s write.
compose into an atomic transaction. Thus the model must Normally we omit the reflexive relationships, set nota-
be concerned with showing potential interference betweention, etc. and just denote a single transaction as
operations and with showing arbitrary orderings. Ty = ro[X]r olylwolylc,

In this paper, we take one of the usual models [2, 21]: . .
single trar?se?ctions as total orders on finite sets of [abstre]1c2' Conventional Write-All Protocols and
read, write, commit andabort operations, denotedx] Covert Channels

wx], ¢, anda, respectively. The total order establishes a one siraightforward way to implement a concurrency
relation between each operation in the transaction, i.e. €i-contro| algorithm for a replicated architecture is the simple
ther p[x]<qly] or qly]<plx] if p[x] andqly] are opera- jnmediate write-all protocol [2]. With this protocol, each
tions in transactionl. Each transaction has a greatest \yjte gperation of a transaction is immediately replicated
element that must be eitheora. This means thatatrans- 4 g copies of the data. Reads are performed from the
action always either commits or aborts, and does nothing ,qst convenient copy of the data. To avoid the problem of
élse aiter that.)) . our Example 1 above, the database operations are usually
The concurrent execution of a set of transactions is gynchronized by a coordinator, using a conventional con-
modeled as a partial order that contains the union of theCurrency control protocol (e.g. two-phase locking). Trans-
transactions that execute concurrently, preserves the or-,.iion commits are made atomic across replicas by some
ders established for each transaction and further establish¢y. 1 of distributed commit protocol (e.g. two-phase com-

es some order between any two operations dbaflict mit). For instance, the transactions of Example 1 could,
Two operationg;[x] andgj[x] conflict if one of themisa ith two-phase locking and two-phase commit, be or-
write operation. We call this partial ordehigtory. Notice dered:

that the partial order established by a history is not neces-
sarily correct and that, unlike Example 1, the individual
transactions do not necessarily run serially even when the
history is correct.

Remark. We restrict our presentation to complete his-
tories (i.e. the history consists only of committed transac-
tions) [2] and simply call them histories. The extension to
prefixes of complete histories is straightforward, but un-
necessarily complicates our discussion.

A serial history H has all the operations of transaction
T; before transactioffj or vice versa, for every pair of
transactiond;, T; in H. If a history is equivalent to some
serial history we say it iserializableand consider it to be
correct. The kind of equivalence we use here is cal®g
equivalenceand is defined in terms of theads-fromand
final write relationships between the transactions and oper-
ations in the two equivalent histories. Two complete histo- YS€
ries are view equivalent if they have the same reads-froms3 \A\/rite-All Using Update Projections and a
and the same final writes over the same set of transactionsCentral Queue
Thus we say that a history for a replicated database is one

at backendg:
ro[X]r o[ylw olyleowy[yleq
at backendp;
ro[X]r olylw olyle owslyle1ralX]r ayIr s[z]wsz]cs
where the write operations are forced to occur in each back-
end at the same time. Because the writes occur together and
the commits are atomic across back-end databases, the
transactions are forced to have the same reads-froms and
final writes at each back-end database.

Both the concurrency control protocol and the commit
protocol introduce covert channels and are thus unaccept-
able [12,15,4]. In the following sections we will show two
algorithms that manage concurrent replicated transactions
without introducing covert channels or violating the secu-
rity policy, one that uses update projections and one that
s replicated transactions.

copy serializable if it is view equivalent to some serial, In [12], Jajodia and Kogan presented the first concur-
single-copy history. rency and replica control algorithm for a replicated archi-

Definition 1. Transactior; reads-x-from transaction; T tecture. Their algorithm, which we call Algorithm J, has

if several desirable properties including one-copy serializ-

1. wi[x]<ri[x], that is,T;’'s write ofx is done befor&’s ability] and freedom from commit-protocol covert chan-
read of, nels [15]. The algorithm uses update projections.

2. there is no operatiom[x] such that Definition 3. Theupdate projectiorof transactiorT is
wi[X] <wi{x] <ri[x], that is, no transactiok writesx the transactiotJ obtained from transactioh by omitting
betweenT; andT;. the read operations of

Definition 2. A final write of data itenx in historyH, by Definition 4. A transactiorT is anupdate transactioif

transactionT;, is a write operatiom;[x] such that for any T has a nonempty update projectionTlfs not an update

transaction then it is a query ad-only transaction In our initial discussion of Algorithm Q we will assume
Algorithm J. The write-all algorithm of [12] works by ~ each back end database system has its comgervative
having the backend database in the same security class astimestamp ordering (CTO) schedulg;,21]. A conserva-
transactionT execute and commif and then return its tive scheduler is one that never aborts a transaction for
update projectiod, if T is an update transaction. Figure 2 concurrency control reasons. Another reason we use con-
illustrates Algorithm J, with the arrow showing the servative timestamp scheduling is that conservative times-
progress of update projectidh tamp ordering schedulers can easily be made to schedule
transactions in the order they are received.
Remark. Timestamgschedulers assign timestamps (not
necessarily from a real-time clock) to transactions and
DBS then schedule the individual operations of concurrent
transactions by comparing timestamps. Any pair of opera-
tions from different transactions, at least one of which is a
DBS write, are scheduled in the order of the timestamps of their
tr_ansactions. For database operatigpq , gj[x] such that
eitherp = worg= wwe have
ts(T) < ts(T) iff p[x] < gj[x]
wherets(T;) is the timestamp of transactiop

frontend

queue] DBS

T U 4. Write-all with Replicated Transactions and
Multiple Queues

DBS

Now we present our alternative algorithm. We will ex-
plain the algorithm first in terms of conservative times-

tamp ordering and then show how we can drop that

The update projectiob is subsequently synchronized Algorithm Q replicates entire transactions into the ap-
in security-class-lattice order by means of a queue on thePropriate backends. Instead of Algorithm J's single multi-
trusted frontend. For each security class that dominates thd€vel queue and scheduler, Algorithm Q uses multiple
security class of, transactionl’s update projectiot is single-level queues and schedulers to order the transaction
merged with transactions from the next higher class, one'eplicas in a consistent way and then send them as com-
class at a time from lowest class to highest class. As eactPlete transactions to the backend database systems. The
update projection is committed, it is returned from a back- backend database systems may then schedule the transac-
end database system to the frontend in serialization order. tions using any conservative scheduler that always serial-

For those applications that have a high proportion of izes transactions in the order it receives them.
update transactions or with large update projections, Algo- Our discussion will begin with an informal presentation
rithm J might have poor performance due to the volume of Of the algorithm, then we will look at some examples and
message traffic and the overhead of computing update pro-conclude with a rigorous presentation of the full algo-
jections. For these kinds of applications it is desirable to fithm. The key to understanding Algorithm Q is the orga-
have a replica control algorithm with less overhead due to Nization of the single-level queues. To understand that
message traffic and update projection generation. organization we need a definition.

Additionally, Algorithm J may require the use of a Definition 5. Let (SC <) be a partial order and latand
trusted mechanism, since the queue manager reads fronb be elements d8C We say thaa covers bf
all security classes and writes to all but the lowest security ~1.b<aandb# a
class. If possible, it is desirable to have the concurrency ~ 2- thereis n@ suchthab< c<aandc# b# a.
control done entirely by untrusted mechanisms. We callb thechild of a anda theparentof b. This definition

In the following sections we present an alternative to can be extended to define ancestors and descendants in the
Algorithm J, which we call Algorithm Q. The alternative obvious way. If §C <) is represented as a directed acyclic
algorithm sends transactions to each backend databasgraph with arcsly, a) anda placed above whena covers
system and does not receive and forward update projec-b then we have the standard Hasse diagram with the parent-
tions to maintain replication. Instead of sending update child relationships made immediately clear. In the partial
projections, Algorithm Q replicates entire transactions, order of Figure 1 we would say thagh coversred and
one for each backend where an update should be sent. blue

On the frontend, at each security class, Algorithm Q o, it would be sent to theed backend and to the queue
has a queue for each child of that security class. Each ofQpigh.re¢ When the replicas reached the headQyqf-
these queues is used to hold and order the transaction refy e and Qpigh-res they would taken off together and one
licas propagated from the child security class to the parentcopy of the transaction sent to thigh backend. In Figure
security class. Figure 3 illustrates the flow of transactions 3, the shaded arrows show replicas of a transaction being
through the queues. sent to the queues and solid arrows show the paths to the

On the frontend, at each security class, new updatebackends.
transactions are sent directly to the corresponding backenc How do we know we have the proper transactions in
database system by the frontend scheduler. At the sameeach queue? When there is a common transattairthe
time, replicas of the update transactions are sent to thehead of every queue th@tcould ever be in, then we may
frontend scheduler of each parent security class. The fron-removeT from all those queues and send it to the corre-
tend scheduler at a parent security class puts the updatsponding backend (and parents, if any). The set of security
transactions it receives from a child security class on the classes from which we can possibly get a transaction in a
gueue corresponding to the child security class. Becausequeue is determined by the paths from which a transaction
of the partial ordering of the security classes, an updatecan reach the parent security class.
transaction may arrive at a parent from more than one Example 3 Suppose our security class orderisg: (
child. When a update transaction appears at the head of ev<) is as shown in Figure 4. The queued atould beQapg,
ery queue it can appear in, that transaction is taken off andQac, andQag. Their corresponding selg, Pc, Pg of se-
sent to the backend. Read-only transactions are not repli-curity classes from which they could ever receive transac-
cated. tionsarePg={B,D,F H} ,Pc={C,D, G, i, andPg =

At each backend, incoming transactions are times-{E,F G, 5.
tamped and scheduled using a CTO scheduler. There is nc
need for the timestamps to be synchronized.

Qhigh-red

Qhigh-blue

Figure 4. A More Complex Security Class Structure

red The diagram in Figure 5 shows the three queues neces-
sary for the partial order of Figure 4, assuming our algo-
rithm started with one transaction from each class. The
lines drawn through the transactions indicate where the al-
low gorithm is removing transaction replicas from the queues.
The circled numbers represent one possible order in which
the transactions could have been taken off and sent to the

trusted frontend backendD.

Figure 3. Algorithm Q for the Partial Order of Figure 1 @ @

Example 2 If our security class orderin®g(<) is as Qag Tib Tis Thr ThH
shown in Figure 1 then we have four que@ggent-child @
Qred-low Qbiue-low Qhigh-red @Nd Qhigh-piue @s shown in @)
Figure 3. A new transaction starting at security clags Qac: o 71 The Tin
would go directly to théow backend and run to comple-
tion. At the same time, the algorithm would send a replica @
of the transaction to the queu@,e.jow aNd Qreg-low QAE: flET TG ThH
When the replica reached the hea®gf .o it Would be F
sent to theblue backend and also to the queRggh-pive Figure 5. Removing Transactions from Queues

When the corresponding replica reached the he&dj.gf

Example 4 Algorithm Q preserves the ordering of

gueue to hold the single sequence of transactions received

transactions originating at lower classes (i.e. descendantsfrom the child. In the scheduler of Figure 3 only two

because the queues at each ances®Culetermine an or-

dering on the set of transactions submitted by its descen-

dants. As long as each set of descendants has only on

ancestor (i.e. no two parents share more than one child) the

ordering will be preserved by simply collecting transac-
tions in the queues. Unfortunately, some partial orders

queuesQnigh-red @Nd Qnigh-biue at security classigh are
needed. A scheduler for Figure 5 would not need queues at
classes, G, orH.

4.2 Specification of Algorithm Q

Now we present Algorithm Q in a more rigorous way,

may have a directed acyclic graph where the same set owith an eye to proving it correct. First we define a way for
descendants have more than one ancestor. An example cthe algorithm to test whether an update transaction replica

such a graph is shown in Figure 6.

A A

C
auxiliary node

F

Figure 6. Descendants with More than One Parent

If one transaction is received at security clagsesd
E, and those arrive at different orderdBaandC, then the
resulting queues &t could look like this:

Qag=Tip Tie
Qac=Tie Tip

If this is allowed to occur, the algorithm will deadlock.
It will be waiting for T, at the head oQc butT;p can-
not reach the head Qfyc because the algorithm is waiting
for T, at the head of queu@xg.

Fortunately, the algorithm we have described above can
cope with this kind of partial ordering, if we either add
auxiliary nodesor we usepriority queuesat the common
parents.

Remark. A priority queue is an abstract data type that

at the head of a queue may be taken off the queue. For this
test we partition the update transactions into a system of
disjoint sets of transactions. Each block of the partition
contains all transactions that arrive at a security class via
the same children. Then we also define a notation for the
gueues at the children and parents of a security class. Fi-
nally, we combine these notions into a brief specification
of our algorithm.

Definition 6. First letB,, By, ..., B, be the children of
security clas& and letC,, C,, ..., G, be the parents of se-
curity classA. Then for the children of we define the par-
tition P as follows: each block oP is a set of all
transactions that could only reach security chag® paths
ending at some distinct combination of these children. For
example, define the blo¢B ;] as the set of all transactions
that could have only come to the queueA ata its child
B; but not via any other children @&, define the block
[B1B,] to be the set of all transactions that could have come
to A via its childrerB, andB, but not from any other chil-
dren ofA, and so on up to blodB;B,...B,] as the set of
all transactions that must come via every child\ofor-
mally a blocB1B,...Bj] of P is the set

{TOT|S(M<ByandS(T)< By,and...
S(T)< BjandS(T)< Bj;1 and... S(T)€ By}

Definition 7. LetBy, B,, ..., B, be the children of secu-

rity classA andC,, C,, ..., G, be the parents of security

acts like a queue, except the FIFO order is changed to oneclassA. Then we denote thgueues at security class A for

determined by some priority function that places highest
priority elements at the head of the queue, etc. [1].

If auxiliary nodes were used they would not have a se-
curity class nor would they have a corresponding back
end; they would just have the queues to collect transac-
tions from the formerly common children. If the priority

security class_eslBBz, ey I_BkasQABl, QaBy Qag, The
gueues to which transactions from security chassiould
be sent ar@c;a, Qcyas -+ » Qca ONE at each parent secu-
rity class.

Algorithm Q . Now that we have a way to talk about the
partitions and queues we are going to use, we are ready to

gueue alternative is used then each queue would use a pririgorously define the algorithm itself. Algorithm Q has two

ority function that ordered the transactions at each com-
mon ancestor in the same order. Figure 6 shows an
auxiliary node.

4.1 Reducing the Number of Queues

We can dispense with queues for parents with only one
child. Since the ordering of transactions coming from such
a child is fixed, they may be interleaved anywhere among

parts, the backend part and frontend part:

At each backen®,: each transactioh is timestamped
in the order in which it is received from the frontend.
TransactionT is then scheduled using a conservative
timestamp ordering scheduler. Transactibncommits
without further communication with the frontend.

At the trusted frontend, at each security clkasié there
is a transactioft such tha(T)= A, send it to the backend

the new transactions at the parent; there is no need for {Da and, if T is an update transaction and security class

has a parent, to each parents quee;a Qcoa replica of every update transactidn in T such that
'QCmA- If Ais the only child of its parent, thd@nis not S(T)<A.

placed in a queue, but sent directly to the parent. Definition 9. Let the historyH be an element df and

If there is no transactioh such thaS(T)= A then find A be a security class in the partial ord8G(<). Then
someT" in some blocB1B,... Bj] of the child set parti- T5(H), the security-class projection of, ki the history ob-
tion P such thatT" appears at the head of every corre- tained fromH by omitting
sponding queu@ABl, QABZ, ...Qap. TakeT' off the head 1. all transactions whose source security class either
of each queue and send it (once) to the backepaind, if dominates or is incomparable to security claasd
A has a parent, to each parent’s qu@@lA, QCZA, 2. read-only transactions whose source security class is
'QCmA- If security clas# has only one chil&, then ev- dominated by or is incomparable to security ckass
eryT' from B, may be sent t®, as soon as it arrives At We will refer torta(H) asthe A projection of HThe no-

If a transactio received at a backerij, aborts it will tion of a security class projections can be extended to his-

be due to integrity problems or to a hardware or operating tories not inrH and to sets and sequences.

system fault. If the former happens, it will happen at each ~ With the above definitions in hand, it is now possible to
backendDy; if the latter happens, the fault must be re- define correctness for our replicated transaction schedul-
paired and recovery procedures carried out. ing approach.

Definition 10. LetH be a replicated-transaction history
5. Correctness over T. H is security-class projection serializabié for

Since Algorithm Q is based on replicated transactions Some serial historiis overT, and for anyHa [H,
instead of replicated data, we will need a new theory to Ha = Tia(Hg) where= denotes view equivalence. This
show that it is correct. Both [2] and [21] define correctness condition says that, for an algorithm to be correct, every
for a single schedule or history over a set of transactions.history in the replicated-transaction history produced by
Bernstein et al. in [2] give a definition for correct schedul- that algorithm must be view equivalent to the correspond-
ing over a set of transactions with replicated data. None ofing security-class projection of the same serial history.
these theories describe our present approach, nor can the Why do we know that Definition 10 is a reasonable cor-
be used to prove it correct. We need a definition of correct- rectness criterion? Equivalence to serial execution is rea-

ness for replicated transactions. sonable because individual transactions are designed to
o run as a single sequential program. Since individual trans-
5.1 Definition of Correctness actions are designed this way, it is reasonable to expect a

Our new algorithm replicates transactions, that is, each Nistory containing a collection of them to be equivalent to
update transactiofiis replicated intd, Tg, ..., T, where ~ Some serial history. As we saw above in Example 1, in a
A, B,..., Zare the security classes greater than or equal toreplicated database, we get incorrect results if our replicat-
S(T) For each security clags there is a corresponding ed histories are not equivalent to the same serial history. In
history H, that contains all of the update transaction repli- Our definition we have used view equivalence. Readers
casTg with source security class8¢Tg)<A. The histories who are interested in a justification of the reasonableness
themselves should not be treated as replicated data histo®f view-equivalence should consult [2] or [21]. It is also
ries [2] since no transaction replica acts outside its corre-POSsible to prove that an algorithm that always produces
sponding back end, that is, all operationg pfre sent to security-class-projection serializable replicated-transac-
backend database systé&py only. tion histories always produces one-copy serializable repli-

A correct scheduling algorithm would assign transac- cated-data histories.
tion replicas_, to histories in such a way that the histories for 5 2 proof of Correctness for Algorithm Q
each security class would be equivalent over the source _ _ _
class functionS To be completely correct, an algorithm We will not give a full proof here (interested readers
should also result in transactions that map consistent datashould see [17]), but instead we will discuss how a proof
base states to consistent database states, i.e. the resultirof correctness would run. To show that Algorithm Q pro-
set of histories should be properly related to a serial histo-duces a replicated-transaction histéty that is security-
ry. We show what kind of equivalence is needed in the fol- class-projection serializable we must first find a suitable

lowing discussion. serial historyHg overT and then show that for afy O H
Definition 8. A replicated-transaction histott over a produced by Algorithm QHa = Tia (Hy).
set of transactioriE and a security class partial order5@ Let A be the security class that is the greatest element of

is a set of histories ovat one historyH, for each security ~ (SG <) or if (SC <) does not have a greatest element, add
classA OSC Each historyH, OH contains all of the read- ~ an auxiliary greatest elemeAtto SC It is easy to see that
only transactiond in T such thaS(T)= A and contains a there is a serial histojly such thatta(Hg) = Ha. If we

only looked at update transactions we would be done butfor databases that process mostly updates. Both algorithms

we need equivalence over all transactiong.itwe will introduce little apparent delay with respect to use of the
now show how to construct another histddy that is database during a single session because transactions take
equivalent to a serial histolyg such that, for any history effect inmediately at the session security class.

Hg OH produced by Algorithm QHg = 115 (Hy). From the user’s point of view at high session levels, Al-

To construct the historii, we would have Algorithm gorithm Q keeps its replicas of low data more current than
Q also replicate the read-only transactions as though theyAlgorithm J. Algorithm J threads the effect of an update
were update transactions. Algorithm Q would then con- through each backend while Algorithm Q sends the trans-
struct a history at security cladghat contained all of the actions to the backends after relatively little processing,
transactions iff. This historyH, would also be equivalent and no threading takes place at all. On the other hand, Al-
to a serial historydg. Then we could argue that backends gorithm Q performs more computation on the backend da-
that are always given replicas of transactions in the sametabase systems, if we assume that running a replica of a
order they were first scheduled together have histories thattransaction requires more computation that processing its

are security-class projection equivalenttp We can ap- corresponding update projection.
peal to the properties of conservative timestamp ordering The Jajodia-Kogan algorithm does not require the use
to make this point. of conservative timestamp ordering schedulers in the

To prove that the backends are always given replicas ofbackend database systems. As described, Algorithm Q de-
transactions in the same order that they were first sched-pends on the use of a specific class of backend schedulers.
uled together, we argue that Algorithm Q always gives However, it is possible to relax this requirement. Instead
transactions to the backends in the same order. One way tof requiring a conservative-timestamp-ordering scheduler
do this is to use thghuffleof two or more sequences. The in the backend database systems, we merely ask two
shuffle of two compatible sequencBsandS,, denoted things:

S*S,, is the set of all sequences that contain just the ele- 1. that the backend scheduler not abort transactions for

ments of(image $) [(image $) and contairs; andS; as concurrency control reasons, i.e. it must be conserva-
subsequences. Two sequences cammpatibleif they do tive, and

not contain inconsistent orderings of elements common to 2. that the backend scheduler always maintain a serial-
S, andS,. For an example of a shuffle, supp8se abcde ization order that preserves the order in which it re-
and S, = wxdyze ThenS; and S, are compatible and ceives conflicting transactions.

wabxcdyze 0 $*S,. The extension to the shuffle Both algorithms have the advantage of simple recovery
$*S,*...*§ of more than two compatible sequences is from failures. Most of the work will be done by the un-
straightforward. trusted backend database systems, using local mecha-

We use the shuffle by showing how the queues at eachnisms. In both Algorithm J and Algorithm Q, only a small
security class work together to generate a shuffle of theamount of queue information must be kept in persistent
transactions and how this shuffle is preserved over the par-storage on the frontend to support recovery from failures
tial order(SC <). This argument gives us a basis for the fi- (of course allowing for caching, etc. as in normal database
nal arguments we sketched earlier. log management).

6. Comparison of the Algorithms 7. Conclusion

Our new algorithm solves the problem of allowing con- We believe that the replicated architecture has the po-
currency while maintaining consistency between replicas, tential for performance improvement over the kernelized
without introducing any covert channels. The algorithm approach. This potential depends on the replica and con-
hides both the data and transaction replication by main-currency control algorithms used to keep the backend da-
taining consistency of reads-froms and final writes acrosstabase systems consistent. Both Algorithm J and
security classes. It does this using replicated transactionsAlgorithm Q solve the replica and concurrency control
instead of update projections as in the Jajodia-Kogan algo-problems for multilevel secure database systems that en-
rithm (Algorithm J). Because they work differently and force policies based on partial orders and have uniform in-
have different structural properties, these algorithms give tegrity constraints across security classes. They do this
developers more design choices when solving the problemwithout introducing any covert channels. Furthermore,
of multilevel-secure replica and concurrency control. Algorithm Q does not require any trusted code. Since Al-

Algorithm J does not replicate transactions, a plus for gorithm Q is structurally different from the only previous
databases processing transactions with large programalgorithm of this kind, it offers developers a choice more
texts. Algorithm Q does not thread update projections be- suited to applications with large numbers of large update
tween backend databases and the trusted frontend, a plutransactions, or in applications where computation of up-

date projections is undesirable. Interested readers should0
also be aware of the update-set-based algorithm due tc
Costich [3] as another alternative.

Acknowledgments

We thank Oliver Costich for his comments on our 12.

proof, Carl Landwehr and Myong Kang for their review
and comments, and Judy Froscher for posing this problem

We would also like to thank the ACSAC referees for their 13.

comments.

References

14.

1. A. Aho, J. Hopcroft, and J. Ullmabata Structures and Al-

gorithms Addison-Wesley, 1983, ISBN 0-201-00023-7.

2. P. Bernstein, V. Hadzilacos, and N. Goodn@encurrency
Control and Recovery in Database SysteAudison-Wes-
ley, 1987, ISBN 0-201-10715-5.

. O. Costich, “Transaction Processing Using an Untrusted

Scheduler in a Multilevel Database with Replicated Archi- 1.

tecture”, submitted for publication, 1991.

. O. Costich and I. Moskowitz, “Analysis of a Storage Chan-
nel in the Two-Phase Commit ProtocdFourth Computer
Security Foundations Workshdgranconia, NH, 1991.

. D. Denning, “Commutative Filters for Reducing Inference
Threats in Multilevel Database System&toceedings of
1985 Symposium on Security and Priva@gkland, Califor-
nia, April 1985, pp. 134-146.

. J. Froscher and C. Meadows, “Achieving a trusted database
management system using parallelism'Database Security
II: Status and Prospectgd. C. E. Landwehr, North-Holland,
Amsterdam, 1989, ISBN 0-444-87483-6, pp. 253-261.

. C. Garvey, N. Jensen, and J. Wilson, “The Advanced Securepq
DBMS: Making Secure DBMSs Usable”, atabase Secu-
rity 1l: Status and Prospected. C. E. Landwehr, North-Hol-
land, Amsterdam, 1989, ISBN 0-444-87483-6, pp. 187-195.

base ManagementRroceedings of 1984 Symposium on Se-
curity and Privacy Oakland, California, April 1984, pp.62-
74.

. J. Gray, N. Kelem, and L. Notargiacomo, “Secure Distributed
Database Management System: Formal Modgfial Tech-
nical Report, vol. 3, Rome Air Development Center TR-89-
314, Unisys Corporation, McLean, VA, December 1989.

11.

15.

17.

18.

19.

. R. Graubart, “The Integrity Lock Approach to Secure Data- 21.

. T. Hinke, “DBMS Technology vs. Threats”, Database Se-
curity: Status and Prospectsd. C. E. Landwehr, North-Hol-
land, Amsterdam, 1988, pp. 57-87.

T. Hinke and M. Schaefeg§ecure Database Management
SystemRADC-TR-75-266, Final Technical Report, System
Development Corporation, November 1975.

S. Jajodia and B. Kogan, “Transaction Processing in Multi-
level-Secure Databases Using Replicated Architectire®,
ceedings of 1990 IEEE Symposium on Security and Privacy,
Oakland, CApp. 360-368.

T. Keefe, W. Tsai, J. Srivastava, “Multilevel Secure Database
Concurrency Control”Proceedings of Sixth International
Conference on Data Engineeringos Angeles, California,
February 1990, pp. 337-344.

T. Lunt, D. Denning, R. Schell, M. Heckman, W. Shockley,
“The SeaView Security Model'lEEE Transactions on Soft-
ware EngineeringSE-16, 6, (June 1990), pp. 593-607.

G. MacEwen, “Effects of distributed system technology on
database security: A survey”, Database Security: Status
and Prospectsed. C. E. Landwehr, North-Holland, Amster-
dam, 1988, pp. 253-261.

W. Maimone and |. Greenberg, “Single-Level Multiversion
Schedulers for Multilevel Secure Database Systefss;
ceedings of Sixth Annual Computer Security Applications
ConferenceTucson, AZ, December, 1990, pp. 137-147.

J. McDermott, S. Jajodia, and R. Sandhu, “Maintaining Con-
sistency In Multilevel-secure Databases That Use A Repli-
cated Architecture”, submitted for publication, 1991.
“Multilevel Data Management”, Committee on Multilevel
Data Management, Air Force Studies Board, National Re-
search Council, Washington, DC, 1983.

National Computer Security Centérusted Database Man-
agement System Interpretation of the Trusted System Evalua-
tion Criteria, NCSC-TG-021, April 1991.

. J. O'Connor and J. Gray, “A Distributed Architecture for
Multilevel Database SecurityRroceedings of the 11th Na-
tional Computer Security Conferendsltimore, Maryland,
October 1989, pp. 179-187.

C. Papadimitriou,The Theory of Database Concurrency
Control, Computer Science Press, 1986, ISBN 0-88175-027-
1

22. O Saydjari, J. Beckman, and J.Leaman, “Locking Comput-

ers Securely”Proceedings of the 10th National Computer
Security Conferen¢dNBS, 1987, pp. 129-141.

