
The replicated architecture for multilevel secure data-
base systems provides security by replicating data into
separate untrusted single-level database systems. To be
successful, a system using the replicated architecture must
have a concurrency and replica control algorithm that
does not introduce any covert channels. Jajodia and
Kogan have developed one such algorithm that uses up-
date projections and a write-all replica control algorithm.
Here we describe an alternative algorithm. The new algo-
rithm uses replicated transactions and a set of queues or-
ganized according to security class. A new definition of
correctness is required for this approach, so we present
one and use it to show that our algorithm is correct. The
existence of this new algorithm increases the viability of
the replicated architecture as an alternative to kernelized
approaches.

1. Introduction

The architecture of a high-assurance multilevel secure
database system is critical to its effectiveness. Convention-
al database system architectures do not include a trusted
computing base and incorporating one requires significant
change to the conventional architecture. Multilevel secure
database system architectures can be characterized as ei-
therkernelized architectures orfrontend-backend architec-
tures [18]. Kernelized architectures incorporate the trusted
computing base into some architectural layer of the ma-
chine that hosts the database system. Frontend-backend ar-
chitectures incorporate the trusted computing base on a
frontend machine and host the database system on one or
more backend machines. There are many variations of ei-
ther approach [10].

Kernelized architectures can place more or less trust in
the database system software. For example, the Advanced
Secure DBMS architecture [7] places more trust in the da-
tabase system software by allowing it to process multilevel
objects directly (most of the DBMS is part of the trusted
computing base) and as a consequence of this potentially
achieves higher performance than other approaches but
costs more to assure. The Hinke-Schaefer approach

[11,14,16] places less trust in the database system software
and thus should cost less to build to the same level of as-
surance. It finesses the trust problem by storing multilevel
objects in single-level fragments that are protected by the
underlying trusted operating system. However, the Hinke-
Schaefer approach needs to reconstruct logical multilevel
objects from separate single-level objects and may give up
some time performance in return.

In the frontend-backend architecture category, the in-
tegrity-lock architecture [8,5] uses a trusted frontend sys-
tem to apply cryptographic check values to data stored in a
single backend database system. It is generally not intend-
ed for use in high assurance systems. The SD-DBMS ar-
chitecture [20,9] uses a trusted frontend to control multiple
backends where the data is distributed but not replicated.
Like the Hinke-Schaefer architecture, the SD-DBMS ar-
chitecture places little trust in the database system soft-
ware thus reducing assurance costs. Like the Hinke-
Schaefer architecture, the SD-DBMS architecture can
have time performance problems due to the need to mate-
rialize logical objects whose physical representation is
fragmented.

Our paper is concerned with another frontend-backend
architecture, which we call thereplicated architecture.
The Naval Research Laboratory, in its SINTRA project
(Secure INformation Through Replicated Architecture), is
investigating the replicated architecture. Like the Hinke-
Schaefer architecture, little trust is placed in database sys-
tem software but where the Hinke-Schaefer architecture
fragments apparently-multilevel objects into single-level
fragments the SINTRA architecture replicates apparently-
multilevel objects as single-level copies. Lower-level data
is replicated in the higher level databases (See Figure 1).
The replication overcomes the object-materialization per-
formance problem facing other architectures. Data that is
apparently (to the user) multilevel is physically stored to-
gether as a single-level object in a single-level database
system and thus does not need to be materialized.

The critical difficulty with the replicated approach is
correct replication. Conventional approaches to replication

A Single-Level Scheduler for the Replicated Architecture for Multilevel-Secure
Databases

John P. McDermott
Naval Research Laboratory

Sushil Jajodia
Ravi S. Sandhu

George Mason University

and the related concurrency control issues are well under-
stood. Unfortunately, the conventional solutions are either
unworkable in the context of multilevel security or at best
introduce covert channels. If data cannot be correctly rep-
licated without introducing security flaws, then the repli-
cated approach is not viable.

In this paper we show a new way of maintaining correct
replication in a secure manner and relate it to the previous-
ly published algorithm of Jajodia and Kogan [12]. Our
scheduler does not use any trusted components and uses
conventional algorithms for the local scheduling. The new
algorithm increases the viability of the replicated architec-
ture as an alternative to the kernelized approach.

We continue in this section with a discussion of the
SINTRA architecture and the problem of replicating data
in a multilevel-secure database system. We also present
the model and notation we use for the rest of the paper.
Next, in section 2, we explain why conventional approach-
es to replica and concurrency control are not suitable for
multilevel-secure database systems. In sections 3 and 4
we present two algorithms: write-all using update projec-
tions and a central queue and write-all using replicated
transactions and multiple queues. Then we show the cor-
rectness of the new algorithm, using a new definition of
correctness mandated by our replicated-transaction ap-
proach. In section 6, we compare the algorithms qualita-
tively and in section 7 we conclude our paper.

1.1 The SINTRA Architecture

The frontend-backend architecture with full replication
has been around as a concept for some time [18]. In its
SINTRA project, the Naval Research Laboratory is cur-
rently prototyping several frontend-backend architectures
with full replication. What will be called in this paper the
SINTRA architecture was first proposed for serious con-
sideration by Froscher and Meadows [6].

The SINTRA architecture uses full replication to pro-
vide multilevel security. There is an untrusted backend da-
tabase system for each security class. Data from
dominated security classes is replicated in each backend
system. Logically, the user is allowed to read down and
write at the same class but physically the frontend reads all
data at the same class and writes at the same class and up
into dominating classes to maintain the replicas. It is im-
portant to remember that while the replicated architecture
uses distributed database system technology, the replicated
architecture is for centralized database systems and not for
distributed systems. It could be implemented on a single
machine such as LOCK [22].

Figure 1 illustrates the basic SINTRA architecture. No-
tice that the low data appears at all backends, blue data at
the blue and high backends, etc.

Figure 1. The Replicated Architecture

For this paper, our mathematical model of the SINTRA
architecture consists of a finite set of passive entitiesD,
called data items, a finite set of active entitiesT, called
transactions, and a finite partial order (SC, ≤) of security
classes.

We denote elements ofD by lower case lettersx, y, and
z, and subscript them asxA, xB, xC, etc. when emphasizing
the fact that the data items in question are replicas of each
other. We denote the elements ofT by T or by Ti, Tj, and
elements ofSC by uppercase lettersA, B, C, etc. We use a
mappingL:D∪T→SC to give the security class of every
data element and every transaction and a similar mapping
S:D∪T→SC to give the apparent orsource security class
of every data element and every transaction. The mapping
S models the fact that replicas of data may appear to the
user to have a lower classification than the backend that
holds the replica. For example, in the database system of
Figure 1, if a transactionT with L(T)= low writes a logical
data itemx, there will be, among others, replicasxred and
xhigh with L(xred)= red andL(xhigh)=high but with
S(xred) = S(xhigh) = low.

The model contains the following (partial) security pol-
icy:

1. TransactionT is not allowed to read data element
x ∈D unless L(T)=L(x).

2. TransactionT is not allowed to write into data ele-
ment x∈D unlessL(T)≤L(x).

3. L(T)andS(T)do not change, andL(x) andS(x) do not
change.

T
C
B

frontend
high

red

blue

low
DBS

DBS

DBS

DBS

high

redblue

low

security class partial order

We model the replication by partitioning the data items
D into a set of equivalence classes[A] where
[A] ={x ∈D |L(x)=A} . We will frequently denote equiva-
lence class[A] asDA. The SINTRA architecture requires,
for any security classesA andB ∈ SC such thatB≤A, that
there be a corresponding replica data itemxA∈DA if there
is a data itemxB∈DB.

1.2 The Problem of Maintaining Consistency Be-
tween Replicas

The concurrency control algorithm of a single-copy da-
tabase system is considered to be correct if its execution of
concurrent transactions is equivalent (we define equiva-
lence more precisely in the following section) to some se-
rial execution of those transactions on the same data items.
This correctness criterion is calledserializability [2, 21].
For replicated databases, the correctness criterion is gener-
alized to require that an algorithm appear to execute con-
current transactions on replicas of data in a way that is
equivalent to serial execution of those transactions on a
single copy of the data. This is calledone-copy serializ-
ability [2]. If the values stored in the replicas are produced
by a one-copy serializable execution of the transactions
then the replicas areconsistent. Readers interested in seri-
alizability for kernelized architectures should see [16, 13].

A replicated database that has local serializability (i.e.
in each back-end database system) cannot achieve one-
copy serializability by simply copying everything, as the
following example will show.

Example 1. Consider a hypothetical database system
with the SINTRA architecture that has just two security
classesA andB, with B<A. This database system acts as a
server in a naval command and control system. One of the
uses of this database system is to storetracks, which are
collections of sensor reports associated with particular
submarines, ships, or airplanes. Among the data items it
stores are two logical data itemsx andy with S(x)=B, and
S(y)=A. Data itemx stores the best available position,
course, and speed associated with a particular track andy
stores the best available estimate of whether the track is
hostile. The database has, among others, three predefined
transactions:T1, T2, andT3, that are used automatically by
the command and control system, that is, under program
control and not submitted by a human.

T1: write(x)
T2: read(x);

x := EstimateX(x);
write(x)

T3: read(x);
read(y);
y := EstimateY(x, y);
write(y)

TransactionsT1 andT2 originate at security classB and
are also run at security classA to maintain consistency be-
tween the replicas ofx. TransactionT3 runs at security
classA only. TransactionT1 is used by an automatic-up-
date program to updatex from raw reports. TransactionT2
at security classB is used by a programEstimateX to
compute a best estimate of current position, course, and
speed. Another program,EstimateY, uses transactionT3
and sometimes changes the estimate of track hostility.

A locally correct scheduler for a backend could inter-
leave the operations ofT1, T2, andT3 as long as the result
was equivalent to some serial schedule. Instead of giving a
locally correct interleaving of individual operations we
will simply list the transactions below at each back-end
database they act on and assume that each transaction is
executed serially. Clearly, this execution represents local
serializability at each security class.

At backendDB: T2; T1
At backendDA: T1; T2; T3

This particular execution by the database concurrency
control mechanism would cause the programEstimateY
running atA to base its computation ofy on EstimateX’s
value forx (that is,T2’s value). The programEstimateX
runningT2 at security classB would read the value ofx
that held beforeT1 ran at security classB. Unfortunately,
even thoughEstimateY, through its action inT3, would use
T2’s value forx, the valueT2 would compute forx could be
different because at security classA transactionT2 read
T1’s value forx when it should have read the value ofx be-
foreT1 changed it.

The two expert systems could advise a user based on
different views of the world that were an artifact of the
replication. A user could see them giving contradictory re-
sults just because the local concurrency control mecha-
nism in the database server made an arbitrary choice. If the
user chose to useEstimateX’s results atB and make his or
her own estimate of track hostility, he or she might get a
position, course, and speed that would indicate a hostile
track. Meanwhile the program running atA that followed
the same rules as the user would say the track was not
hostile, becauseT2’s value ofx was different at security
class A. Although our backend systems were locally cor-
rect (serializable) the overall concurrency control ap-
proach did not give us consistent database results.

1.3 The Transaction Model of Concurrency Con-
trol

A transaction is an abstract unit of concurrent compu-
tation that executes atomically. The effects of a transaction
do not interfere with the effects of other transactions that
access the same data, and a transaction either happens with
all of its effects made permanent or it doesn’t happen and
none of its effects are permanent. A useful model of a
transaction must show how such properties can be

achieved by composing smaller units of computation,
when those smaller units are not necessarily guaranteed to
compose into an atomic transaction. Thus the model must
be concerned with showing potential interference between
operations and with showing arbitrary orderings.

In this paper, we take one of the usual models [2, 21]:
single transactions as total orders on finite sets of abstract
read, write, commit, andabort operations, denotedr[x] ,
w[x] , c, anda, respectively. The total order establishes a
relation between each operation in the transaction, i.e. ei-
ther p[x]<q[y] or q[y]<p[x] if p[x] and q[y] are opera-
tions in transactionT. Each transaction has a greatest
element that must be eitherc or a. This means that a trans-
action always either commits or aborts, and does nothing
else after that.

The concurrent execution of a set of transactions is
modeled as a partial order that contains the union of the
transactions that execute concurrently, preserves the or-
ders established for each transaction and further establish-
es some order between any two operations thatconflict.
Two operationspi[x] andqj[x] conflict if one of them is a
write operation. We call this partial order ahistory. Notice
that the partial order established by a history is not neces-
sarily correct and that, unlike Example 1, the individual
transactions do not necessarily run serially even when the
history is correct.

Remark. We restrict our presentation to complete his-
tories (i.e. the history consists only of committed transac-
tions) [2] and simply call them histories. The extension to
prefixes of complete histories is straightforward, but un-
necessarily complicates our discussion.

A serial history Hs has all the operations of transaction
Ti before transactionTj or vice versa, for every pair of
transactionsTi, Tj in Hs. If a history is equivalent to some
serial history we say it isserializable and consider it to be
correct. The kind of equivalence we use here is calledview
equivalence and is defined in terms of the reads-from and
final write relationships between the transactions and oper-
ations in the two equivalent histories. Two complete histo-
ries are view equivalent if they have the same reads-froms
and the same final writes over the same set of transactions.
Thus we say that a history for a replicated database is one-
copy serializable if it is view equivalent to some serial,
single-copy history.

Definition 1. TransactionTi reads-x-from transaction Tj
if

1. wj[x] < ri[x] , that is,Tj’s write ofx is done beforeTi’s
read ofx,

2. there is no operationwk[x] such that
wj[x] <wk[x] <ri[x] , that is, no transactionTk writesx
betweenTj and Ti.

Definition 2. A final write of data itemx in historyH, by
transactionTi, is a write operationwi[x] such that for any

j≠ i, wj[x] <wi[x] , that is, all other writes ofx come before
Ti’s write.

Normally we omit the reflexive relationships, set nota-
tion, etc. and just denote a single transaction as

T2 = r2[x]r 2[y]w2[y]c2

2. Conventional Write-All Protocols and
Covert Channels

One straightforward way to implement a concurrency
control algorithm for a replicated architecture is the simple
immediate write-all protocol [2]. With this protocol, each
write operation of a transaction is immediately replicated
into all copies of the data. Reads are performed from the
most convenient copy of the data. To avoid the problem of
our Example 1 above, the database operations are usually
synchronized by a coordinator, using a conventional con-
currency control protocol (e.g. two-phase locking). Trans-
action commits are made atomic across replicas by some
form of distributed commit protocol (e.g. two-phase com-
mit). For instance, the transactions of Example 1 could,
with two-phase locking and two-phase commit, be or-
dered:

at backendDB:
r2[x]r2[y]w2[y]c2w1[y]c1

at backendDA:
r2[x]r2[y]w2[y]c2w1[y]c1r3[x]r3[y]r3[z]w3[z]c3

where the write operations are forced to occur in each back-
end at the same time. Because the writes occur together and
the commits are atomic across back-end databases, the
transactions are forced to have the same reads-froms and
final writes at each back-end database.

Both the concurrency control protocol and the commit
protocol introduce covert channels and are thus unaccept-
able [12,15,4]. In the following sections we will show two
algorithms that manage concurrent replicated transactions
without introducing covert channels or violating the secu-
rity policy, one that uses update projections and one that
uses replicated transactions.

3. Write-All Using Update Projections and a
Central Queue

In [12], Jajodia and Kogan presented the first concur-
rency and replica control algorithm for a replicated archi-
tecture. Their algorithm, which we call Algorithm J, has
several desirable properties including one-copy serializ-
ability] and freedom from commit-protocol covert chan-
nels [15]. The algorithm uses update projections.

Definition 3. Theupdate projection of transactionT is
the transactionU obtained from transactionT by omitting
the read operations ofT.

Definition 4. A transactionT is anupdate transaction if
T has a nonempty update projection. IfT is not an update

transaction then it is a query orread-only transaction.
Algorithm J . The write-all algorithm of [12] works by

having the backend database in the same security class as a
transactionT execute and commitT and then return its
update projectionU, if T is an update transaction. Figure 2
illustrates Algorithm J, with the arrow showing the
progress of update projectionU.

Figure 2. Algorithm J

The update projectionU is subsequently synchronized
in security-class-lattice order by means of a queue on the
trusted frontend. For each security class that dominates the
security class ofT, transactionT’s update projectionU is
merged with transactions from the next higher class, one
class at a time from lowest class to highest class. As each
update projection is committed, it is returned from a back-
end database system to the frontend in serialization order.

For those applications that have a high proportion of
update transactions or with large update projections, Algo-
rithm J might have poor performance due to the volume of
message traffic and the overhead of computing update pro-
jections. For these kinds of applications it is desirable to
have a replica control algorithm with less overhead due to
message traffic and update projection generation.

Additionally, Algorithm J may require the use of a
trusted mechanism, since the queue manager reads from
all security classes and writes to all but the lowest security
class. If possible, it is desirable to have the concurrency
control done entirely by untrusted mechanisms.

In the following sections we present an alternative to
Algorithm J, which we call Algorithm Q. The alternative
algorithm sends transactions to each backend database
system and does not receive and forward update projec-
tions to maintain replication. Instead of sending update
projections, Algorithm Q replicates entire transactions,
one for each backend where an update should be sent.

frontend

DBS

T U

queue

DBS

DBS

DBS

In our initial discussion of Algorithm Q we will assume
each back end database system has its ownconservative
timestamp ordering (CTO) scheduler[2,21]. A conserva-
tive scheduler is one that never aborts a transaction for
concurrency control reasons. Another reason we use con-
servative timestamp scheduling is that conservative times-
tamp ordering schedulers can easily be made to schedule
transactions in the order they are received.

Remark. Timestamp schedulers assign timestamps (not
necessarily from a real-time clock) to transactions and
then schedule the individual operations of concurrent
transactions by comparing timestamps. Any pair of opera-
tions from different transactions, at least one of which is a
write, are scheduled in the order of the timestamps of their
transactions. For database operationspi[x] , qj[x] such that
eitherp = w or q = w we have

ts(Ti) < ts(Tj) iff pi[x] < qj[x]
wherets(Ti) is the timestamp of transactionTi.

4. Write-all with Replicated Transactions and
Multiple Queues

Now we present our alternative algorithm. We will ex-
plain the algorithm first in terms of conservative times-
tamp ordering and then show how we can drop that
requirement.

Algorithm Q replicates entire transactions into the ap-
propriate backends. Instead of Algorithm J’s single multi-
level queue and scheduler, Algorithm Q uses multiple
single-level queues and schedulers to order the transaction
replicas in a consistent way and then send them as com-
plete transactions to the backend database systems. The
backend database systems may then schedule the transac-
tions using any conservative scheduler that always serial-
izes transactions in the order it receives them.

Our discussion will begin with an informal presentation
of the algorithm, then we will look at some examples and
conclude with a rigorous presentation of the full algo-
rithm. The key to understanding Algorithm Q is the orga-
nization of the single-level queues. To understand that
organization we need a definition.

Definition 5. Let (SC, ≤) be a partial order and leta and
b be elements ofSC. We say thata covers b if

1. b ≤ a andb ≠ a
2. there is noc such thatb ≤ c ≤ a andc ≠ b ≠ a.

We callb thechild of a anda theparent of b. This definition
can be extended to define ancestors and descendants in the
obvious way. If (SC, ≤) is represented as a directed acyclic
graph with arcs (b, a) anda placed aboveb whena covers
b then we have the standard Hasse diagram with the parent-
child relationships made immediately clear. In the partial
order of Figure 1 we would say thathigh coversred and
blue.

On the frontend, at each security class, Algorithm Q
has a queue for each child of that security class. Each of
these queues is used to hold and order the transaction rep-
licas propagated from the child security class to the parent
security class. Figure 3 illustrates the flow of transactions
through the queues.

On the frontend, at each security class, new update
transactions are sent directly to the corresponding backend
database system by the frontend scheduler. At the same
time, replicas of the update transactions are sent to the
frontend scheduler of each parent security class. The fron-
tend scheduler at a parent security class puts the update
transactions it receives from a child security class on the
queue corresponding to the child security class. Because
of the partial ordering of the security classes, an update
transaction may arrive at a parent from more than one
child. When a update transaction appears at the head of ev-
ery queue it can appear in, that transaction is taken off and
sent to the backend. Read-only transactions are not repli-
cated.

At each backend, incoming transactions are times-
tamped and scheduled using a CTO scheduler. There is no
need for the timestamps to be synchronized.

Figure 3. Algorithm Q for the Partial Order of Figure 1

Example 2. If our security class ordering (SC, ≤) is as
shown in Figure 1 then we have four queuesQparent-child:
Qred-low, Qblue-low, Qhigh-red, andQhigh-blue, as shown in
Figure 3. A new transaction starting at security classlow
would go directly to thelow backend and run to comple-
tion. At the same time, the algorithm would send a replica
of the transaction to the queuesQblue-low and Qred-low.
When the replica reached the head ofQblue-low it would be
sent to theblue backend and also to the queueQhigh-blue.
When the corresponding replica reached the head ofQred-

high

red
blue

low
DBS

DBS

DBS

DBS

Qhigh-red

Qhigh-blue

Qred-low

Qblue-low

trusted frontend

low, it would be sent to thered backend and to the queue
Qhigh-red. When the replicas reached the heads ofQhigh-

blue andQhigh-red, they would taken off together and one
copy of the transaction sent to thehigh backend. In Figure
3, the shaded arrows show replicas of a transaction being
sent to the queues and solid arrows show the paths to the
backends.

How do we know we have the proper transactions in
each queue? When there is a common transactionT at the
head of every queue thatT could ever be in, then we may
removeT from all those queues and send it to the corre-
sponding backend (and parents, if any). The set of security
classes from which we can possibly get a transaction in a
queue is determined by the paths from which a transaction
can reach the parent security class.

Example 3. Suppose our security class ordering (SC,
≤) is as shown in Figure 4. The queues atA would beQAB,
QAC, andQAE. Their corresponding setsPB, PC, PE of se-
curity classes from which they could ever receive transac-
tions are PB = {B, D, F, H} , PC = {C, D, G, H} , and PE =
{E, F, G, H} .

Figure 4. A More Complex Security Class Structure

The diagram in Figure 5 shows the three queues neces-
sary for the partial order of Figure 4, assuming our algo-
rithm started with one transaction from each class. The
lines drawn through the transactions indicate where the al-
gorithm is removing transaction replicas from the queues.
The circled numbers represent one possible order in which
the transactions could have been taken off and sent to the
backendDA.

Figure 5. Removing Transactions from Queues

A

B

CD
E

F

G
H

QAB
QAC

QAE

QAB: T1D T1B T1F T1H

QAC: T1D T1C T1G T1H

QAE: T1E T1F T1G T1H

1

2

3

4 5

6

7

Example 4. Algorithm Q preserves the ordering of
transactions originating at lower classes (i.e. descendants)
because the queues at each ancestor inSC determine an or-
dering on the set of transactions submitted by its descen-
dants. As long as each set of descendants has only one
ancestor (i.e. no two parents share more than one child) the
ordering will be preserved by simply collecting transac-
tions in the queues. Unfortunately, some partial orders
may have a directed acyclic graph where the same set of
descendants have more than one ancestor. An example of
such a graph is shown in Figure 6.

Figure 6. Descendants with More than One Parent

If one transaction is received at security classesD and
E, and those arrive at different orders atB andC, then the
resulting queues atA could look like this:

QAB = T1D T1E
QAC = T1E T1D

If this is allowed to occur, the algorithm will deadlock.
It will be waiting forT1D at the head ofQAC but T1D can-
not reach the head ofQAC because the algorithm is waiting
for T1E at the head of queueQAB.

Fortunately, the algorithm we have described above can
cope with this kind of partial ordering, if we either add
auxiliary nodes or we usepriority queues at the common
parents.

Remark. A priority queue is an abstract data type that
acts like a queue, except the FIFO order is changed to one
determined by some priority function that places highest
priority elements at the head of the queue, etc. [1].

If auxiliary nodes were used they would not have a se-
curity class nor would they have a corresponding back
end; they would just have the queues to collect transac-
tions from the formerly common children. If the priority
queue alternative is used then each queue would use a pri-
ority function that ordered the transactions at each com-
mon ancestor in the same order. Figure 6 shows an
auxiliary node.

4.1 Reducing the Number of Queues

We can dispense with queues for parents with only one
child. Since the ordering of transactions coming from such
a child is fixed, they may be interleaved anywhere among
the new transactions at the parent; there is no need for a

A

B C

D E

F

A

B C

D E

F

auxiliary node

queue to hold the single sequence of transactions received
from the child. In the scheduler of Figure 3 only two
queuesQhigh-red andQhigh-blue at security classhigh are
needed. A scheduler for Figure 5 would not need queues at
classesF, G, orH.

4.2 Specification of Algorithm Q

Now we present Algorithm Q in a more rigorous way,
with an eye to proving it correct. First we define a way for
the algorithm to test whether an update transaction replica
at the head of a queue may be taken off the queue. For this
test we partition the update transactions into a system of
disjoint sets of transactions. Each block of the partition
contains all transactions that arrive at a security class via
the same children. Then we also define a notation for the
queues at the children and parents of a security class. Fi-
nally, we combine these notions into a brief specification
of our algorithm.

Definition 6. First letB1, B2, … , Bk be the children of
security classA and letC1, C2, … , Cm be the parents of se-
curity classA. Then for the children ofA we define the par-
tition P as follows: each block ofP is a set of all
transactions that could only reach security classA via paths
ending at some distinct combination of these children. For
example, define the block[B1] as the set of all transactions
that could have only come to the queues atA via its child
B1 but not via any other children ofA, define the block
[B1B2] to be the set of all transactions that could have come
to A via its childrenB1 andB2 but not from any other chil-
dren ofA, and so on up to block [B1B2…Bk] as the set of
all transactions that must come via every child ofA. For-
mally a block[B1B2…Bj] of P is the set

{T ∈ T | S(T)< B1 andS(T)< B2 and …
S(T)< Bj andS(T)≤/ Bj+1 and … S(T)≤/ Bk}

Definition 7. LetB1, B2, … , Bk be the children of secu-
rity classA andC1, C2, … , Cm be the parents of security
classA. Then we denote thequeues at security class A for
security classes B1, B2, … , Bk asQAB1

, QAB2
, …QABk

. The
queues to which transactions from security classA should
be sent areQC1A, QC2A, … , QCmA, one at each parent secu-
rity class.

Algorithm Q . Now that we have a way to talk about the
partitions and queues we are going to use, we are ready to
rigorously define the algorithm itself. Algorithm Q has two
parts, the backend part and frontend part:

At each backendDA: each transactionT is timestamped
in the order in which it is received from the frontend.
TransactionT is then scheduled using a conservative
timestamp ordering scheduler. TransactionT commits
without further communication with the frontend.

At the trusted frontend, at each security classA: if there
is a transactionT such thatS(T)= A, send it to the backend
DA and, ifT is an update transaction and security class A

has a parent, to each parent’s queueQC1A, QC2A,
… ,QCmA. If A is the only child of its parent, thenT is not
placed in a queue, but sent directly to the parent.

If there is no transactionT such thatS(T)= A then find
someT′ in some block[B1B2…Bj] of the child set parti-
tion P such thatT′ appears at the head of every corre-
sponding queueQAB1

, QAB2
, …QABj

. TakeT′ off the head
of each queue and send it (once) to the backendDA and, if
A has a parent, to each parent’s queueQC1A, QC2A,
… ,QCmA. If security classA has only one childB1 then ev-
eryT′ from B1 may be sent toDA as soon as it arrives atA.

If a transactionT received at a backendDA aborts it will
be due to integrity problems or to a hardware or operating
system fault. If the former happens, it will happen at each
backendDA; if the latter happens, the fault must be re-
paired and recovery procedures carried out.

5. Correctness

Since Algorithm Q is based on replicated transactions
instead of replicated data, we will need a new theory to
show that it is correct. Both [2] and [21] define correctness
for a single schedule or history over a set of transactions.
Bernstein et al. in [2] give a definition for correct schedul-
ing over a set of transactions with replicated data. None of
these theories describe our present approach, nor can they
be used to prove it correct. We need a definition of correct-
ness for replicated transactions.

5.1 Definition of Correctness

Our new algorithm replicates transactions, that is, each
update transactionT is replicated intoTA, TB, … , TZ where
A, B,… , Z are the security classes greater than or equal to
S(T). For each security classA, there is a corresponding
historyHA that contains all of the update transaction repli-
casTB with source security classesS(TB)≤A. The histories
themselves should not be treated as replicated data histo-
ries [2] since no transaction replica acts outside its corre-
sponding back end, that is, all operations ofTA are sent to
backend database systemDA only.

A correct scheduling algorithm would assign transac-
tion replicas to histories in such a way that the histories for
each security class would be equivalent over the source
class functionS. To be completely correct, an algorithm
should also result in transactions that map consistent data-
base states to consistent database states, i.e. the resulting
set of histories should be properly related to a serial histo-
ry. We show what kind of equivalence is needed in the fol-
lowing discussion.

Definition 8. A replicated-transaction historyH over a
set of transactionsT and a security class partial orderingSC
is a set of histories overT, one historyHA for each security
classA ∈SC. Each historyHA ∈H contains all of the read-
only transactionsT in T such thatS(T)= A and contains a

replica of every update transactionT′ in T such that
S(T′)≤A.

Definition 9. Let the historyH be an element ofH and
A be a security class in the partial order (SC, ≤). Then
πA(H), the security-class projection of H, is the history ob-
tained fromH by omitting

1. all transactions whose source security class either
dominates or is incomparable to security classA and

2. read-only transactions whose source security class is
dominated by or is incomparable to security classA.

We will refer toπA(H) asthe A projection of H. The no-
tion of a security class projections can be extended to his-
tories not inH and to sets and sequences.

With the above definitions in hand, it is now possible to
define correctness for our replicated transaction schedul-
ing approach.

Definition 10. Let H be a replicated-transaction history
over T. H is security-class projection serializable if for
some serial historyHs overT, and for anyHA ∈ H,
HA = πA(Hs) where= denotes view equivalence. This
condition says that, for an algorithm to be correct, every
history in the replicated-transaction history produced by
that algorithm must be view equivalent to the correspond-
ing security-class projection of the same serial history.

Why do we know that Definition 10 is a reasonable cor-
rectness criterion? Equivalence to serial execution is rea-
sonable because individual transactions are designed to
run as a single sequential program. Since individual trans-
actions are designed this way, it is reasonable to expect a
history containing a collection of them to be equivalent to
some serial history. As we saw above in Example 1, in a
replicated database, we get incorrect results if our replicat-
ed histories are not equivalent to the same serial history. In
our definition we have used view equivalence. Readers
who are interested in a justification of the reasonableness
of view-equivalence should consult [2] or [21]. It is also
possible to prove that an algorithm that always produces
security-class-projection serializable replicated-transac-
tion histories always produces one-copy serializable repli-
cated-data histories.

5.2 Proof of Correctness for Algorithm Q

We will not give a full proof here (interested readers
should see [17]), but instead we will discuss how a proof
of correctness would run. To show that Algorithm Q pro-
duces a replicated-transaction historyH that is security-
class-projection serializable we must first find a suitable
serial historyHs overT and then show that for anyHA ∈ H
produced by Algorithm Q,HA = πA (Hs).

Let A be the security class that is the greatest element of
(SC, ≤) or if (SC, ≤) does not have a greatest element, add
an auxiliary greatest elementA to SC. It is easy to see that
there is a serial historyHs′ such thatπA(Hs′) = HA. If we

only looked at update transactions we would be done but
we need equivalence over all transactions inT. We will
now show how to construct another historyHA that is
equivalent to a serial historyHs such that, for any history
HB ∈H produced by Algorithm Q,HB = πB (Hs).

To construct the historyHA we would have Algorithm
Q also replicate the read-only transactions as though they
were update transactions. Algorithm Q would then con-
struct a history at security classA that contained all of the
transactions inT. This historyHA would also be equivalent
to a serial historyHs. Then we could argue that backends
that are always given replicas of transactions in the same
order they were first scheduled together have histories that
are security-class projection equivalent toHs. We can ap-
peal to the properties of conservative timestamp ordering
to make this point.

To prove that the backends are always given replicas of
transactions in the same order that they were first sched-
uled together, we argue that Algorithm Q always gives
transactions to the backends in the same order. One way to
do this is to use theshuffle of two or more sequences. The
shuffle of two compatible sequencesS1 and S2, denoted
S1*S2, is the set of all sequences that contain just the ele-
ments of(image S1) ∪ (image S2) and containS1 andS2 as
subsequences. Two sequences arecompatible if they do
not contain inconsistent orderings of elements common to
S1 andS2. For an example of a shuffle, supposeS1 = abcde
and S2 = wxdyze. Then S1 and S2 are compatible and
wabxcdyze ∈ S1*S2. The extension to the shuffle
S1*S2*…*Sk of more than two compatible sequences is
straightforward.

We use the shuffle by showing how the queues at each
security class work together to generate a shuffle of the
transactions and how this shuffle is preserved over the par-
tial order(SC, ≤). This argument gives us a basis for the fi-
nal arguments we sketched earlier.

6. Comparison of the Algorithms

Our new algorithm solves the problem of allowing con-
currency while maintaining consistency between replicas,
without introducing any covert channels. The algorithm
hides both the data and transaction replication by main-
taining consistency of reads-froms and final writes across
security classes. It does this using replicated transactions
instead of update projections as in the Jajodia-Kogan algo-
rithm (Algorithm J). Because they work differently and
have different structural properties, these algorithms give
developers more design choices when solving the problem
of multilevel-secure replica and concurrency control.

Algorithm J does not replicate transactions, a plus for
databases processing transactions with large program
texts. Algorithm Q does not thread update projections be-
tween backend databases and the trusted frontend, a plus

for databases that process mostly updates. Both algorithms
introduce little apparent delay with respect to use of the
database during a single session because transactions take
effect immediately at the session security class.

From the user’s point of view at high session levels, Al-
gorithm Q keeps its replicas of low data more current than
Algorithm J. Algorithm J threads the effect of an update
through each backend while Algorithm Q sends the trans-
actions to the backends after relatively little processing,
and no threading takes place at all. On the other hand, Al-
gorithm Q performs more computation on the backend da-
tabase systems, if we assume that running a replica of a
transaction requires more computation that processing its
corresponding update projection.

The Jajodia-Kogan algorithm does not require the use
of conservative timestamp ordering schedulers in the
backend database systems. As described, Algorithm Q de-
pends on the use of a specific class of backend schedulers.
However, it is possible to relax this requirement. Instead
of requiring a conservative-timestamp-ordering scheduler
in the backend database systems, we merely ask two
things:

1. that the backend scheduler not abort transactions for
concurrency control reasons, i.e. it must be conserva-
tive, and

2. that the backend scheduler always maintain a serial-
ization order that preserves the order in which it re-
ceives conflicting transactions.

Both algorithms have the advantage of simple recovery
from failures. Most of the work will be done by the un-
trusted backend database systems, using local mecha-
nisms. In both Algorithm J and Algorithm Q, only a small
amount of queue information must be kept in persistent
storage on the frontend to support recovery from failures
(of course allowing for caching, etc. as in normal database
log management).

7. Conclusion

We believe that the replicated architecture has the po-
tential for performance improvement over the kernelized
approach. This potential depends on the replica and con-
currency control algorithms used to keep the backend da-
tabase systems consistent. Both Algorithm J and
Algorithm Q solve the replica and concurrency control
problems for multilevel secure database systems that en-
force policies based on partial orders and have uniform in-
tegrity constraints across security classes. They do this
without introducing any covert channels. Furthermore,
Algorithm Q does not require any trusted code. Since Al-
gorithm Q is structurally different from the only previous
algorithm of this kind, it offers developers a choice more
suited to applications with large numbers of large update
transactions, or in applications where computation of up-

date projections is undesirable. Interested readers should
also be aware of the update-set-based algorithm due to
Costich [3] as another alternative.

Acknowledgments

We thank Oliver Costich for his comments on our
proof, Carl Landwehr and Myong Kang for their review
and comments, and Judy Froscher for posing this problem.
We would also like to thank the ACSAC referees for their
comments.

References

 1. A. Aho, J. Hopcroft, and J. Ullman,Data Structures and Al-
gorithms, Addison-Wesley, 1983, ISBN 0-201-00023-7.

 2. P. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency
Control and Recovery in Database Systems, Addison-Wes-
ley, 1987, ISBN 0-201-10715-5.

 3. O. Costich, “Transaction Processing Using an Untrusted
Scheduler in a Multilevel Database with Replicated Archi-
tecture”, submitted for publication, 1991.

 4. O. Costich and I. Moskowitz, “Analysis of a Storage Chan-
nel in the Two-Phase Commit Protocol”,Fourth Computer
Security Foundations Workshop, Franconia, NH, 1991.

 5. D. Denning, “Commutative Filters for Reducing Inference
Threats in Multilevel Database Systems”,Proceedings of
1985 Symposium on Security and Privacy, Oakland, Califor-
nia, April 1985, pp. 134-146.

 6. J. Froscher and C. Meadows, “Achieving a trusted database
management system using parallelism”, inDatabase Security
II: Status and Prospects, ed. C. E. Landwehr, North-Holland,
Amsterdam, 1989, ISBN 0-444-87483-6, pp. 253-261.

 7. C. Garvey, N. Jensen, and J. Wilson, “The Advanced Secure
DBMS: Making Secure DBMSs Usable”, inDatabase Secu-
rity II: Status and Prospects, ed. C. E. Landwehr, North-Hol-
land, Amsterdam, 1989, ISBN 0-444-87483-6, pp. 187-195.

 8. R. Graubart, “The Integrity Lock Approach to Secure Data-
base Management”,Proceedings of 1984 Symposium on Se-
curity and Privacy, Oakland, California, April 1984, pp.62-
74.

 9. J. Gray, N. Kelem, and L. Notargiacomo, “Secure Distributed
Database Management System: Formal Model”,Final Tech-
nical Report, vol. 3, Rome Air Development Center TR-89-
314, Unisys Corporation, McLean, VA, December 1989.

10. T. Hinke, “DBMS Technology vs. Threats”, in Database Se-
curity: Status and Prospects, ed. C. E. Landwehr, North-Hol-
land, Amsterdam, 1988, pp. 57-87.

11. T. Hinke and M. Schaefer,Secure Database Management
System, RADC-TR-75-266, Final Technical Report, System
Development Corporation, November 1975.

12. S. Jajodia and B. Kogan, “Transaction Processing in Multi-
level-Secure Databases Using Replicated Architecture”,Pro-
ceedings of 1990 IEEE Symposium on Security and Privacy,
Oakland, CA, pp. 360-368.

13. T. Keefe, W. Tsai, J. Srivastava, “Multilevel Secure Database
Concurrency Control”,Proceedings of Sixth International
Conference on Data Engineering, Los Angeles, California,
February 1990, pp. 337-344.

14. T. Lunt, D. Denning, R. Schell, M. Heckman, W. Shockley,
“The SeaView Security Model”,IEEE Transactions on Soft-
ware Engineering, SE-16, 6, (June 1990), pp. 593-607.

15. G. MacEwen, “Effects of distributed system technology on
database security: A survey”, inDatabase Security: Status
and Prospects, ed. C. E. Landwehr, North-Holland, Amster-
dam, 1988, pp. 253-261.

16. W. Maimone and I. Greenberg, “Single-Level Multiversion
Schedulers for Multilevel Secure Database Systems”,Pro-
ceedings of Sixth Annual Computer Security Applications
Conference, Tucson, AZ, December, 1990, pp. 137-147.

17. J. McDermott, S. Jajodia, and R. Sandhu, “Maintaining Con-
sistency In Multilevel-secure Databases That Use A Repli-
cated Architecture”, submitted for publication, 1991.

18. “Multilevel Data Management”, Committee on Multilevel
Data Management, Air Force Studies Board, National Re-
search Council, Washington, DC, 1983.

19. National Computer Security Center,Trusted Database Man-
agement System Interpretation of the Trusted System Evalua-
tion Criteria, NCSC-TG-021, April 1991.

20. J. O’Connor and J. Gray, “A Distributed Architecture for
Multilevel Database Security”,Proceedings of the 11th Na-
tional Computer Security Conference,Baltimore, Maryland,
October 1989, pp. 179-187.

21. C. Papadimitriou,The Theory of Database Concurrency
Control, Computer Science Press, 1986, ISBN 0-88175-027-
1.

22. O. Saydjari, J. Beckman, and J.Leaman, “Locking Comput-
ers Securely”,Proceedings of the 10th National Computer
Security Conference, NBS, 1987, pp. 129-141.

